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The objective of the paper is to introduce a new model capable of modeling both Time Petri Nets (TPNs) and Networks of Timed Automata (NTA). We called it Clock Transition System (CTS). This new model incorporates the advantages of the structure of Petri nets, while introducing explicitly the concept of clocks. Transitions in the network can be guarded by an expression on the clocks and reset a subset of them as in timed automata. The urgency may be introduced by a separate description of invariants. We show that CTS allow to express TPNs (even when unbounded) and NTA. For those two classical models, we identify subclasses of CTSs equivalent by isomorphism of their operational semantics and provide (syntactic) translations. The classical state-space computation developed for NTA and then adapted to TPNs can easily be defined for general CTSs. Armed with these merits, the CTS model seems a good candidate to serve as an intermediate theoretical and practical model to factor out the upcoming developments in the TPNs and the NTA scientific communities.

Introduction

Mastering the development of correct distributed real-time systems remains a priority in light of clear scientific issues they represent. One necessary lane in our opinion is the use of mathematically based models. Low Level timed models. [START_REF] Henzinger | Temporal proof methodologies for timed transitions systems[END_REF] introduce the abstract notion of timed transition systems allowing to give the formal semantics of a real time system as a set of timed execution sequences. They incorporate time into classical transition systems by assuming that all discrete transitions happen instantaneously while real time constraints restrict the times at which discrete transition may occur. [START_REF] Larsen | Model-checking for real-time systems[END_REF] defined timed transition systems (TTS) as a basic semantical model for real time systems which is a labelled transition system with two type of labels: atomics actions and delay actions (i.e. positive reals) representing discrete and continuous changes of real-time systems.

To avoid delay actions, [START_REF] Alur | Real-time system = discrete system + clock variables[END_REF][START_REF] Alur | Real-time system = discrete system + clock variables[END_REF] advocate an alternative proposal, namely, to designate certain program variables as clock variables. It leads to higher level of specification, explicitly referring to clocks, which are just another kind of system variables. Thus, [START_REF] Henzinger | The expressive power of clocks[END_REF] extend labeled transition systems with clocks and consider both discrete or dense time domain. Similarly, [START_REF] Kesten | Verifying clocked transition systems[END_REF] propose a computational model for real-time systems called Clocked Transition Systems. This model represent time by a set of timers (clocks) which increase whenever time progress, but can be set to arbitrary values by system (program) transitions. A Clocked Transition System is also equiped of discrete variables of any type. Assertions associated with transitions allow the updates of variables and assertions over system variables specify a global restriction of the time progress. TPNs and TA. For the class of critical systems that we aim, in which the specification of permissible behavior requires a description of fine temporal constraints, and for which verification must be performed by efficient tools, the scientific community has notably focused for many years on two timed models: Time Petri nets (TPNs for short) [START_REF] Merlin | A study of the recoverability of computing systems[END_REF][START_REF] Berthomieu | Modeling and verification of time dependent systems using time Petri nets[END_REF] and timed automata (TA for short) or networks of timed automata (NTA for short) [START_REF] Alur | A theory of timed automata[END_REF], and their different extensions. These models respectively time extend Petri nets and finite automata. The paper [START_REF] Srba | Comparing the expressiveness of timed automata and timed extensions of Petri nets[END_REF] provides an overview of the theoretical known results about the relationships among these models.

Each class of model has its advantages and disadvantages. TPNs are particularly well suited for having a compact representation of concurrent behaviors with causal dependencies induced by complex synchronization between activities. The time constraints are described on transitions by intervals of firing. The mixture of concurrency and global time induces non local constraints, which are sometimes difficult to control from the designer point of view. Timed automata better clarify how time should change. The designer's model introduces a set of temporal variables (clocks) used to form expressions guarding transitions. Transitions may reset clocks. The urgency is expressed by defining invariants on states, forcing the progress if possible. Somehow, this model is less abstract than TPNs, but is sometimes easier to build. The introduction of concurrency is achieved by connecting synchronously a set of components. The interest is the modular construction of models. The disadvantage is that it induces a kind of premature architectural decision. Another quirk of the explicit management of clocks is the ability to block the time if you are not careful. Intermediate models for TPNs and NTA. The two main tools for TPNs and NTA are respectively TINA [START_REF] Berthomieu | The tool TINA -construction of abstract state spaces for Petri nets and time Petri nets[END_REF] and UPPAAL [START_REF] Kim | Uppaal in a nutshell[END_REF]. These tools use both intermediate model allowing to manipulate variables and computable functions extending the modeling concision, but in a rather restrictive way. In particular, TINA's intermediate model manipulates only interval representation for timing. It enables state class based analysis but is less general than explicit clocks used in NTA. UPPAAL manipulates bounded variables which can not represent general TPNs (which are Turing powerful). Moreover the UPPAAL synchronization mechanism, featuring only point-to-point and broadcast synchronizations, is less rich than that of TPNs.

Our contribution. A whole set of theories, methods and tools of analysis has been developed separately for TPNs and NTA. Yet we know that these models are very close, but nevertheless have subtle differences that have prevented until now to actually factorize research and development of associated technologies. The objective of the paper is to introduce an intermediate model capable of modeling both TPNs and NTA. This intermediate model is inspired from Clocked Transition Systems [START_REF] Kesten | Verifying clocked transition systems[END_REF] but with only integer variables and with high level functions, its semantics is a Timed Transition Systems [START_REF] Larsen | Model-checking for real-time systems[END_REF] and we called it Clock Transition System (CTS for short). Clock Transition System is designed to incorporate the advantages of the structure of Petri nets, while introducing explicitly the concept of clocks. Transitions in the network can be guarded by an expression on the clocks and reset a subset of them as in timed automata. The urgency may be introduced by a separate description of invariants. These are associated with a marking of the Clock Transition System, which plays the same role as the state in a timed automaton. Armed with these merits, the Clock Transition System models seems a good candidate to serve as an intermediate model to factor out the upcoming theoretical and practical developments in the TPNs and the NTA scientific communities. Outline of the paper. We first introduce in Section 2 the Clock Transition System model giving its syntax and its operational sequential semantics as usual. We then show in Sections 3 and 4 how TPNs and NTA can be easily represented by a Clock Transition System. Finally, Section 5 discusses the model and the techniques for its analysis. Proofs for the theorems can be found in Appendix A.

Definitions

Basic Notations and Definitions

N is the set of natural numbers and Z is the set of integers. B = {true, false} is the set of booleans. For a finite set E, we denote its size by |E| and by 2 E the set of all its subsets. For any two sets E and F , we denote by E F the set of mappings from F into E.

Let R (resp. Q) be the set of real (resp. rational) numbers. R ≥0 (resp. Q ≥0 is the set of non-negative real (resp. rational) numbers. Let X be a finite set of clocks. A valuation v of X is a mapping from X into R ≥0 . We denote by 0 the null valuation such that ∀x ∈ X, 0(x) = 0. For a valuation v and R ⊆ X,

we write v[R ← 0] the valuation such that ∀x ∈ R, v[R ← 0](x) = 0 and ∀x ∈ R, v[R ← 0](x) = v(x). Finally, for d ∈ R ≥0 , v + d is the valuation such that ∀x ∈ X, (v + d)(x) = v(x) + d.
Similarly a valuation on a set of integer variables V is a mapping from V to N.

We denote by C(X) the set of constraints generated by the grammar φ ::= true|x ≤ k|x < k|¬φ|φ ∧ φ, where x is a clock in X, k ∈ Q ≥0 , ¬ is the logical negation and ∧ is the logical conjunction. We denote by B(X) the subset of C(X) without the use of negation. We say that a valuation v satisfies a simple constraint γ if the expression obtained by replacing all clocks x by their valuation v(x) logically evaluates to true. We then write v |= γ.

For two finite sets A and B, F(A, B) denotes the set of computable functions from A to B. Definition 1 (Timed Transition System). A timed transition system (TTS) over the alphabet A is a tuple S = (Q, q 0 , A, →) where Q is a set of states,

q 0 ∈ Q is the initial state, A is a finite set of actions disjoint from R ≥0 , →⊆ Q × (A ∪ R ≥0 ) × Q is a set of edges. If (q, e
, q ) ∈-→, we also write q e --→ q . Moreover, TTS should satisfy the classical time-related conditions where d, d ∈ R ≥0 : i) time determinism: (q

d -→ q ) ∧ (q d -→ q ) ⇒ (q = q ), ii) time additivity: (q d -→ q ) ∧ (q d -→ q ) ⇒ (q d+d ---→ q ),
iii) null delay: ∀q : q 0 -→ q, and iv) time continuity: (q

d -→ q ) ⇒ (∀d ≤ d, ∃q , q d -→ q ).
Let S = (Q, q 0 , A, →) be a TTS. Let → * be the reflexive and transitive closure of →. We denote Reach(q 0 ) = {q ∈ Q|q 0 → * q}, the set of reachable states in S.

Definition 2 (Isomorphism).

Let S 1 = (Q 1 , q 01 , A, → 1 ) and S 2 = (Q 2 , q 02 , A, → 2 ) be two TTSs. S 1 and S 2 are isomorphic (we write S 1 ∼ = S 2 ) whenever there is a bijection f : Reach(q 01 ) → Reach(q 02 ) such that ∀q, ∀q ∈ Reach(q 01 ) we have:

q a∈A ---→ 1 q iff f (q) a -→ 2 f (q ) and q d∈R ≥0 ----→ 1 q iff f (q) d -→ 2 f (q ).
Definition 3 (Equivalence up to isomorphism). Let two models A and A whose semantics are expressed as TTSs S A and S A . A and A are equivalent up to isomorphism, which we denote A ∼ = A , iff S A ∼ = S A .

Clock Transition Systems

Definition 4 (Clock Transition System). A (labeled) Clock Transition System is a tuple V, T, Pre, Post, m 0 , A, λ, X, Guard, Resets, Inv such that:

-V is a finite non-empty set of integer variables; -T is a finite non-empty set of transitions; -Pre : T → F(N V , B) gives a discrete guard for each transition;

-Post : T → F(N V , N V ) gives a discrete assignment for each transition; -m 0 is the initial valuation of V ; -A is a finite non-empty alphabet; -λ : T → A is a labeling function of the transitions; -X is a finite set of clocks; -Guard : T → C(X) gives a time guard for each transition; -Resets : T → 2 F (N V ,B)×X defines a conditional reset of clocks on transitions; -Inv ⊆ F(N V , B) × B(X) defines a finite set of invariants
The semantics of the CTS T = V, T, Pre, Post, m 0 , A, λ, X, Guard, Resets, Inv is defined by the timed transition system

S T = (N V × R X ≥0 , (m 0 , 0), A, →) such that: -(m, v) a∈A ---→ (m , v ) iff there exists t ∈ T such that: • Pre(t)(m) is true; • λ(t) = a; • m = Post(t)(m); • v |= Guard(t); • v = v {x|(f, x) ∈ Resets(t) and f (m)} ← 0 ; • ∀(f, J) ∈ Inv, f (m ) implies v |= J. -(m, v) d∈R ≥0 ----→ (m, v + d) iff ∀(f, J) ∈ Inv, f (m) ⇒ ∀0 < d ≤ d, v + d |= J.
T is said to be k-bounded if for any (m, v) reachable from (m 0 , 0) in S T , we have ∀p ∈ P, m(p) ≤ k. T is said to be bounded if there exists k such that T is k-bounded. State space and main properties. Clock Transition System allows only explicit clocks and integer variables. We can then easily extend the classical zone abstraction used in the tool Uppaal [START_REF] Kim | Uppaal in a nutshell[END_REF]. For bounded CTS this abstraction gives a finite representation of the infinite state-space and many analysis techniques can be constructed to decide safety, reachability, liveness, etc. We then obtain the following theorems.

Theorem 1. k-boundedness is decidable for CTS.

Theorem 2. Reachability is decidable for bounded CTS.

Example. To actually illustrate how we can design a CTS, consider the following small example in Table 1.

V = {V1, V2}, T = {t1, t2, t3, t4}, X = {x1, x2} Pre(t1) = (V1 > 0), Post(t1) = (V2 := V1 + V2) Pre(t2) = (V2 > 0), Post(t2) = (V2 := V2 -1) Guard(t1) = (x1 = 2), Guard(t2) = (x1 = 1) Pre(t3) = (V2 < α), Post(t3) = (V1 := V1 + 1) Guard(t3) = Guard(t4) = (1 ≤ x2 ≤ 3) Pre(t4) = (V1 > 1) ∧ (V2 > β) Resets(t1) = Resets(t2) = {(true, x1)} Post(t4) = (V1 := V1div 2), m0 = (1, 0) Resets(t3) = Resets(t4) = {(true, x2)} Inv = {((V1 > 0), x1 ≤ 2), ((V2 > 0), x1 ≤ 1), ((V2 < α)∨((V1 > 1)∧(V2 > β)), x2 ≤ 3)} Table 1. A small CTS (control flow).
It represents a system of flow control between a producer and a consumer. The producer produces a set of objects every two time units. The number of items produced in each burst is determined by a counter V 1 which can be controlled by the receiver. The receiver stores the objects in a container V 2 which is emptied at a rate of one object every time unit. It also knows two constants α and β (α < β) defining response thresholds. Below a volume of stock α, the receiver causes the increment of V 1 to gradually accelerate the activity of the sender. Above the threshold β, V 1 is divided by two to reduce sharply the activity of the sender (risk of overflow). The acceleration and deceleration commands require between one to three units of time to be taken into account. Fig. 1 shows a possible timed execution of the system. 1.

Time Petri Nets and Clock Transition Systems

Definition 5 (Petri Net). A (labeled) Petri Net N is a tuple P, T, Pre, Post, m 0 , A, λ such that:

-P is a finite non-empty set of places; -T is a finite non-empty set of transitions; -Pre : P × T → N is the backward incidence function; -Post : P × T → N is the forward incidence function; m 0 : P → N is the initial marking of the net; -A is finite non-empty alphabet; λ : T → A is a labeling function of the transitions.

A marking of N is an application from P to N. Let m be a marking of N . Then, for any place p ∈ P , we say that p contains m(p) tokens. For any transition t we denote by • t the set of places p such that Pre(p, t) = 0 and by t • the set of places p such that Post(p, t) = 0.

A transition t ∈ T is said to be enabled by the marking m if ∀p ∈ • t, m(p) ≥ Pre(p, t). This is denoted by t ∈ en(m). The operational semantics of the Petri Net N = P, T, Pre, Post, m 0 is defined by the transition system S N = (N |P | , m 0 , A, →) such that: m a -→ m iff there exists t ∈ en(m) such that λ(t) = a and ∀p ∈ P, m (p) = m(p) -Pre(p, t) + Post(p, t).

We then say that m is obtained from m by firing the enabled transition t.

Petri nets can be extended with timing information in many ways. We focus here on Time Petri Nets [START_REF] Merlin | A study of the recoverability of computing systems[END_REF] in which time intervals are attached to transitions, defining the durations during which they will be enabled.

We note I the set of rational intervals {x ∈ R|a

∼ 1 x ∼ 2 b, a ∈ Q ≥0 , b ∈ Q ≥0 , ∼ 1 , ∼ 2 ∈ {<, ≤}} ∪ {x ∈ Q|a ∼ x < +∞, a ∈ Q ≥0 , ∼∈ {<, ≤}}.
For any interval I, we denote by I ↓ the smallest left-closed interval with lower bound 0 that contains I. For each transition t there is an associated clock x t . We consider valuations on the set of clocks {x t |t ∈ T } and we will slightly abuse the notations by writing v(t) instead of v(x t ).

Let m be a marking of the net and t a transition in en(m). Let m be the marking obtained from m by firing t. Let m be the intermediate marking defined by ∀p, m (p) = m(p) -Pre(p, t). A transition t is newly enabled by the firing of t from m, and we note t

∈ new(m, t) if t ∈ en(m ) \ en(m ) ∪ {t}
The operational semantics of the TPN T = N , I s is defined by the time transition system S T = (N P × R T ≥0 , (m 0 , 0), A, →) such that:

-(m, v) a∈A ---→ (m , v ) iff there exists t ∈ en(m) such that: • λ(t) = a; • ∀p ∈ P, m (p) = m(p) -Pre(p, t) + Post(p, t); • v(t) ∈ I s (t); • v = v[new(m, t) ← 0]. -(m, v) d∈R ≥0 ----→ (m, v + d) iff ∀t ∈ en(m), ∀0 < d ≤ d, (v + d )(t ) ∈ I ↓ s (t ).
Boundedness of (time) Petri nets is defined exactly as for CTSs.

We now prove that possibly unbounded TPNs form a subclass of CTSs. First, the following theorem holds: Theorem 3. Every TPN N can be translated into a CTS T (N ) s.t. N ∼ = T (N ).

To illustrate the encoding, consider the TPN in Fig. 2. Its equivalent in CTS is given in Table 2. We now define a syntactic subclass of CTSs that is equivalent to TPNs: Definition 7. The syntactic subclass CTS-TPN of CTS is defined by the following restrictions:

-∀t ∈ T, ∀p ∈ V , there exists k(p, t) ∈ N, k (p, t) ∈ Z s.t.: • k (p, t) ≥ -k(p, t); • Pre(t) = p∈P p ≥ k(p, t); • Post(t) is a list of assignments ∀p, p := p + k (p, t); V = {p1, p2, p3, p4, p5}, T = {t0, t1, t2, t3} m0 = (1, 1, 0, 0, 0), X = T Guard(t0) = (t0 = 0), Guard(t1) = (t1 ≥ 0) Guard(t2) = (1 ≤ t2 ≤ 2), Guard(t3) = (t3 = 2) Pre(t0) = (p3 ≥ 1) ∧ (p4 ≥ 1) Resets(t0) = {((p1 = 0), t1), ((p2 = 0), t2)} Pre(t1) = (p1 ≥ 1), Pre(t2) = (p2 ≥ 1)
Resets(t1) = {((p3 = 0), t0), ((p3 = 0), t3)} Pre(t3) = (p3 ≥ 1)

Resets(t2) = {((p4 = 0), t0)}, Resets(t3) = ∅ Post(t1) = (p1 := p1 -1, p3 := p3 + 1)
Post(t2) = (p2 := p2 -1, p4 := p4 + 1) Post(t3) = (p3 := p3 -1, p5 := p5 + 1) Post(t0) = (p1 := p1 + 1, p2 := p2 + 1, p3 := p3 -1, p4 := p4 -1) Inv = {(Pre(t0), (t0 = 0)), (Pre(t1), true), (Pre(t2), (t2 ≤ 2)), (Pre(t3), (t3 ≤ 2))} Table 2. CTS coding the TPN of Fig. 2.

• ; -∀t ∈ T , Guard(t) refers to at most one clock x t and x t = x t implies t = t ; -Inv = {(Pre(t), J t )|t ∈ T } (note that J t may be true); -∀t ∈ T , J t refers only to x t and is not equal to x t < 0. Furthermore, if J t =

x t ≤ k or J t = x t < k, then the set of valuations satisfying Guard(t) ∧ x t = a is non-empty; -∀t ∈ T , if J t = true then Guard(t) has no finite upper bound. 

Networks of Timed Automata and Clock Transition Systems

Timed Automata [START_REF] Alur | A theory of timed automata[END_REF] are used to model systems which combine discrete and continuous evolutions.

Definition 8 (Timed Automaton). A Timed Automaton (TA) is a tuple A = L, 0 , E, A, λ, X, Guard, Resets, Inv where:

-L is a finite non-empty set of locations; -0 ∈ L is the initial location; -E ⊆ L × L is a finite set of directed edges; -A is finite non-empty alphabet; λ : E → A is the edge labelling function; -Xis a finite set of positive real-valued clocks; -Guard : E → C(X) gives a guard for each edge; -Resets : E → 2 X gives a set of clocks to reset for each edge;

-Inv : L → B(X) defines a set of invariants;

Definition 9 (Semantics of TA). The semantics of a timed automaton A = L, 0 , E, A, λ, X, Guard, Resets, Inv is a timed transition system S A = (Q, q 0 , A, →) with Q = L × (R ≤0 ) X , q 0 = (l 0 , 0) is the initial state and → consists of the discrete and continuous transition relations:

-(l, v) a∈A ---→ (l , v ) iff ∃e = (l, l ) ∈ E such that: • λ(e) = a; • v |= Guard(e); • v = v[Resets(e) ← 0]; • v |= Inv(l ) -(l, v) d∈R ≥0 ----→ (l, v + d) iff ∀d 0 < d ≤ d, v + d |= Inv(l)
A run of a timed automaton A is a path in S A starting in q 0 . It is convenient to describe a system as a parallel composition of timed automata. To this end, we use the classical composition notion based on a synchronization function à la Arnold-Nivat.

Definition 10 (Networks of Timed Automata). Let A 1 , . . . , A n be n timed automata with

A i = L i , 0i , E i , A, λ i , X, Guard i , Resets i , Inv i . A synchroniza- tion function f is a partial function from (A ∪ {•}) n to A
where • is a special symbol used when an automaton is not involved in a step of the global system. A Network of Timed Automata (A 1 | . . . |A n ) f is the parallel composition of the A i 's w.r.t. f .

The configurations of (

A 1 | . . . |A n ) f are pairs ( l, v) with l = (l 1 , . . . , l n ) ∈ L 1 × . . . × L n , the i th component l i ∈ L i of l is denoted by l[i],
v is a valuation on the set of clocks X and v(x) is the value of the clock x ∈ X. The network can do a discrete transition if all the components agree to and time can progress in the network also if all the components agree to. This is formalized by the following definition: Definition 11 (Semantics of NTA). Let A 1 , . . . , A n be n timed automata with A i = L i , 0i , E i , A, λ i , X, Guard i , Resets i , Inv i , S A1 , . . . , S An their semantics with S Ai = (Q i , q 0i , A, → i ). Let f be a (partial) synchronization function

(A ∪ {•}) n → A. The semantics of (A 1 | . . . |A n ) f is a timed transition system S = (Q, q 0 , A, →) with Q = L 1 × . . . × L n × (R ≥0 ) X ,
q 0 is the initial state (( 01 , . . . , 0n ), 0) and → is defined by:

-( l, v) b∈A ---→ ( l , v ) iff • Let R = i∈[1..n],( l[i], l [i])∈Ei Resets i (( l[i], l [i])). Then v = v[R ← 0],
• every A i agrees on synchronization i.e. there exists (a 1 , . . . , a n ) ∈ (A ∪ {•}) n s.t. f (a 1 , . . . , a n ) = b and for any i ∈ [1.

.n] we have:

* If a i = •, then l [i] = l[i], * If a i ∈ A, then ( l[i], v) ai -→ i ( l [i], v i ). Note that ∀x ∈ X\Resets, v (x) = v i (x) -( l, v) d∈R ≥0 ----→ ( l, v + d) iff for all i ∈ [1..n], every A i agrees on time elapsing i.e. ( l[i], v) d -→ i ( l[i], v + d)
Now we prove that NTA form a subclass of CTSs and are indeed equivalent to bounded CTSs.

Theorem 5. Every NTA A can be translated into a CTS T (A) s.t. A ∼ = T (A).

To illustrate the encoding, consider the NTA in Fig. 3. Its equivalent in CTS is given in Table 3.

l1 l2 x ≤ 1 l3 y ≤ 1 l4 a : [x] b : x = 0 b : [x] c : y = 1, [y]
b Fig. 3. A network of two timed automata with two clocks x and y. Locations are denoted in circles, and invariants boxed above them. Transitions are labeled by their action (a, b or c), the guard on clocks and resets (bracketed).

V = {p1, p2} m0 = (l1, l3) T = {A, B1, B2, C} X = {x, y} λ(A) = a, λ(B1) = λ(B2) = b, λ(C) = c Guard((A) = Guard(B1) = true Pre(A) = (p1 = l1), Post(a) = (p1 := l2) Guard(B2) = (x = 0) Pre(B1) = ((p1, p2) = (l2, l3)) Guard(C) = (y = 1) Post(B1) = ((p1, p2) := (l2, l4)) Resets(A) = Resets(B1) = {(true, x)} Pre(B2) = ((p1, p2) = (l2, l3)) Resets(B2) = ∅ Post(B2) = ((p1, p2) := (l1, l4)) Resets(C) = {(true, y)} Pre(C) = (p2 = l3), Post(C) = (p2 := l3) Inv = {((p1 = l1), true), ((p1 = l2), (x ≤ 1)), ((p2 = l3), (y ≤ 1)), ((p2 = l4), true)}
Table 3. CTS coding the NTA of Fig. 3.

Theorem 6. Every bounded CTS T can be translated into a TA A(T ) s.t. T ∼ = A(T ).

Corollary 2. The class of bounded CTSs is equivalent to the class of TA up to isomorphism of TTS.

As we have seen in the previous section, the expressive power and conciseness of Clock Transition Systems are two of their best assets. Furtermore, since both TA and TPNs can easily be transformed in CTS, one can imagine a modelling workflow in which sequential components are modelled as TA, components featuring complex synchronization are modelled as TPNs, and complex dynamics are directly discretized in the form of CTS. This mixed modelling can ultimately be transformed in CTS for the analysis.

We can lift most of the analysis techniques developed for (time) Petri nets and (timed) automata to CTS. For instance:

-For unbounded untimed CTSs, given adequate restrictions on the discrete guard and assignment functions (such as those in the subclass CTS-TPN), we can compute a coverability graph [START_REF] Karp | Parallel program schemata[END_REF]. -For bounded CTSs (with time), we can easily extend the region abstraction [START_REF] Alur | A theory of timed automata[END_REF] or the zone abstraction used in the tool Uppaal [START_REF] Kim | Uppaal in a nutshell[END_REF]. These abstractions give a finite representation of the infinite state-space. From these basic abstractions many analysis techniques can be constructed to decide safety, reachability, liveness, etc. -For potentially unbounded CTSs (with time), the techniques based on these abstractions become semi-algorithms. A few interesting problems are still decidable though, e.g. k-boundedness and even safety control of the unbounded CTS to automatically make it bounded using the technique of [START_REF] Gardey | Safety control synthesis for time Petri nets[END_REF]. It should also be possible to apply supervision techniques like in [START_REF] Grabiec | Diagnosis using unfoldings of parametric time Petri nets[END_REF].

Finally, new techniques developed directly for CTSs can be immediately applied to both TPNs and TA, thus reducing the duplication of efforts.

Conclusion and perspectives

We defined the new model of clock transition systems. It blends concepts from both time Petri nets and networks of timed automata. That means that CTS is a good intermediate model to develop tools, while factoring software developments. We showed that (in terms of isomorphism of TTS formal semantics):

-TPNs and TA may be encoded using CTSs; -The syntactic subclass CTS-TPNs forms exactly the set of TPNs; -Bounded CTSs form exactly the set of Timed Automata; -Computation of a symbolic state-space is possible for CTSs and in particular allows model-checking.

The other contribution is that CTSs ultimately appear to be a powerful and concise formalism for describing timed models. One could also imagine a possible mixture of NTA, TPNs and CTSs to model complex timed behaviors, all of them being ultimately transcribed into CTSs, analyzed by a unique engine.

The outlook is therefore to start from this model for our next developments in the tool Romeo [START_REF] Gardey | Roméo: A tool for analyzing time Petri nets[END_REF]. In particular, we will equip this model with a concurrent semantics to build timed unfoldings.

(l, l ) in A(T ) and transition t leading from m = m(l) to m = m(l ) in T . Then, for any reachable state (m, v) of S T the conditions for the firing of an action a ∈ A or for the elapsing of d ∈ R ≥0 are identical to those from the state (l, v) of S A . Thus, the firing of a discrete transition gives (m, v) a∈A ---→ (m , v T ) ⇔ (l, v) a -→ (l , v A ) and since the sets of clock resets are identical, we have v T = v A and then (m , v T )R(l , v A ); the elapsing of time increase the valuation of v and then obviously: (m, v)

d∈R ≥0 ----→ (m, v + d) ⇔ (l, v) d -→ (l, v + d) (m, v + d)R(l, v + d)
Corollary 2. The class of bounded CTSs is equivalent to the class of TA up to isomorphism of TTS.

Proof. The CTS exhibited in the proof of theorem 5 is clearly bounded.

B State space of Clock Transition System

We now show how the classical simulation/zone graph construction can be extended to CTSs. We first give some usual definitions.

Let X, be a set of clocks. Let x 0 be a zero clock. Let D(X), the set of conjonction of atomic constraints of the form x i -x j ∼ k, with x i , x j ∈ X ∪{x 0 }, k ∈ Q ∪ {∞} and ∼∈ {≤, <}.

Given a formula ϕ ∈ B(X) ∪ C(X) ∪ D(X) and a valuation v ∈ R X ≥0 , we denote ϕ(v) ∈ {true, false} the truth value of ϕ for the valuation v. We let

[[ϕ]]= {v ∈ R ≥0 | ϕ(v) = true} Definition 12 (Zone). A zone Z ∈ R X ≥0 over X is a convex set of clock valu- ations satisfying ϕ: Z =[[ϕ]].
Note that the intersection of two zones is a zone.

A zone is a particular form of polyhedra that can be efficiently encoded using DBM (Difference Bounded Matrices).

Let T = V, T, Pre, Post, m 0 , A, λ, X, Guard, Resets, Inv be a Clock Transition System.

Definition 13 (Symbolic state). A symbolic state of a Clock Transition System T is a pair (m, Z) where m is a valuation on the set of variables V and Z is a zone over X. Definition 14 (Discrete Successors). Let s = (m, Z) be a symbolic state and t ∈ T a transition of the Clock Transition System T such that Pre(t)(m) is true. The transition t is firable from s iff the zone Z∩ [[Guard(t)]] is non-empty. If t is firable from s, then the set of discrete successors of s by the firing of transition t is the symbolic state N ext t (m, Z) = (m , Z ) with:

-m = Post(t)(m) -Z = (Z∩ [[Guard(t)]]) ∩ x∈Resets(t) [[x = 0]]
Definition 15 (Time Successors). Let s = (m, Z) be a symbolic state of a Clock Transition System T . The set of time successors of s is the symbolic state:

---→ N ext (m, Z) = (m, Z ) with Z = Z ∩ ∀(f,J)∈Inv, s.t. f (m) [[J]]
Z is the set of valuation that are reachable from Z by elapsing time. This is obtained by setting all upper bounds of clocks to infinity. Z select only the possible valuations of clocks for which m could exist, i.e. valuations of clocks must respect the timed invariant J for all (f, J) such that f (m) is true.

B.1 The Algorithm: One Iteration

The initial symbolic state is (m 0 , Z 0 ) where m o is the initial value of variables V and Z 0 = ∀(f,J)∈Inv,stf (m0) [[J]]. Starting from (m 0 , Z 0 ), the reachable state space is iteratively computed by letting time pass or by firing transitions.

Let (m, Z) be a symbolic state. The computation of the reachable values from m according to the zone Z is done as follows:

-Determine the firable transitions from (m, Z): t ∈ T is firable from (m, Z)

iff Pre(t)(m) is true and the zone Z∩ [[Guard(t)]] is a non-empty zone. -For each firable transition t, compute the new symbolic state ---→ N ext (N ext t (m, Z )).

B.2 Normalization

If the Clock Transition System contains some invariant of the form x < ∞ (i.e. if there is no invariant for some states) a last step consisting in applying an approximation operator is needed to ensure that the number of possible zones is finite. The classical abstraction method, known under the names normalization, extrapolation or k-approximation, takes into account the maximum constants to which the various clocks are compared. It has been proved that when guards are restricted to contraints in C(X), the k-approximation preserve reachability of discrete states (such as localities for TA or markings for TPN) and traces of the model (i.e. each state added by the approximation can be simulated by a state within the originate zone).

B.3 Convergence

At each step, we compare the symbolic state (m, Z) currently being analyzed to the ones previously computed. If the symbolic state (m, Z) is included in one (m, Z ) of the ones previously computed (i.e. Z ⊆ Z ), there is no need to go further because it has already been analyzed or it will lead to compute a subgraph. Then, a semi-algorithm to enumerate reachable values of V for a Clock Transition System could be based on the described algorithm but, generally, it will lead to a non-terminating computation. However, for a bounded Clock Transition System, since the number of values of V and the number of zones are finite thanks to normalization, the number of symbolic states is finite for bounded Clock Transition System and the algorithm terminates.

We can deduce from this that k-boundedness is decidable for CTSs and reachability is decidable for bounded CTSs.
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A Proofs

A.1 Proof of theorem 3 Theorem 3. Every TPN N can be translated into a CTS T (N ) such that N ∼ = T (N ).

Proof. Let N = P, T, Pre, Post, m 0 , A, λ, I s be a TPN. And let T (N ) = P, T, Pre , Post , m 0 , A, λ, X, Guard, Resets, Inv be the Clock Transition System defined by:

for each t ∈ T , Pre (t) = f t with f t (m) iff t ∈ en(m); for each t ∈ T , Post (t) = g with ∀p ∈ P, g(m)(p) = m(p) -Pre(p, t) + Post(p, t); -X = T ; -∀t ∈ T, Guard(t) = t ∈ I s (t), with a slight abuse on the expression of constraints;

The operational semantics of T (N ) is defined by the time transition system

This is exactly the semantics of N . This proves the theorem.

A.2 Proof of theorem 4

Theorem 4. Every CTS-TPN T can be translated into a TPN N (T ) such that T ∼ = N (T ).

Proof. Let T = P, T, Pre, Post, m 0 , A, λ, X, Guard, Resets, Inv be a CTS-TPN with the above restrictions.

Let N (T ) = P, T, Pre , Post , m 0 , A, λ, I s be the TPN defined by:

for p ∈ P and t ∈ T , Pre (p, t) = k(p, t) (using the notation of definition 7); for p ∈ P and t ∈ T , Post (p, t) = k(p, t) + k (p, t); for t ∈ T , Guard(t) defines an interval I g that is not right-bounded. Then

Let us write the semantics of T taking the restrictions of CTS-TPN into account. The operational semantics of T is defined by the time transition system S T = (N V × R X ≥0 , (m 0 , 0), A, →) such that:

is indeed the set of clocks associated to transitions that are newly enabled in N when firing transition t from m.

Consequently, for t ∈ T , if Pre(t )(m ) we have two possibilities:

either, v (x t ) = 0 and then v |= J t since J t is not x t < 0; or v (x t ) = 0. But then Pre(t )(m) and v (x t ) = v(x t ). We thus had v |= J t and we have v |= J t .

We have v |= Guard(t) = x t ∈ I g but we know that v must also satisfy all the enabled invariants so we could actually write this as: v |= x t ∈ I g ∩ t ∈T s.t. Pre(t ) J t . Finally, it easy to see that I g ∩ t ∈T s.t. Pre(t ) J t is an interval I and

With all this, it is clear that the semantics of T is exactly the semantics of N (T ), and the theorem follows. 

Let us define the CTS T (A) = P, T, Pre, Post, m 0 , A, λ , X, Guard , Resets , Inv such that:

-P = {p 1 , . . . , p n } contains one variable p i for each TA A i . Suppose w.l.o.g. that locations are actually integers so that we can write, for instance, m(p 1 ) = -Let ⊥ be a special symbol belonging to none of the E i . For all i, we extend λ i to a function of

T is the set of elements (e 1 , . . . , e n ) in

is defined; -For t = (e 1 , . . . , e n ) ∈ T , we have:

• Pre(t)(m) is true iff for all i such that e i = ⊥, writing e i = (l i , l i ), m(p i ) = l i ; • Post(t)(m) = m with for all i such that e i = ⊥, writing e i = (l i , l i ), m (p i ) = l i and for all i such that e i = ⊥, m

, true being the function that returns always true;

Let us explicit the semantics of T (A): it is the TTS S T = (N V ×R X ≥0 , (m 0 , 0), A, → ) such that:

) iff there exists t = (e 1 , . . . , e n ) ∈ T such that:

The very last condition exactly means that for all

Now we can rewrite the other conditions as:

) iff there exists t = (e 1 , . . . , e n ) ∈ T such that b = f (λ(e 1 ), . . . , λ(e n )) and for all i ∈ [1..n]:

This means:

• or a i = • and there exists e i = (l i , l i ) such that:

The bijection h : L 1 ו • •×L n ×R ≥0 → N P ×R ≥0 such that h(l 1 , . . . , l n , v)(p i ) = (m, v), with ∀i, m(p i ) = l i , is therefore a graph isomorphism between the semantics of A and T (A) since it allows to find exactly the semantics of T (A) from that of A.

A.4 Proof of theorem 6 Theorem 6. Every bounded CTS T can be translated into a TA A(T ) such that T ∼ = A(T ).

Proof. Let T = V, T, Pre, Post, m 0 , A, λ, X, Guard, Resets, Inv be a k-bounded CTS. Let us define the TA A(T ) = L, 0 , E, A, λ A , X, Guard A , Resets A , Inv A such that:

-L is a set of (k + 1) |V | localities. To each locality l ∈ L, is associated a value m(l) of the set of variables V (m : L → N V ); -0 is the locality such that m( 0 ) = m 0 -E is a subset of L × L and is the set of directed edges; -The invariant associated with each locality l ∈ L is defined by:

Post(m(l)), we add e to E and we label e by: • the action name λ A (e) = λ (t),

• the guard: Guard A (e) = Guard (t),

• the clocks assignments:

We first let R ⊆ Q T × Q A , the relation between a state of the Timed Automaton and a state of the Clock Transition System defined by:

First, by construction, given a value m, there is one and only one locality l ∈ L in A(T ) such that m(l) = m. Then, since (m, v T )R(l, v A ) implies v T = v A , R is a bijection.

Let (m, v) ∈ Q T and (l, v) ∈ Q A such that (m, v)R(l, v). In both models T and A(T ), invariants are associated to discrete states m and l and are identical by construction: Inv A (l) = {J | ∃(f, J) ∈ Inv st f (m(l)) = true}. Moreover there is an arc between l and l in A(T ) iff ∃t ∈ T , Pre(t)(m(l)) = true and m(l ) = Post(m(l)) and guards, resets and labeling are syntactically identical for arc