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Abstract

Virtually every solid material contains features that are different
at different length scales. The challenge, both for mathematical and
physical modeling, is to comprehend relationships between models at
different length scales. This has led to a well-developed theory of “ho-
mogenization” mostly concentrating on the prediction of the effective
response of heterogeneous materials. However emerging characteriza-
tion methods in Experimental Mechanics, giving access to local fields
at smaller and smaller scales pose another challenge to modelers to
devise efficient formulations that permit interpretation and exploita-
tion of the massive amount of data generated by these novel methods.
Significant progress has been made in the last twenty years to model
nonlinear heterogeneous materials which are made either from purely
elastic or purely dissipative constituents. Emphasis is put here on the
coupling between elastic and plastic effects. Incremental variational
principles are exploited to propose approximate mean-field methods
to predict accurately the overall response of heterogeneous materials
as well as some of the statistics of the local fields.

Keyword polycrystal / ice / creep / elastoviscoplasticity / numerical ho-
mogenization / Fourier transform.

1 Introduction

Virtually every solid material is heterogeneous at one, and often several,
length scales. Identifying the main physical mechanisms at a given scale and
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understanding how the interactions between these mechanisms result in a
collective behavior at a larger scale has led to the development of several the-
ories under a wide variety of names such as “up-scaling”, “coarse-graining”,
“micromechanics” , “effective medium”, “mean-field” or “homogenization”
theories covering several decades of length-scales spanned by solid materials
from the nano-scale to the laboratory scale. All these approaches may have
differences, sometimes significant, in their perspectives to the problem, but
they all aim at extracting the most pertinent information from the micro
scale (the smaller scale) to the macro scale (the coarser scale). The present
study is limited to scales ranging from micrometers to centimeters, where
Continuum Mechanics applies and where the above mentioned approaches
considering at least two different scales have made considerable progress in
the past 20 years.

Progress are currently being made in three different, but intimately con-
nected, directions:

- New experimental techniques at small scales are developed to provide
information on the microstructure (see Uchic et al [1] for instance), on
the local mechanisms and on the in situ constitutive relations of the
phases at the micro scale.

- New mean-field or homogenization theories, delivering fast accurate
estimates of the effective properties of materials and other pertinent
information are proposed to deal from an engineering (macroscopic)
perspective with structures which are heterogeneous at small scale and
to incorporate enough information about their microscopic variability
in the prediction of their macroscopic response (see Ponte Castañeda
and Suquet [2] for instance).

- Full-field simulations at the volume element level, challenged by the
progress in experimental techniques, are constantly improved to check
the consistency of homogenization theories with experimental results,
to provide information that are not accessible experimentally and to
perform extensive and accurate parametric studies to calibrate models
(see Lebensohn et al [3] for FFT-based approaches).

The present study will emphasize two specific aspects of micromechanical
problems encountered in heterogeneous materials:
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1. Coupling between elastic and dissipative effects in heterogeneous ma-
terials. New nonlinear homogenization theories have been developed
in the last twenty years to model nonlinear heterogeneous materials
which are made either from purely elastic or purely dissipative con-
stituents (Willis [4], Ponte Castañeda [5], Ponte Castañeda and Suquet
[2]). However, by contrast the question of the coupling between elastic
and dissipative effects, which is, in practice, the rule rather than the
exception, has not witnessed the same development.

2. Importance of intraphase strain heterogeneity. Emerging characteriza-
tion methods in Experimental Mechanics, giving access to local fields
at smaller and smaller scales have shown the multiscale character of de-
formation structures (Doumalin et al [6], Bourcier et al [7]). These finer
experimental techniques pose a challenge to modelers to devise efficient
formulations that permit interpretation and exploitation of the massive
amount of data generated by these novel methods. It has become clear
in the past decade that homogenization schemes could not be limited
to predicting effective properties, or phase averages of the fields, but
should also deliver more local information about their distribution and
variability in the individual phases. Interestingly, Ponte Castañeda [8]
has shown the importance of intraphase field fluctuations, in addition
to field averages per phase, in the context of materials with a single type
of deformation (elastic or viscous). In the somewhat different context
of viscoelastic composites, Lahellec and Suquet [9] have also shown that
it is necessary to transfer higher-order statistics of the fields from one
time-step to the other. The purpose of the present study is to extend,
at least partially, these results to elasto-(visco)plastic composites.

2 Motivation and orientation

2.1 Coupling elastic and plastic deformations

To illustrate the practical issues posed by the interaction between elasticity
and plasticity, we describe two specific situations where it plays an important
role.

1. Bauschinger effect in heterogeneous materials. A strong Bauschinger
effect is commonly observed in metal-matrix composites (Corbin et al
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[10]). This effect is illustrated in figure 1a where a typical stress-strain
curve of a duplex steel subject to loading-unloading is shown (full-field
simulations are due to Brassart et al [11])). After unloading, the yield
stress in compression of the steel is seen to be much lower than the
stress which was reached during the loading phase, just before unload-
ing the specimen. One of the most advanced micromechanical model
available to-date, the incremental mean-field approach of Doghri et al
[12] using an isotropic tangent modulus for the matrix, underestimates
significantly the kinematic hardening of the composite upon unloading,
as can be seen in figure 13a of [12]. Capturing accurately the asym-
metry between loading and unloading is, indeed, a challenge for all
existing mean-field approaches.

To investigate this problem by means of a micromechanical approach,
the constitutive relations of the individual constituents are required.
Duplex steels are made of a ferritic (soft) phase reinforced by marten-
sitic (hard) inclusions which can be considered as purely elastic. A good
description of the stress-strain response of the matrix is provided by
the following constitutive relations (for simplicity, only linear kinematic
hardening is considered here).

ε̇ = M : σ̇ + ε̇p, ε̇p =
3

2
ṗ
s−X

(σ −X)eq
,

X = H : εp, ṗ = ε̇0

(
[(σ −X)eq − σY −R(p)]+

η

)n
.





(1)

where ε is the linearized strain, σ is the Cauchy stress and s is the
stress deviator, M is the elastic compliance of the material, X is
the back stress, a (traceless) second-order tensor associated with kine-

matic hardening, (σ − X)eq =
(

3
2
(s−X) : (s−X)

)1/2
is the von

Mises norm of σ −X, p is the accumulated plastic strain defined as

ṗ = ε̇peq =
(

2
3
ε̇p : ε̇p

)1/2
, R(p) is a nonnegative scalar parameter as-

sociated with isotropic hardening, n is the rate-sensitivity exponent.
Rate-independent plasticity (with isotropic and kinematic hardening)
is obtained in the limit as n tends to +∞.

2. Transient (or primary) creep in polycrystalline materials. Another
problem where both elastic and plastic strains are intimately coupled
is primary creep in polycrystalline materials. A typical experimental
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Figure 1: Two examples of problems arising from the coupling between
elastic and plastic deformations in heterogeneous materials. (a): Bauschinger
effect in dual-phase steels. After Brassart et al [11] and Doghri et al [12]. (b):
Transient creep experiments on polycrystalline ice at −100C. Experimental
results compiled by Ashby and Duval [13].
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creep curve compiled by Ashby and Duval [13] for polycrystalline ice
is shown in figure 1b. The strain rate is seen to undergo a transition
from its instantaneous response (immediately after the application of
the stress) where elastic effects are dominant, to a stationary regime
(secondary creep) determined only by the viscous properties of the
polycrystal.

Constitutive relations for ice at the single crystal level have been proposed
by Castelnau et al [14] and subsequently modified by Suquet et al [15]:

ε = εe + εvp, εe = M : σ, εvp =
M∑

k=1

γkµk, µk = mk ⊗s nk,

γ̇k = γ̇0,k

( |τk −Xk|
τ0,k

)nk

sgn (τk −Xk) ,

τ̇0,k = (τsta,k − τ0,k) ṗk, ṗk =
M∑

`=1

hk` |γ̇`| ,

Ẋk = ckγ̇k − dkXk |γ̇k| − ekXk.





(2)

Polycrystalline ice is an aggregate of grains obeying the same constitutive
relations (2) but with different orientations. After rotation, and because of
the anisotropy of the single crystal, the elastic compliance M and the slip
systems µk differ from one grain to the other in a fixed frame and each grain
has to be considered as a different phase in a large aggregate. A polycrystal
is therefore a composite material with many phases.

2.2 Effective relations, averages and field fluctuations

Micromechanics relies on the analysis of a representative volume element
(r.v.e.). Such a volume V is comprised of N phases occupying domains
V (r) with characteristic functions χ(r) and volume fraction c(r) and must be
large enough to contain most of the available statistical information on the
microstructure of the composite. The spatial averages over the whole volume
element V and over the phases V (r) are denoted by 〈.〉 and 〈.〉(r) respectively.
The average (or first moment) of the stress and strain field over the whole
volume element and over phase r are respectively denoted as :

σ = 〈σ〉 =
1

|V |

∫

V

σ(x) dx, σ(r) = 〈σ〉(r) =
1

|V (r)|

∫

V (r)

σ(x) dx, (3)

6



with similar definitions for the averages of the strain. Effective properties of
a composite are defined as the relation between the history (in time) of the
average stress σ(t), 0 ≤ t ≤ T and the history of average strain ε, 0 ≤ t ≤ T .
The history of one of the two averages is prescribed and the other is deduced
from the corresponding local field by the averaging relations (3). In full
generality, the determination of the effective constitutive relations of the
composite require the local fields σ(x) and ε(x) to be determined by solving
the compatibility equations, the equilibrium equations and the constitutive
relations for the individual phases. This is indeed a formidable problem and
very few exact solutions are known.

The situation simplifies significantly when the individual phases are linear
elastic. Denoting by L(r) the elastic moduli in phase r, the effective stiffness
of the composite is completely specified as soon as only the average strain
ε(r) in each individual phase is known in terms of the total average strain ε.
Since the problem is linear, this relation can be expressed as ε(r) = A(r) : ε
and the effective stiffness L̃ of the composite reads as:

σ = L̃ : ε, L̃ =
N∑

r=1

c(r)L(r) : A(r).

The complete knowledge of the local field ε(x) is not required. This result,
which again is exact for linear composites, partly explains why little atten-
tion has been paid in the literature to the fluctuations of the fields within
individual phases (hereafter called intraphase field fluctuations after Ponte
Castañeda [8]).

When the phases are nonlinear, field fluctuations play an important role.
Assuming for instance that the stress-strain relations are hyperelastic in the
form σ(x) = F(r) (ε(x)), the strain field can be expanded about its mean-
value (following Ponte Castañeda [16]):

ε(x) = ε(r) + (ε(x)− ε(r)),

and the corresponding Taylor expansion for the stress reads as:

σ(x) = F(r)(ε(r)) +
∂F(r)

∂ε
(ε(r)) : (ε(x)− ε(r))

+
1

2

∂2F(r)

∂2ε
(ε(r)) : (ε(x)− ε(r))⊗ (ε(x)− ε(r)) + ....
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It is readily seen that

σ =
N∑

r=1

c(r)σ(r)

with σ(r) = F(r)(ε(r)) +
1

2

∂2F(r)

∂2ε
(ε(r)) :

〈
(ε− ε(r))⊗ (ε− ε(r))

〉(r)
+ ....

Therefore the fluctuations of the strain field in phase r contribute directly
to the average stress σ. Fluctuations of the fields do matter in nonlinear
composites.

Another possible origin to the relative lack of interest for higher-order
statistics of the fields in the context of polycrystalline materials, is a com-
mon misinterpretation of the landmark paper by Eshelby [17]. Eshelby shows
that the strain ε(I) within an ellipsoidal elastic inclusion in an infinite medium
of different elastic characteristics, subjected to an applied deformation ε at
infinity, is uniform in the inclusion. Some of the earliest versions of the self-
consistent scheme took advantage of this exact result to derive an estimate
for the effective properties of polycrystals by considering each grain (or each
family of grains sharing the same shape and the same crystallographic orien-
tation) as a single ellipsoidal inclusion in a surrounding infinite homogeneous
medium. According to Eshelby’s result, the stress and strain are uniform in
the inclusion (and therefore in each grain) in this self-consistent vision of
a polycrystal. Extending this “result” from elastic to elasto-plastic poly-
crystals by considering tangent elastoplastic moduli, this interpretation by
the self-consistent scheme has led to the incorrect belief that the stress and
strain are uniform in individual grains of an elasto-plastic polycrystal, lead-
ing to mean-field approaches based only on the first moments of the stress
or strain fields. The uniformity of the strain field within each grain is clearly
contradicted by experimental observations and by numerical simulations.

2.3 Field heterogeneity

Strain fields are observed both experimentally and numerically to be highly
heterogeneous, as shown in figure 2. The figure on the left shows a map of
the equivalent strain field measured by digital image correlation (Doumalin
et al [6]). The grain boundaries are shown in white and it is clear that
the strain field is heterogeneous within the same grain. Rather than being
uniform in each grain, the main feature of the strain field is the formation of
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bands running at ±450 from the tensile direction (vertical) and crossing the
grains with local deviations depending on whether a grain is well oriented
or not. The same trends are observed in full-field simulations. For instance,
figure 2 right shows a snapshot of the equivalent strain in an aggregate of
polycrystalline ice after 40 h of creep and again the strain is not uniform in
each grain. The bias in the application of Eshelby’s result to polycrystals was
pointed out by Hashin [18]: “the self-consistent scheme assumes that a tree
sees the forest - but a tree sees only other trees”. In other words, grain-to-
grain interactions are essential in understanding the structure of the strain
(or stress) field in polycrystals.

Figure 2: Field heterogeneity. Left: Map of the equivalent deformation (ob-
tained by DIC) in a Zirconium polycrystal subjected to a tensile test in
the vertical direction. Grain boundaries are shown in white (courtesy of M.
Bornert). Center and right: Full-field simulation of a creep test on poly-
crystalline ice. Center: microstructure. Right: snapshot of the equivalent
deformation after 40h of creep under an applied vertical stress of 1 MPa.

The present study highlights the fact that accurate micromechanical the-
ories should take into account “higher-order statistics of the fields“. Higher-
order statistics is limited here to first and second-order moments per phase of
the fields. For the strain field, these moments are ε(r) = 〈ε〉(r) and 〈ε⊗ ε〉(r),
or equivalently the average strain ε(r) and the fourth-order tensor of the strain
fluctuations C(r)(ε) defined as:

C(r)(ε) =
1

2

〈
(ε− ε(r))⊗ (ε− ε(r))

〉(r)
.

It is now well-known ([2, 19, 20]) that these moments can be computed ex-
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actly for thermoelastic composites from the effective properties of the com-
posite. Assume that the phases are linearly thermoelastic, with constitutive
relations:

σ(x) = L(r) : ε(x) + τ (r) in phase r, (4)

where L(r) and τ (r) are uniform in phase r and define the free-energy of phase
r as

w(r)(L(r), τ (r), ε) =
1

2
ε : L(r) : ε+ τ (r) : ε.

Then the first and second moments of the strain field in phase r are given by

〈ε〉(r) =
1

c(r)

∂w̃

∂τ (r)
, 〈ε⊗ ε〉(r) =

2

c(r)

∂w̃

∂L(r)
. (5)

where w̃ is the effective free-energy of the composite. The corresponding
statistics of the stress field follow from (5) and (4):

〈σ〉(r) = L(r) : 〈ε〉(r) + τ (r), C(r)(σ) = C(r)(L(r) : ε). (6)

2.4 Accounting for the material history: lessons from
linear viscoelastic composites

The problem at hand, when dealing with elasto-(visco)plastic materials, is
an evolution problem in time. The history dependence of the constitutive
relations raises the question of which information about the fields (stress,
strain) should be transferred from one time-step to the next by a mean-field
approach? If the local fields are fully resolved in full-field approaches, it is
not the case in mean-field approaches. Lessons can be learnt from linear
viscoelastic composites.

Linear viscoelastic composites appear naturally in the problem of elasto-
(visco)plastic composites for two reasons. First, they correspond to a par-
ticular case of the constitutive relations (1) (no yield stress, no hardening,
rate-sensitivity exponent n = 1). Second, the linearization of the constitu-
tive relations, which is a common practice when the constituents are either
purely hyperelastic or purely viscous, leads naturally to linear viscoelastic
composites when the constituents are elasto-viscoplastic. Although the ef-
fective response of linear viscoelastic composites is relatively well understood,
thanks to the Laplace transform which permits to translate the problem for
a linear viscoelastic composite into a problem for a linear elastic composite,
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the question of determining the second moments of the stress field in the
individual phases of a viscoelastic composite has not yet received a satisfac-
tory answer. Without these second moments, most “modern” linearization
methods outlined in the sequel cannot be applied.

A way around this problem is, instead of using the Laplace transform, to
discretize in time the evolution equations for a viscoelastic composite which
read as

ε̇(x, t) = M (r) : σ̇(x, t) +M v(r) : σ(x, t) in phase r,

where M v(r) is the viscosity tensor of phase r. After time-discretization,
using a backward differentiation scheme ḟ(tn+1) ' fn+1−fn

∆t
(where fn denotes

f(tn)), the constitutive equations read as

ε̇n+1(x) =

(
1

∆t
M (r) +M v(r)

)
: σn+1(x)− 1

∆t
M (r) : σn(x) in phase r.

(7)
The constitutive relations for a viscoelastic composite correspond, after time-
discretization, to a nonclassical thermoelastic problem with piecewise uni-
form elastic compliance 1

∆t
M (r) +M v(r) but with a nonuniform eigenstrain

− 1
∆t
M (r) : σn(x). Second moments of the stress field in such nonclassical

thermoelastic composites are not known. However, when the nonuniform
field σn(x) can be approximated by a uniform stress σ

(r)
n in each individual

phase r, these second moments are known. The aim of the present work
is precisely to approximate (in a variational sense) the problem (7) by a
problem where the eigenstrain is piecewise uniform. A similar problem was
addressed in [21].

In a first attempt, the stress field σn(x) can be replaced in each phase
by its average over this phase:

σn(x) ' σ(r)
n = 〈σn〉(r) in phase r. (8)

This approximation is a first moment approximation. Unfortunately this
simple model is rather inaccurate, as discussed by Lahellec and Suquet [22]
for linear viscoelastic composites. In order to get satisfactory results, it is
indeed necessary to account for the second moment of σn in each phase (in

addition to the first moment) in the definition of σ
(r)
n ([22]).

The orientation of this paper is as follows:
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1. Establish variational principles governing the evolution of nonlinear
elasto-viscoplastic composites.

2. Adapt the variational method of Ponte Castañeda [23] to these varia-
tional principles, both for the linearization of the constitutive relations
and for the approximation of the stress field from the previous time
step by a piecewise uniform stress.

3 Variational Principles for elasto-(visco)-plastic

composites

3.1 Individual constituents

The constitutive relations (1) can be formulated in the framework of Gener-
alized Standard Materials with two convex potentials. The first potential is
the free-energy density w(ε,α) which depends on the (infinitesimal) strain
ε and on internal variables α describing irreversible phenomena. The stress
σ and the driving forces A triggering the evolution of the internal variables
α derive from the free-energy density w through:

σ =
∂w

∂ε
(ε,α), A = −∂w

∂α
(ε,α). (9)

The evolution of the internal variables α is governed by the driving forces A
according to

A =
∂ϕ

∂α̇
(α̇), or equivalently α̇ =

∂ϕ∗

∂A
(A), (10)

where the dissipation potential ϕ(α̇) is the second potential defining the
model and ϕ∗ denotes its Legendre transform. Upon elimination of A be-
tween (9) and (10), the constitutive relations of the materials under consid-
eration can be re-written as a system of two coupled equations, one of them
being a differential equation in time for α :

σ =
∂w

∂ε
(ε,α),

∂w

∂α
(ε,α) +

∂ϕ

∂α̇
(α̇) = 0. (11)
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For instance in the case of the constitutive relations (1) the internal variables
are α = (εp, p) and the two potentials read as

w(ε,α) = 1
2

(ε− εp) : L : (ε− εp) + wst(p) + 1
2
εp : H : εp,

wst(p) =
∫ p

0
R(q)dq,

}
(12)

and

ϕ(α̇) = σY ε̇
p
eq +

ηε̇0

m+ 1

(
ε̇peq
ε̇0

)m+1

. (13)

The time derivative α̇ in (11) can be approximated by a difference quotient
after use of an implicit (backward) Euler-scheme known for its stability and
consistence. The time interval of study [0, T ] is discretized into time intervals
t0 = 0, t1, ...., tn, tn+1, ..., tN = T . For simplicity the time step tn+1 − tn is
denoted by ∆t (its dependence on n is omitted for simplicity) and the value
f(tn) of a function f evaluated at time tn is denoted by fn. Assuming that
(εn,αn) are known at time tn, the time-discretization procedure applied to
(11) leads to the discretized system for the unknowns (εn+1,αn+1) :

σn+1 =
∂w

∂ε
(εn+1,αn+1),

∂w

∂α
(εn+1,αn+1) +

∂ϕ

∂α̇

(
αn+1 −αn

∆t

)
= 0. (14)

3.2 Variational principles for single constituents

When the two potentials w and ϕ are convex, variational principles governing
the evolution of generalized standard materials have been used for a long
time (see for instance Mialon [24]). They have recently been extended to
nonconvex potentials and have found a new domain of applications with the
prediction of microstructure formation (Ortiz and Repetto [25], Miehe et al
[26]). The variational principles used in the present study are limited to
convex potentials.

Lahellec and Suquet ([9] and [27] have derived two variational principles
whose Euler-Lagrange equations are the relations (14).

1. Total (or Incremental) Variational Principle. Considering (εn+1,αn+1),
the strain and internal variables at the end of the time-step as the main
unknowns, it is observed that the second equation in (14) is the Euler-
Lagrange equation for the variational problem:

Inf
α

J(εn+1,α), J(ε,α) = w(ε,α) + ∆t ϕ

(
α−αn

∆t

)
, (15)
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whereas the stress at the end of time-step is given as :

σn+1 =
∂w∆

∂ε
(εn+1), w∆(ε) = Inf

α
J(ε,α). (16)

The relation (16) between σn+1 and εn+1 can be seen as a generalized
nonlinear hyperelastic constitutive relation.

2. Rate Variational Principle. Another variational principle can be de-
rived when the variations are taken with respect to the rates (ε̇, α̇)
between tn and tn+1. Writing εn+1 and αn+1 as

εn+1 = εn + ∆t ε̇, αn+1 = αn + ∆t α̇,

it is readily seen that the second equation in (14) is the Euler-Lagrange
equation for the variational problem :

Inf
α̇

D(ε̇, α̇),

D(ε̇, α̇) =
1

∆t
[w(εn + ∆t ε̇,αn + ∆t α̇)− w(εn,αn)] + ϕ (α̇) .

Furthermore

σn+1 =
∂d

∂ε̇
(ε̇), where d(ε̇) = Inf

α̇
D(ε̇, α̇). (17)

The relation (17) between σn+1 and ε̇ can be seen as a generalized
nonlinear viscous constitutive relation.

3.3 Application to composite materials

A representative volume element (r.v.e.) V of the composite is composed of
N phases. Each individual phase is governed by the differential equations
(11) with potentials w(r) and ϕ(r). The rate-potential D at a material point
x in phase r reads as

D(ε̇, α̇,x) =
1

∆t

[
w(r)(εn(x) + ∆t ε̇,αn(x) + ∆t α̇)− w(r)(εn(x),αn(x))

]
+ϕ(r) (α̇)

with a similar definition for J(ε,α,x). It is essential to note that the spatial
dependence of D not only comes from the dependence of the potentials w(r)
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and ϕ(r) on the phase, but also from the fields εn(x) and αn(x) from the
previous time-step. Adopting the characterization (17)b of the stress σn+1,
the macroscopic stress σn+1 = 〈σn+1〉 can be characterized by the variational
property:

σn+1 =
∂d̃

∂ε̇

(
ε̇
)
, where d̃

(
ε̇
)

= Inf
〈ε̇〉=ε̇

〈d(ε̇)〉 = Inf
〈ε̇〉=ε̇

〈
Inf
α̇

D(ε̇, α̇)
〉
. (18)

The last variational problem in (18) is a difficult one as the potentials w(r)

and ϕ(r) are non quadratic. Inspired by the variational method of Ponte
Castañeda [23], the variational problem (18) is replaced by a simpler one for
a potential D0 which will be specified in due time. D is written as:

D(ε̇, α̇) = D0(ε̇, α̇) + ∆D(ε̇, α̇), ∆D = D−D0, (19)

where D0(ε̇, α̇) is the rate-potential for a (fictitious) comparison composite
which will be chosen in such a way that the comparison composite is indeed
a linear comparison composite (LCC). Using this translation, and optimizing
over the LCC, the following estimate is obtained:

d̃(ε̇) ' Stat
D0

[
d̃0(ε̇) +

〈
Stat
α̇,ε̇

∆D(ε̇, α̇)

〉]
,

where d̃0(ε̇) = Inf
〈ε̇〉=ε̇

〈
Inf
α̇

D0(ε̇, α̇)
〉





(20)

The choice of D0 depends on the constitutive relations of the individual
constituents.

3.4 Elasto-(visco)plastic phases with isotropic harden-
ing

In the sample case of elasto-viscoplastic phases with isotropic hardening only
(X = 0 in (1)), the rate-potential reads as:

D (ε̇, ε̇p, ṗ,x) =
∆t

2

[
(ε̇− ε̇p) : L(r) : (ε̇− ε̇p)

]
+ σn(x) : (ε̇− ε̇p)

+
1

∆t

(
w

(r)
st (pn(x) + ∆tṗ)− w(r)

st (pn(x))
)

+
η(r)ε̇0
m+ 1

(
ṗ
ε̇0

)m+1

+ I{ṗ = ε̇peq}(α̇)

bThe reader is referred to Lahellec and Suquet [28] for the first approach based on the
potential J .
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where the indicator function I{ṗ = ε̇peq} enforces the constraint ṗ = ε̇peq. Note

that D depends on x through the phase r and through σn(x) and pn(x). The
comparison potential D0 is chosen as

D0 (ε̇, ε̇p, ṗ) =
∆t

2

[
(ε̇− ε̇p) : L

(r)
0 : (ε̇− ε̇p)

]
+ σ(r)

n : (ε̇− ε̇p)

+
1

∆t

(
w

(r)
st (pn + ∆tṗ)− w(r)

st (pn)
)

+
η(r)ε̇0
m+ 1

(
ṗ
ε̇0

)m+1

+ I{ṗ = ε̇peq}(α̇) + η
(r)
0 ε̇

p : ε̇p.

It is found in the different optimization steps involved in the right-hand-side
of (18) that, in the comparison composite, ṗ is uniform per phase and given
as

ṗ = ṗ(r) =

√〈
2

3
ε̇p : ε̇p

〉(r)

.

By integration in time, p itself is uniform per phase, p = p(r) in phase r. Note
also that the field σn(x) appearing in D has been replaced in D0 by a stress

σ
(r)
n which is uniform on phase r . Therefore D0 is uniform in each individual

phase as a function of ε̇ and α̇. The conditions for the optimal choice of the
variables L

(r)
0 , σ

(r)
n and η

(r)
0 can be expressed as conditions on the first and

second moments per phase of the stress field σ(x) in the comparison com-
posite. From now on, σ denotes the stress field in the comparison composite,
solution of the variational problem (20) defining d̃0. Setting

σ̂n(x) = H(r)σ(x) + (I −H(r)) : σ(r)
n , H(r) = I −L(r) : (L

(r)
0 )−1,

the optimality conditions for L
(r)
0 and σ

(r)
n read as (Lahellec and Suquet [27]):

〈σn〉(r) = 〈σ̂n〉(r) and 〈σn ⊗ σn〉(r) = 〈σ̂n ⊗ σ̂n〉(r), (21)

whereas the optimality with respect to η
(r)
0 yields:

η
(r)
0 =

1

3

σ
(r)
eq

ε̇0


 η(r)

[
σ

(r)
eq − σ(r)

Y −R(r)(p(r))
]+




n(r)

. (22)

Equations (21) and (22) define a nonlinear problem for L
(r)
0 , σ

(r)
n and η

(r)
0

since the first and second moments of σ depend on these unknowns which,
themselves, depend on these first and second moments of σ.
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3.5 Interpretation of the LCC

The constitutive relations of the phases in the LCC (deduced from the above
expression of D0) can be written as

ε̇ = M
(r)
0 :

(
σ − σ(r)

n

∆t

)
+

1

2η
(r)
0

s, (23)

where η
(r)
0 is given by (22). The relations (23) between ε̇ and σ are that of

a “thermoelastic” composite with compliance M (r) = 1/∆tM
(r)
0 + 1/2η

(r)
0 K

(K is the 4th-order projector on deviators) and “thermal” eigenstrain−1/∆tM
(r)
0 :

σ
(r)
n . They are the time-discretized version of a linear viscoelastic compos-

ite (different from one time-step to the other). The comparison composite
is therefore a linear comparison composite which can be seen either as a
viscoelastic composite (in a time continuous interpretation of (23)) or as a
thermoelastic composite (in a time-discretized interpretation).

The constitutive relations (23) can alternatively be put in the form:

ε̇ = M
(r)
0 :

(
σ − σ(r)

n

∆t

)
+ ε̇p, ε̇p =

3

2
ṗ(r) s

σ
(r)
eq

,

ṗ(r) = ε̇0




[
σ

(r)
eq − σ(r)

Y −R(r)(p(r))
]+

η(r)




n(r)

.





(24)

Interestingly, these equations have the same structure as the initial consti-
tutive relations but are nonlocal in the sense that the driving force for the
plastic deformation εp(x) is not the local stress σ(x) at point x but is the
second moment of the stress field over phase r (or more specifically its second

invariant σ
(r)
eq ). It should be noted that (22) defines η

(r)
0 as a secant viscos-

ity for the purely viscous problem. Therefore the present method can be
interpreted as follows:

- The nonlinear constitutive equations are linearized (using a secant
method) to obtain a linear viscoelastic comparison composite (LCC),

- The elastic moduli of the LCC differ from that of the original compos-
ite and a piecewise uniform stress is substituted to the spatially vary-
ing stress field at the beginning of the time step in order to integrate
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accurately in time the evolution of the linear viscoelastic comparison
composite,

- The choice of this comparison composite is made according to the Rate-
Variational Principle (20) leading, for an isotropic elasto-(visco)plastic
phase governed by the constitutive relations (1), to the optimality con-
ditions (21) and (22).

3.6 Elasto-(visco)plastic polycrystals

The constitutive equations (2) cannot be put, strictly speaking, in the form
(9) for generalized standard materials. However, the above described pro-
cedure for defining a linear comparison composite can be followed (without
the justification of a variational principle) with the additional flexibility of
choosing a different linearization procedure. After several trial and errors,
we came to the conclusion that the best compromise for this linearization
of the constitutive equations (2) is the more advanced second-order method
of Liu and Ponte Castañeda [29] to linearize the evolution equation for γ̇k
and more standard first or second moment equations for the other evolution
equations. The constitutive relations for single crystals in the LCC are taken
as:

ε̇(x) = M 0
(r) :

(
σ(x)− σ(r)

n

∆t

)
+ δεvp(x),

δεvp(x) =
M∑

k=1

δγ
(r)
k (x)µ

(r)
k ,

δγ
(r)
k (x) = α

(r)
k (τ

(r)
k (x)−X(r)

k (x)) + β
(r)
k ,

δτ
(r)
0,k =

(
τk,sta − τ (r)

0,k

)
δp

(r)
k , δp

(r)
k =

M∑

`=1

h
(r)
k,`

√〈
∆γ

(r)
`

2
〉(r)

,

δX
(r)
k (x) =

(
ck − dk

〈
X

(r)
k

〉(r)

sgnδγ
(r)
k (x)

)
δγ

(r)
k (x)−

(
dk

∣∣∣∣
〈
δγ

(r)
k

〉(r)
∣∣∣∣+ ek

)
Xk(x) + dk

∣∣∣∣
〈
δγ

(r)
k

〉(r)
∣∣∣∣
〈
X

(r)
k

〉(r)

.





(25)

where

δγ
(r)
k (x) =

γ
(r)
k (x)− γ(r)

k,n

∆t
, δX

(r)
k (x) =

X
(r)
k (x)−

〈
X

(r)
k,n

〉(r)

∆t
, δτ

(r)
0,k =

τ
(r)
0,k − τ

(r)
0,k,n

∆t
,
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and α
(r)
k and β

(r)
k solve the nonlinear equations

β
(r)
k = fk(ι

(r)
k )−α(r)

k ι
(r)
k , α

(r)
k =

f(ι̂
(r)
k )− f(ι

(r)
k )

ι̂
(r)
k − ι

(r)
k

, fk(ι) = γ̇0,k

( |ι|
τ0,k

)nk−1

ι,

where

ι
(r)
k (x) = τ

(r)
k (x)−X(r)

k (x), ι
(r)
k =

〈
ι
(r)
k

〉(r)

, ι̂
(r)
k = ι

(r)
k +

√〈
ι
(r)
k

2
〉(r)

.

M 0
(r) and σ

(r)
n are determined by imposing closure equations similar to (21).

4 Sample results

4.1 Effective transient response

The model based on the Rate-Variational Principle will be called the RVP
model. It can now be applied to the two specific problems described in the
introduction.

4.1.1 Bauschinger effect in dual-phase steels

The predictions of the RVP model are compared with the full-field simula-
tions of Brassart et al [11] for the specific case of dual-phase steels composed
of a ferritic soft matrix containing hard martensitic inclusions. The inclu-
sions (phase 1) are purely elastic (E(1) = 200 GPa, ν(1) = 0.3), the matrix
(phase 2) is a rate-independent material with isotropic hardening and the
following characteristics:

E(2) = 200 GPa, ν(2) = 0.3,

σeq = σ
(2)
Y + βpγ, σ

(2)
Y = 300 MPa, β(2) = 1130 MPa, γ(2) = 0.31.

The Hashin-Shtrikman lower bound is used to estimate the effective proper-
ties of the LCC. The RVP model predicts rather accurately the early yielding
in compression of the composite and the rather long transition zone between
elastic unloading and fully developed plasticity in compression (see figure 3
left).
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Figure 3: Left: Dual-phase steel, comparison between the full field simula-
tions of Brassart [11] and the RVP model. Right: transient creep of poly-
crystalline ice, comparison between experimental results compiled by Ashby
and Duval [13] and the RVP model.
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4.1.2 Transient creep in polycrystals

The RVP model (25) has been applied to polycrystalline ice under creep
and its prediction can be compared to the experimental results compiled by
Ashby and Duval [13]. Material data for the single crystal model (2) are
given in Suquet et al [15]. The effective properties of the LCC are estimated
by the self-consistent scheme. As can be seen in figure 3 right, the predictions
of the RVP model are in good agreement with the experimental results.

4.2 Field statistics

The RVP model not only delivers the effective response of the composite but
gives also access to the field statistics in the LCC which can be considered
as an approximation of the field statistics in the actual nonlinear composite.

4.2.1 Two-phase system. Rate-dependent matrix

Full-field simulations have been performed to simulate the effective response,
as well as the local response, of a two-phase composite comprised of a rate-
dependent matrix containing elastic inclusions with volume fraction c(1) =
0.17. Fifty spherical inclusions are arranged randomly in a cubic unit-cell and
a FFT technique (Moulinec and Suquet [30]) is used to simulate the response
of the unit-cell to a loading-unloading test under a prescribed history of
macroscopic strain (see Lahellec and Suquet [27] for details):

ε(t) = ε33(t)

(
−1

2
e1 ⊗ e1 −

1

2
e2 ⊗ e2 + e3 ⊗ e3

)
, ε̇33(t) = ±6.10−2 s−1

The inclusions (phase 1) are elastic (with bulk modulus k(1) = 20 GPa and
shear modulus µ(1) = 6 GPa). The matrix (phase 2) is a rate-dependent
material modeled with the constitutive relations (1) with neither isotropic
nor kinematic hardening and with the following material characteristics:

k(2) = 10 GPa, µ(2) = 3 GPa,

σ
(2)
Y = 100 MPa, η(2) = 100 MPa, ε̇

(2)
0 = 1. s−1, n(2) = 3.333.

The predictions of the RVP model are compared to full-field simulations. As
can be seen in figure 4 (upper center), the overall response of the composite
is well predicted by the model.
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First and second moments of the stress field in the matrix and in the
inclusions are also in good agreement. There is a 30% discrepancy on the
stress fluctuations in the matrix, but regarding the rather local character of
this quantity, the agreement is satisfactory.

4.2.2 Two-dimensional nonlinear polycrystals under anti-plane shear

The statistics of the fields in the model problem of two-dimensional polycrys-
tals under anti-plane shear has been investigated both by full-field simula-
tions and by the RVP model (25). At the single crystal level, slip can occur
along two orthogonal slip systems

µ1 =
1

2
(e1 ⊗ e3 + e3 ⊗ e1), µ2 =

1

2
(e2 ⊗ e3 + e3 ⊗ e2).

The in-plane orientation of grain r is denoted by ω(r). The two initial elas-
tic anti-plane shear moduli are equal (G1 = G2 = 1 MPa). No hardening
(neither isotropic nor kinematic) is taken into account and the slip on the
individual slip systems are governed by a pure power-law relation

γ̇k = γ̇0,k

( |τk|
τ0,k

)nk−1

τk,

γ0,1 = γ0,2 = 1.0 s−1, n1 = n2 = 3, τ0,1 = 1.0 MPa, τ0,2 = 3.0 MPa.

The polycrystal is loaded in shear at constant strain-rate:

ε(t) =
ε̇0t

2
(e1 ⊗ e3 + e3 ⊗ e1).

The effective response and the field fluctuations predicted by the RVP model
are compared in figure 5 with full-field simulations. In order to attain sta-
tionarity of the field fluctuations, several configurations have to be considered
(or the size of the volume element has to be increased). In our case full-field
simulations were performed on 8 different configurations corresponding to
8 different Voronoi tessellations. Ensemble averages were performed on the
different configurations according to

< f >=
1

Nc

Nc∑

j=1

〈f〉j , with 〈f〉j the average of f over the j-th configuration.

(26)
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Figure 4: Two-phase system with a rate-dependent matrix. Loading-
unloading test. RVP model (solid line) compared with full-field simulations
(symbols ?). Upper left: configuration used in the FFT full-field simulations
(volume fraction of inclusions c(1) = 0.17). Upper center: effective response
of the composite. Upper right: average stress in the inclusions. Lower left:
average stress in the matrix. Lower right: stress fluctuations in the matrix.
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The full-field results of the different grains in the different configurations
were grouped by angular sectors. Ten different angular sectors were defined
(between 0 and π) and the value of a function f over the I-th angular sector
was defined as:

〈f〉I =
1

Nc

Nc∑

j=1

∑

i

c(i)

cI
〈f〉ji and

〈
f 2
〉I

=
1

Nc

Nc∑

j=1

∑

i

c(i)

cI
〈
f 2
〉j
i

(27)

with cI =
∑

i

c(i)), for grains with orientation ω(i) such that π(I−1)
10
≤ ω(i) <

πI
10

and I = 1, ..., 10. The stress fluctuations as a function of the angular
sector are defined in a similar way as:

CI(σ) :: K = 2
〈
(σ13 − 〈σ13〉I)

2 + (σ23 − 〈σ23〉I)
2〉
I

The stress fluctuations are shown at three different times t1, t2 and t3 corre-
sponding to the initial elastic response, the transient response and the fully
viscous response of the polycrystal as a function of the grain orientation.
There is initially no stress fluctuation at time t1 since the two elastic shear
moduli are equal (the single crystal is elastically isotropic and the polycrys-
tal is elastically homogeneous). Then stress fluctuations begin to develop in
the transient regime (time t2) and culminate in the purely viscous regime
where the properties of the phases are contrasted. As can be seen, the RVP
model captures correctly the dependence of the stress fluctuations both as a
function of time t and orientation ω.

5 Concluding remarks

A variational approach to the effective response of elasto-plastic heteroge-
neous materials with isotropic and kinematic hardening has been proposed.
Central to this approach is an incremental variational principle satisfied by
the rate of internal variables in single phases governed by two potentials.
Then, inspired by the variational method of Ponte Castañeda, the origi-
nal potential is compared with a reference potential for a linear comparison
composite for which the variational problem can be solved in closed form.
Appropriate choices for the reference potential lead to approximate models
for the exact effective potential. The effective response of the composite as
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Figure 5: Two-dimensional polycrystals under anti-plane shear. Monotonic
loading at constant strain-rate. RVP model (solid line) compared with full-
field simulations (symbols ?)). Left: one of the configurations used in the
FFT full-field simulations. Center: effective response (the full-field simu-
lations correspond to the ensemble average over all configurations). Right:
stress fluctuations as a function of the orientation.

well as the first and second moments of the stress field in the phases are ac-
curately described. In particular the Bauschinger effect commonly observed
in metal-matrix composites is captured by the method.
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[16] P. Ponte Castañeda, Exact second-order estimates for the effective me-
chanical properties of nonlinear composite materials, J. Mech. Phys.
Solids 44 (1996) 827–862.

[17] J. Eshelby, The determination of the elastic field of an ellipsoidal inclu-
sion and related problems, Proc. R. Soc. London A 241 (1957) 376–396.

[18] Z. Hashin, Analysis of Composite Materials: A survey, J. Appl. Mech.
50 (1983) 481–503.

[19] V. Buryachenko, Multiparticle effective field and related methods in
micromechanics of composite materials, Appl. Mech. Rev. 54 (2001) 1–
47.
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[24] P. Mialon, Eléments d’analyse et de résolution numérique des rela-
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