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Statistical properties of nearest neighbor regression function

estimate for strong mixing processes.

Patrick Rakotomarolahy∗

Abstract

We examine statistical properties of nearest neighbor regression technique beyond the

standard i.i.d hypothesis. We analyze the second order properties and establish the asymp-

totic normality of the nearest neighbor regression function estimate for strongly mixing pro-

cesses. We achieve some rates for the second order properties for this nonparametric method

for α-mixing processes. We make an application of the theoretical results on the modelling

of economic indicators.

Keywords: nearest neighbor, α-mixing processes, second order properties, asymp-

totic normality, economic indicators.

JEL: C22 - C53 - E32.

1 Introduction

Properties of the k nearest neighbor (k-NN) regression estimate depend on the dependence

structure of the process. Under the i.i.d assumption, many results have been obtained about the

properties of the k-NN regression function estimate. Not to be exhaustive, we can mention the

work of Royall (1966) on k-NN regression estimate with uniform weighting function. He studied

the MSE, the MISE and the asymptotic normality of such k-NN regression. Later, Mack (1981)

extended this result for non-uniformly weighted k-NN regression estimate. He investigated the

bias and the asymptotic normality of the k-NN regression estimate with a more general weighting

function, again under the i.i.d assumption. Other types of convergence such as L2 consistent and
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uniform convergence are discussed in Stone (1977) and Devroye (1982), respectively. Moreover,

Stute(1984) has weakened the assumption on finiteness of the third moment of the underlying

process in Mack (1981) and has obtained the asymptotic normality of the univariate k-NN re-

gression estimate.

An interesting extension would be on relaxing the i.i.d assumption, may we still establish similar

statistical properties of the k-NN regression estimate even the processes are dependent. That

would ensure the use of k-NN estimate to time series processes.

In contrast to independent framework, fewer results on k-NN regression estimate have been ob-

tained for dependent processes. They are mainly obtained in univariate setting. Among them,

we can mention the work of Collomb (1984) where he has provided the piecewise convergence

for univariate dependent processes. This work has been extended by Yakowitz (1987) on the

quadratic mean square error of such k-NN regression estimate. We will enlarge these results

on dependent processes for the k-NN regression estimate. Clearly, we will analyze the bias, the

variance and the quadratic mean square error of the k-NN estimate and second. We will also

establish the asymptotic normality of such regression estimate.

The paper is organized as follows. Section 2 introduces the k-NN nonparametric regression

function estimate. Section 3 studies properties of this nonparametric regression function estimate

for dependent processes. The last section provides an application of the theoretical result on real

data.

2 Nearest neighbor regression estimate

Let provide a brief presentation of a k-NN regression estimate of the unknown conditional

mean. Consider a process (Y,X) with valued in RxRd. We assume that the process has a

joint density function f . For x ∈ Rd, we are interested in estimation of the conditional mean

m(x) = E[Y | X = x].

Given a sample (Y1, X1), ..., (Yn, Xn), with size n, for the process (Y,X), the k-NN regression
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estimate of the conditional mean m(x) can be rewritten as follows:

mn(x) =
n∑
i=1

w(x−Xi)Yi (2.1)

where w is a weighting function associated to neighbors. A general expression of the weighting

function w is:

w(x−Xi) =

1
nRdn

K(
x−Xi
Rn

)

1
nRdn

∑n
i=1K(

x−Xi
Rn

)
(2.2)

where Rn will be defined as a distance, according to the Euclidean norm in Rd, from x to its

k-th neighbors, and K(u) is a bounded, non negative function satisfying∫
K(u)du = 1 and K(u) = 0 for |u| ≥ 1. (2.3)

We wish to extend results for independent processes to dependent processes. Let us remind the

notion of dependence. The concept of dependence may occur in different ways according to the

structure of the process to be studied and could be ranged from the weakest to the strongest.

Here, we consider some mixing conditions which measure the dependence structure on the process.

They are the strong, the uniform and the regular mixings. Consider a process {Xi, i ∈ N} which

is assumed to be stationary and denote by Fsr = σ(X`, r ≤ ` ≤ s) the σ-algebra generated by

{X`, r ≤ ` ≤ s}. We define the following mixing coefficients:

α(n) = Sup
A∈Ft1,B∈F∞n+t

|P (B ∩A)− P (A)P (B)|. (2.4)

β(n) = Sup
B∈F∞n+t

|P (B)− P (B | F t1)|. (2.5)

φ(n) = Sup
A∈Ft1,B∈F∞n+t,P (A)6=0

|P (B | A)− P (B)|. (2.6)

Then the process {Xi, i ∈ N} is said to be α-mixing (or strong mixing) if α(n) → 0 as n → ∞,

β-mixing if β(n) → 0 as n → ∞ and φ-mixing (or uniform mixing) if φ(n) → 0 as n → ∞.

Moreover, such process is said to be geometrically strongly mixing if there exist c0 > 0 and

ρ ∈ [0, 1[ such that α(n) ≤ c0ρ
n. For more development on the concepts of dependent processes,

Rosenblatt (1956), Ibragimov (1962), Peligrad (1986), Bradley (1986), Doukhan (1994) and Bosq

(1998). Example of dependent processes are the linear and the nonlinear parametric models, since

processes like the ARMA models, related GARCH processes and Markov switching processes are

known to be mixing, Davydov(1973), Guégan (1983), Mokkadem(1990), and Carrasco and Chen
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(2002), among others.

We reconstruct the process (Y,X) using embedding principle which allows taking into account

some characteristics of the series which are not always observed on the trajectory in R. We

consider a real time series (Xn)n, observed until time n. We transform the original process by

embedding it in a space of dimension d and therefore we have a new process X = (Xn)n with

valued in Rd where Xi = (Xi−d+1, · · · , Xi), i = d, ..., n, and if not mentioned Yi = Xi+1. Then,

we have (Yi, Xi) with i = d, ..., n, realizations of the process (Y,X). For a given distance measure

and x ∈ Rd, we compute the distance between x and Xi for i = d, ..., n. So, we can define a

neighborhood around x, N(x) = {i | (Y(i), X(i)), i = 1, · · · , k} whose X(i) represents the i-th

nearest neighbor of x. We assume that the process (Xn)n is stationary. Moreover, we assume

that the random variable Yn | (Xn = x) has a conditional density f(y | x), and the invariant

measure associated to the embedded time series (Xn)n is h.

Our first result concerns the bias and the quadratic mean square error of the k-NN regression

estimate ofm(.). For strongly mixing processes with suitable conditions (on the density functions,

on the weighting function and on the regression function), the bias and the quadratic mean square

error of the k-NN regression estimate are of order O(n−β) and of order O(n−Q), respectively with

β = (1−Q)p
d , Q = 2p

2p+d and p the degree of smoothness. The next result is on the asymptotic

normality of the same k-NN regression estimate. Under suitable conditions, the centered k-NN

regression estimate scaled by the corresponding asymptotic variance has asymptotic standard

normal distribution with speed rate of convergence
√
nQ.

2.1 Second order properties

Second order properties analyzed in this section concern the bias, the variance and the quadratic

mean square error of the k-NN regression estimatemn(.) in relation (2.1). Before all, we introduce

some assumptions. The first assumption characterizes the dependence on the process.

Assumption 2.1. (Xn)n is α-mixing process. Moreover, for a certain δ > 0, |Xn|2+δ is uni-

formly integrable,
∑

n n
2/δα(n) <∞ and infkV ar(Xk) > 0

The next assumption concerns regularity condition on the joint, on the marginal and on the
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conditional density functions of the process.

Assumption 2.2. h(x), f(y | x) and f(y, x) are p continuously differentiable and f(y | x) is

bounded.

The last assumption, for deriving second order properties of k-NN regression estimate, states

conditions on the number of neighbors k and on the weighting function.

Assumption 2.3. The sequence k(n) < n is such that
∑k(n)

i=1 wi = 1 where wi a weighting

function satisfying 0 < wi < 1 when i ≤ k(n) and wi = 0 otherwise.

The regularity condition on the marginal and conditional distribution of the time series in as-

sumption 2.2 can be overcome when the function m(x) satisfies Lipschitz’s condition with order

1 ≤ δ < 2.

We now present the main results on the k-NN regression estimate for dependent processes. The

result established in theorem 2.1 provides second order properties of the k-NN regression estimate.

Theorem 2.1. If assumptions 2.1-2.3 hold, then :

(i) The k-NN regression estimate mn(x) in relation 2.1 is asymptotically unbiased

E[mn(x)] = m(x) +O(n−β). (2.7)

(ii) The variance of the k-NN regression estimate mn(x) is given by:

V ar[(mn(x)] = γ2(
v(x)

k(n)
) (2.8)

(iii) The quadratic mean square error of the k-NN regression estimate mn(x) satisfies

E[(mn(x)−m(x))2] = O(n−Q), (2.9)

where 0 ≤ Q < 1, Q = 2p
2p+d , β = (1−Q)p

d , v(x) = V ar(Yn/Xn = x) and γ is a positive constant

which is equal to 1 when we use uniform weights.

The basic idea of the proof is as follows. In general, the number of neighbors k depends on the

sample size n and should be writen k(n). But we will just write k instead of k(n). This integer
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number k is the key unknown parameter of the k-NN regression estimate. Large-sample proper-

ties should account appropriate value for the unknown number k. The choice of the number of

neighbors k = [nQ], with 0 ≤ Q < 1 and [ . ] the integer part symbol, is frequent for matching

the usual conditions ( k = o(n), log(n) = o(k) and k →∞ as n→∞) for large-sample properties

such as for derivation of convergence rate or asymptotic distribution of the k-NN regression es-

timate. Then, calibration of the number k is equivalent to the characterization Q. We calibrate

the parameter k based on the bias-variance dilemma. Therefore, for dependent processes, we

establish second order properties of the k-NN regression method.

Proof of theorem 2.1. We start from providing the proof of (i) which is the bias of the k-NN

regression estimate mn(x). We denote B(x, r0) = {z ∈ Rd, ‖x− z‖ ≤ r0} the ball centered at

x with radius r0 > 0. We characterize the radius r insuring that k(n) observations fall in the

ball B(x, r); indeed, since the function h(.) is p−continuously differentiable, for a given i the

probability qi of an observation xi to fall in B(x, r) is:

qi = P (xi ∈ B(x, r)) (2.10)

=

∫
B(x,r)

h(xi)dxi = h(x).

∫
B(x,r)

dxi +

∫
B(x,r)

(h(xi)− h(x))dxi (2.11)

= h(x)crd + o(rd), (2.12)

where c is the volume of the unit ball and dx = dx1dx2 · · · dxd. Thus, qi − qj = o(rd) for all

i 6= j. We consider now the k-NN vectors x(k) and we denote q the probability that they are in

the ball B(x, r), that is q = P (x(k) ∈ B(x, r)), then :

qi = q + o(rd). (2.13)

Being given N(r, n), the number of observations falling in the ball B(x, r), for a given r > 0, we

characterize r such that k(n) observations fall in B(x, r). We proceed as follows. We denote Sni
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all non ordered combinations of the i−uple indices from (n− d) indices, then:

E[N(r, n)] =
n−d∑
i=0

iP (N(r, n) = i) =
n−d∑
i=0

i
∑

(j1,··· ,ji)∈Sni

ji∏
j=j1

qj

n−d∏
`=1

`/∈{j1,··· ,ji}

(1− q`)

≥
n−d∑
i=0

i
∑

(j1,··· ,ji)∈Sni

qi(1− q)n−d−i =
n−d∑
i=0

i

 n− d

i

 qi(1− q)n−d−i

= q(n− d)(1 + q − q)n−d,

(2.14)

where q and q are respectively the smallest and largest probabilities qi i = 1, · · · , n − d. Thus,

we obtain a lower bound for E[N(r, n)]. If E[N(r, n)] = k(n), using (2.12) - (2.14), we obtain:

r ≤
(

k(n)

(n− d)

) 1
d

D(x), (2.15)

with D(x) =

(
1

h(x)c

) 1
d

.

Now, using the relationship (2.1), we get:

E[mn(x)] =
∑

i∈N(x)

E[w(x−X(i))Yi], (2.16)

where Yi = X(i)+1. We can remark that E[w(x − X(i))Yi] =
∫
Rd
∫
Rw(x − xi)yif(yi, xi)dxidyi.

Since f(yi, xi) = f(yi | xi)h(xi), then we obtain E[w(x − X(i))Yi] =
∫
Rd
∫
Rw(x − xi)yif(yi |

xi)h(xi)dxidyi. Thus, as soon as the weighting function w(·) is vanishing outside the ball B(x, r):

E[w(x−X(i))Yi] =

∫
B(x,r)

w(x− xi)
(∫

R
yif(yi | xi)dyi

)
h(xi)dxi (2.17)

=

∫
B(x,r)

w(x− xi)m(xi)h(xi)dxi. (2.18)

To compute the bias we need to evaluate: E[mn(x)]−m(x). We begin to evaluate :

∑
i∈N(x)

∫
B(x,r)

w(x− xi)m(x)h(xi)dxi = m(x)E[
∑

i∈N(x)

w(x−X(i))] = m(x). (2.19)

Then,

E[mn(x)]−m(x) =
∑

i∈N(x)

∫
B(x,r)

w(x− xi)(m(xi)−m(x))h(xi)dxi. (2.20)
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The equation (2.20) holds because
∑

i∈N(x)

∫
B(x,r)w(x − xi)h(xi)dxi = 1, (Assumption 2.3).

Then,

|E[mn(x)]−m(x)| ≤
∑

i∈N(x)

∫
B(x,r)

w(x− xi)a ‖xi − x‖
p h(xi)dxi. (2.21)

We get this last expression since the constant a is known and m(·) is p−continuously differen-

tiable. The inequality (2.21) implies that:

|E[mn(x)]−m(x)| ≤ arpE[
∑

i∈N(x)

w(x−X(i))]. (2.22)

The relationship in (2.22) holds because ‖xi − x‖
p < rp, as soon as xi ∈ B(x, r). Now, both

cases be considered:

1. When r is very small, than the bias is negligible and E[mn(x)] = m(x) .

2. If the bias is not negligible, using (2.15) and (2.22), we get:

|E[mn(x)]−m(x)| ≤ a
(

k(n)

(n− d)

) p
d

D(x)p. (2.23)

If we choose k(n) as in integer part of nQ, and knowing that k
n−d ∼

k
n , then |E[mn(x)] −

m(x)| = O(n−β) with β = (1−Q)p
d .

The proof of theorem 2.1 point (i) is complete. Next we prove point (ii) of theorem 2.1 which

concerns the variance of the k-NN regression estimate mn(x).

The variance of mn(x) can be written as follows:

V ar(mn(x)) =

k(n)∑
i=1

V ar(w(x−X(i))Yi) +

k(n)∑
i=1

k(n)∑
j 6=i

cov(w(x−X(i))Yi, w(x−X(j))Yj)

=
γ2

k(n)2

k(n)∑
i=1

V ar(Yi) +
γ2

k(n)2

k(n)∑
i=1

k(n)∑
j 6=i

cov(Yi, Yj)

(2.24)

Using first the inequality on the covariance of α-mixing processes in Lin and Lu (1996) and next
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the stationary condition, relation (2.24) becomes:

V ar(mn(x)) ≤
γ2

k(n)2

k(n)∑
i=1

V ar(Yi) +
γ2

k(n)2

k(n)∑
i=1

k(n)∑
j 6=i

α(|(i)− (j)|)(E[Y 2
i ])

1/2(E[Y 2
j ])

1/2

≤ γ2

k(n)2
(

k(n)∑
i=1

E[Y 2
i ] +

k(n)∑
i=1

k(n)∑
j 6=i

α(|(i)− (j)|)(E[Y 2
i ])

1/2(E[Y 2
j )])

1/2

≤γ2(
1

k(n)
+

1

k(n)2

k(n)∑
i=1

k(n)∑
j 6=i

α(|(i)− (j)|))E[Y 2
i )]

(2.25)

From assumption 2.1, we get
∑k(n)

i=1

∑k(n)
j 6=i α(|(i)− (j)|) <∞ as n tends to infinity. When work-

ing on centered time series, the following equality always holds: E[Y 2
i )] = V ar(Yi). Moreover,

we know that V ar(Yi) = V ar(m(X(i))) + E(v(X(i))), Since X(i) ∈ B(x, r), then from taylor

expansion around x of m(.) and v(.), we get V ar(Yi) = v(x) + O(r). Relation (2.25) yields a

characterization of the variance as follows: V ar(mn(x)) = γ2 1
k(n)(v(x) + O(r)). We have just

specified the variance of the estimate mn. We now prove (iii) of theorem 2.1.

We derive the proof of (iii) from (i) and (ii) of theorem 2.1. We start by writing down the

bias-variance decomposition of the quadratic mean square error.

E[(mn(x)−m(x))2] = V ar(mn(x)) + (E[mn(x)]−m(x))2. (2.26)

We reconsider the last expression in the early proof that is V ar(mn(x)) = γ2

k(n)(v(x) + O(r)).

Then, we get V ar(mn(x)) =
γ2

k(n)v(x) if r is small that is when k(n)
n tends to zero. We achieve

this by taking k(n) = [nQ] where [·] corresponds to the integer part of a real number. Therefore,

it follows:

V ar(mn(x)) = O(n−Q), (2.27)

We have also the following expression of the bias from proof of point (i):

(E[mn(x)−m(x)])2 = O(n−2β). (2.28)

Plugging equations (2.27) and (2.28) inside equation (2.26), we get 2β = Q or Q = 2p
2p+d and the

proof is complete.

The result in theorem 2.1 provides knowledge of the bias and speed rate of the variance of the

k-NN regression estimate in dependent case. Such knowledge allows for controling finite sample
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as well as asymptotic behavior of the estimator. Then, it ensures the use of such regression

estimator to time series processes.

Knowledge of the asymptotic distribution of the k-NN regression estimate in dependent case is

also important. We now study it.

2.2 Asymptotic normality

Still working with dependent processes, under the uniform mixing condition, we establish the

asymptotic normality of k-NN regression estimate mn(x) in relation (2.1) as follows.

Theorem 2.2. We suppose that assumptions 2.1-2.3 are verified. Then, we obtain the asymptotic

normality of k-NN regression estimate mn(x) in relation (2.1) as follows:

√
nQ(mn(x)− Emn(x))→D N (0, σ2), (2.29)

where 0 ≤ Q < 1, Q = 2p
2p+d , and σ

2 = γ2v(x).

The result of theorem 2.2 is interesting because it permits the building of confidence interval

which is fundamental in applications. Since confidence intervals can be used to compare the

quality of point forecasts obtained from different methods, and enhances comparison of several

methods (parametric and nonparametric methods), beyond point forecast. Therefore, from the

asymptotic normality of the k-NN regression estimatemn(x) in Theorem 2.2, we build confidence

interval whose expression is given in the following corollary.

Corollary 2.1. Under the same assumptions as in theorem 2.2, a general form for the confidence

interval around m(x), for a given risk level 0 < α < 1, is:

m(x) ∈ [mn(x)−B −
σ̂z1−α

2√
k

,mn(x) +B +
σ̂z1−α

2√
k

] (2.30)

where z1−α
2
is the (1− α

2 ) quantile of the Student law, σ̂ is an estimate for σ and B is such that:

1. B is negligible, if k(n)
n → 0, as n→∞,

2. If not, B = O(rp), with r =

(
k(n)

(n−d)ĥ(x)c

) 1
d

where c = πd/2

Γ((d+2)/2) , and ĥ(x) is an estimate

for the density h(x).
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It usually happens that comparison of several point forecasts through the use of mean square

prediction error is not sufficient. Corollary 2.1 allows us making comparison of forecast from

k-NN regression with forecasts from other methods (parametric or nonparametric methods),

beyond this standard mean square forecast prediction error. We now proceed to the proof of this

corollary. We derive the proof of this corollary from the proof of theorem 2.2. So, We shall prove

theorem 2.2.

Proof of Theorem 2.2. We assume that the variance σ2
n = var[mn(x)] exists and is non null,

thus:
mn(x)− Emn(x)

σn
=

k(n)∑
i=1

wiYi − EwiYi
σn

. (2.31)

To establish the asymptotic normality of mn(x), we distinguish two cases corresponding to the

choice of the weighting functions.

i) The weights do not dependent on the process (Xn)n, then equation (2.31) becomes:

mn(x)− Emn(x)

σn
=

k(n)∑
i=1

wiZi, (2.32)

where Zi = Yi−EYi
σn

. The asymptotic normality of equation (2.32) is obtained using theorem 2.2

in Peligrad and Utev (1997) . To compute the variance, we use theorem 2.1. Then, we have

σn = γ2

k(n)var(Y | X = x). When we take k(n) = [nQ], therefore σ2 = γ2var(Y | X = x) and the

proof is complete.

ii) We assume that wi =
w(x−X(i))∑K
i=1 w(x−X(i))

where w(.) is a given function. In that latter case, the

weights depend on the process (Xn)n. In the following, we denote by N(i) the order of the ith

neighbor. We rewrite the neighbor indices in an increasing order such thatM(1) = min{N(i), 1 ≤

i ≤ K} and M(k) = min{N(i) /∈ {M(j),∀j < k}, 1 ≤ i ≤ K} for 2 ≤ k ≤ K, and K = k(n) is

the number of neighbors. We introduce a real triangular sequence {αKi, 1 ≤ i ≤ K and αKi 6= 0

∀i} such that

Sup
K

K∑
i=1

α2
Ki <∞ and max

1≤i≤K
|αKi| −→

n→∞
0. (2.33)

Now using the sequences M(j), j = 1, · · · ,K and (αKi), 1 ≤ i ≤ K, we can rewrite expression

11



(2.31) as:
mn(x)− Emn(x)

σn
=

K∑
i=1

αKiSi, (2.34)

with Si =
wM(i)XM(i)+1−EwM(i)XM(i)+1

αKiσn
. The sequence (S2

i ) is uniformly integrable and Si is

function only of (Xj , j ≤ M(i) + 1), thus if we denote Fi, Gi, F ji and Gji , the sigma algebras

generated by {Xr}r≤i, {Sr}r≤i, {Xr}jr=i and {Sr}
j
r=i respectively, then Si ∈ FM(i)+1, and Gi ⊂

FM(i)+1. For a given integer `, we have also G∞n+` ⊆ F∞n+M(`)+1 sinceM(1) < M(1)+1 ≤M(2) <

· · · ≤M(n+ `) < M(n+ `) + 1 ≤M(n+ `+ 1). Then:

sup
`

Sup
A∈G`1,B∈G∞n+`,P (A)6=0

|P (B | A)− P (B)| ≤ sup
`

Sup
A∈FM(`)+1

1 ,B∈F∞
n+M(`)+1

,P (A)6=0

|P (B | A)− P (B)|.

(2.35)

Under the α-mixing assumption on (Xn)n, the right hand part of the expression (2.35) tends to

zero as n → ∞ and the lelf hand part of (2.35) converges to zero, hence the sequence (Si)i is

α-mixing. Moreover, for all i:

Si is centered and var(
K∑
i=1

αKiSi) = var(
mn(x)

σn
) = 1. (2.36)

Then, using expressions (2.33) - (2.36), and the theorem 2.2 in Peligrad and Utev (1997), we get:

mn(x)− Emn(x)

σn
→D N (0, 1) (2.37)

The variance of mn(x) is given by the relation (2.8). The proof of the theorem 2.2 is complete.

Next, we prove corollary 2.1.

Proof of corollary 2.1. From theorem 2.2, a confidence interval, for a given risk level α can

be computed, and has the expression:

−z1−α
2
≤ mn(x)− Emn(x)

σ̂n
≤ z1−α

2
(2.38)

where z1−α
2
is the (1 − α

2 ) quantile of Student law. Previously, we have established that the

estimate mn(x) can be biased, thus the relationship (2.38) becomes:

mn(x) +B − σ̂nz1−α
2
≤ m(x) ≤ mn(x) +B + σ̂nz1−α

2
(2.39)

When the bias is negligible, the corollary is established. If the bias is not negligible, we can

bound it. The bound is obtained using expressions (2.15) and (2.40):

B = O

((
k(n)

(n− d)ĥ(x)c

) p
d
)

(2.40)
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with c = πd/2

Γ((d+2)/2) , ĥ(x) being an estimate of the density h(x). Introducing this bound in ex-

pression (2.39) completes the proof.

Some points can be mentioned, specially about the feasibility of the assumptions in theorem 2.1

and in theorem 2.2. We discuss these assumptions in the following remarks.

Remark 2.1. As soon as the number of neighbors k is different from one, we remark that ∀u,

0 < wi(u) < 1, whatever the weighting function used (uniform or exponential function).

Remark 2.2. The main difference between k-NN method and kernel method lies on the infor-

mation set that we use to estimate the function m(·) at a given point x. In the latter case the

information set is fix and in the former case, it is flexible with respect to the choice of the number

of neighbors k. In this case, such a flexibility has an impact on the values of the weights. Indeed,

when the number of neighbors k increases the weights (wi)ki=1 decrease, then the product (k.wi)ki=1

turn around a constant γ which belongs to R. For uniform weights, wi = 1
k and γ = 1. This last

property implies that the asymptotic variance of the estimate mn(·) does not depend on the true

density nor on the quantity
∫
w2(u)du. This asymptotic property is not verified when we work

with the kernel method.

Remark 2.3. The mixing conditions characterize different behaviors of dependent variables.

Parametric processes like the bilinear models including ARMA models, the related GARCH pro-

cesses and the Markov switching processes are known to be mixing, (Davydov 1973), (Guégan,

1983) and (Carrasco and Chen, 2002). Thus, in practice this condition is not too restrictive.

Remark 2.4. The condition in assumption 2.3 is verified in particular for the weights introduced

in equation (2.2). The parameter γ introduced before entails the correlations between the vectors

Xn.

3 Application on economic indicator modelling

We illustrate the theoretical result on asymptotic normality of the nearest neighbor regression

method for computing confidence intervall. We focus on the modelling of the Euro Area monthly

economic indicators. We then consider the following main economic indicators for such zone:

the Industrial Production Index (IPI), the Industrial Production Index in Construction (IPIC)

13



where both indicators have 213 observations from January 1990 until September 2007, the Retail

Sale Index (RI) with 153 observations from January 1995 to September 2007, the Confidence

Indicator in Industry (ICI), the Confidence Index in Retail Trade (RCI) and the Consumer Con-

fidence Indicator (CI) where the last four indicators have 275 observations from January 1985

until November 2007. We provide graphs of these six macroeconomic indicators in figure 1 in

the appendix.

We couple our study with the classical linear parametric model frequently considered as bench-

mark in the modelling of economic indicators. Then, we consider the linear ARMA modelling

for the six economic indicators and if necessary use the nonlinear GARCH process for modelling

the conditional variance. For each indicator, we build the model on the sample without the

last two year observations. For stationary condition, we take the first order difference for the

six time series. Based on the standard serial correlation order selection, we retain the following

models for the six indicators: an ARIMA(3,1,0) for IPI, an ARIMA(2,1,0)-ARCH(1) for IPIC, an

ARIMA(3,1,0) for ICI, an ARIMA(2,1,0)-GARCH(1,1) for RCI, an ARIMA(2,1,0) for RI and an

ARIMA(3,1,0) for CI. In the case of the k-NN regression method; we determine the two param-

eters, the embedding dimension d and the number of neighbors k, based on the minimization of

the root mean square error using the same transformation on the time series as in AR modelling.

We then obtain kNN(4, 2) for IPI, kNN(6, 2) for IPIC, kNN(10, 3) for ICI, kNN(10, 4) for

RCI, kNN(6, 5) for RI and kNN(9, 2) for CI where in the notation kNN(,̇)̇ the first coordinate

corresponds to the embedding dimension d and the second to the number of neighbors k. More-

over, we have considered the exponential weighting function since it reflects the local behavior

of nearest neighbors method giving more weight to closest neighbors.

We now provide confidence intervals for two year forecasts computed from the previous two

regression methods. We make use of the theoretical results on confidence intervals, developed

in previous section, for the forecasts based on kNN regression method. We mention that the

required assumptions for the application of these results are verified for our data sets: the sta-

tionary condition, mixing condition from remark 2.3 and the condition on the weighting function.

Thus, we can use these results to build the confidence intervals for k-NN regression method. The

confidence intervals at 95% for forecasts for both k-NN regression and ARIMA modelling are

14



given in figure 2 and figure 3 in the appendix.

Concerning the pointwise forecasts from the two methods (ARMA modelling and k-NN method),

we observe that the ARMAmodelling provides the classical mean forecast as the horizon increases

(curve in star). The k-NN forecasts ( curve in plus sign) follow the true trajectory (dotted curve)

except for the ICI indicator. Next, concerning the confidence intervals from both methods, in

general the true trajectory stays always inside the k-NN confidence intervals (curves in circle).

This is not always the case for the confidence intervals from the linear ARMA model (curves in

triangle). We can also notice that the bandwith of the k-NN confidence interval seems smaller

than the bandwith of the ARMA confidence interval in particular for smaller forecast horizons h

(h corresponding to one year). Thus, we obtain comparable forecast for both k-NN method and

ARMA-GARCH modelling for point foreacast as well as confidence forecast.

4 conclusion

Two main results have been obtained when working beyond independent processes. First, we

have characterized the bias, the variance, the quadratic mean square error of the k-NN regression

estimate of the conditional mean. For strongly mixing processes with suitable conditions, the bias

and the quadratic mean square error of the k-NN regression estimate are of order O(n−β) and

of order O(n−Q), respectively. Second, we have established asymptotic normality of the k-NN

regression estimate of the conditional mean and derived confidence interval for such regression

estimate. The asymptotic normality of the same k-NN regression estimate has been provided

where the centered k-NN regression estimate scaled by the corresponding asymptotic variance

has asymptotic standard normal distribution with speed rate of convergence
√
nQ.
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Figure 1: Six macroeconomic indicators of the Euro Area.
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(g) 95% confidence interval of IPI forecast by k-NN and ARMA-GARCH from 10-2005 to 09-2007.
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(h) 95% confidence interval of IPIC forecast by k-NN and ARMA-GARCH from 10-2005 to 09-2007.
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(i) 95% confidence interval of ICI forecast by k-NN and ARMA-GARCH from 12-2005 to 11-2007.

Figure 2: IPI, IPIC and ICI observed values (dashed) and forecasted values by k-NN (plus

sign) and by ARMA-GARCH (star) with their 95% Confidence intervals (circle) and (triangle)

respectively.
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(a) 95% confidence interval of RCI forecast by k-NN and ARMA-GARCH from 12-2005 to 11-2007.
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(b) 95% confidence interval of RI forecast by k-NN and ARMA-GARCH from 10-2005 to 09-2007.
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(c) 95% confidence interval of CI forecast by k-NN and ARMA-GARCH from 12-2005 to 11-2007.

Figure 3: RCI, RI and CI observed values (dashed) and forecasted values by k-NN (plus sign) and

by ARMA-GARCH (star) with their 95% confidence intervals (circle) and (triangle) respectively.
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