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Abstract. We propose an extended symmetry-based thermodynamical model of third-order

electro-elastic coupling. The entanglement of electrostriction non-linear piezoelectricity and

other non-linear phenomena, is studied in details at the same level of theory. Symmetry

properties of materials and nanostructures are taken into account. Density Functional Theory

(DFT) is used to calculate the complete set of linear and non-linear coefficients.

Electrostriction dominates for nitride compounds in the Würtzite structure, but non-linear

elasticity and piezoelectricity must be taken into account for strain and electric field evaluation.

1. Introduction

A complete model of third-order electro-elastic coupling has recently been proposed [1]. It is an

extension of a previous thermodynamical approach [2] (quoted as ATK model in this paper). The latter

seems to be almost ignored up to now, although a number of misinterpretation or errors could have

been avoided recently in the literature. In this work, the ATK model is combined systematically with

symmetry analyses and DFT calculations to evaluate consistently the various linear and non-linear

coefficients, especially in non centrosymmetric materials. Symmetry properties of third-order elastic

constants are well known [3], but have been extensively studied for third-order coupled constants only

more recently [4]. In this paper, third-order coefficients are mostly determined from finite difference

studies of material’s polarisation or stress tensor under various electrical or strain conditions. We show

in section 2. that the non-linear tensors can be strongly entangled. Actually, in the same theoretical

model, coefficients defined for a specific thermodynamical potential should not be mixed with others

without caution. Experimental determination of piezoelectric and electrostrictive entangled

components must also rely on careful definitions of experimental conditions which makes such

measurements very tedious and tricky [5]. The direction of the applied field and the frequency

behaviour are useful tools to separate the strains which are arising from piezoelectricity and

electrostriction.

2. Thermodynamic potentials and derivatives

2.1. Thermodynamic potentials and first order derivatives

Thermodynamic potentials are introduced using standard definitions for the free energy and enthalpy,

TSUF  and TSUG ii   , and the transformed free energy and enthalpy
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lle DETSUF  and lliie DETSUG   . The lD , lE vectors and the i , i strain-

stress tensors (in Voigt notation) are associated respectively to the ovunml ,,,,, and rqpkji ,,,,,

indices varying between 1-3 and 1-6 respectively.

The first order derivatives of the thermodynamic potentials are:

 llii dDEdSdTdG  
 lliie dEDdSdTdG  
 lliie dEDdSdTdF  
 llii dDEdSdTdF  

In the following, most expressions are related to eF , G and eG .

2.2. Second order derivatives

Three second-order derivatives in relation to lD , lE , i and i are defined for each of the

thermodynamic potentials.

Figure 1. Schematic representation of the relations between thermodynamic variables (inner

variables) and second order derivatives of the thermodynamic potentials (outer variables). For clarity,

minus signs are not shown.
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Figure 1 is a schematic representation of the relations between thermodynamic variables and second

order derivatives of the thermodynamic potentials (for the clarity of the figure minus signs are not

shown) :

 liljij
E

i dEedCd   and mlmilil dEdedD   for eF

 liljij
E

i dEddSd   and mlmilil dEdddD   for eG

 liljij
D

i dDgdSd   and mlmilil dDdgdE   for G

The second-order derivatives of the thermodynamic potentials are related to each other by exact

expressions:

 imji
E

ljlmlm eSe  
 jlij

E

il dCe 
 ljilij

D
ij

E dgSS 
2.3. Third order derivatives

Four third-order derivatives are defined for each of the thermodynamic potentials. Figure 2 is a

schematic representation of the relations between thermodynamic variables and third order derivatives

of the thermodynamic potentials (minus signs are not shown). Some of these derivatives are common

to different thermodynamic variables, for example :


lji

e

TEji

l

lj

i

T
l

ij

ijl

TEj

li
lij

E

FD

EE

C
B

e
B 



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 

3

,

22

,,

The third order derivatives are also connected to second order derivatives :

 lijlkijk
E

ij
E dEBdCdC   , mjlijli dELdBde lim  and nlmnilmilm dEdLd   

 lijlkijk
E

ij
E dEFdSdS   , mjlijli dEMdFdd lim  and nlmnilmilm dEdMd   

 lijlkijk
D

ij
D dDRdSdS   , mlmijlijli dDQdRdg   and nlmnilmilm dDdQd   

Most of these quantities are already used in various papers [5-7], but we will focus on the non-linear

piezoelectric tensors lijB , lijF , lijR and the electrostrictive tensors lmiL , lmiM and lmiQ . The third-order

derivatives of the thermodynamic potentials are also related to each other by various exact

expressions:

 kij
E

lkpj
E

lkpik
E

lij SeSBSF 
 njmilmnvimnjvjmninvlmmijlmlij dddMdMFR    )(

 vnilvmnnilmnlmi MdQ   
 kji

E

mjlkji
E

lmjki
E

lpmkpmplkplmi SeeSLSdBdBM  )( .
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Figure 2. Schematic representation of the relations between thermodynamic variables, second

derivatives and third order derivatives (outer variables) of the thermodynamic potentials. For clarity,

minus signs are not shown.

3. Symmetry analysis

It has been shown in section 2. that the non-linear tensors can be strongly entangled. For instance, in

the case of non-centrosymmetric materials, an additional term related to the linear piezoelectricity and

the non-linear susceptibility must be added to the commonly used relation vnilvmnlmi MQ   [5].

It is necessary to use symmetry properties of the materials in order to check whether or not the

entanglement has to be taken into account. In order to get a first insight into the influence of lattice

symmetry, we may compare materials which crystallise in a cubic lattice associated either to the m3m

(e.g. diamond or undistorted perovskite lattices) and 432 point groups. In both cases, the linear

piezoelectric tensors and non-linear susceptibilities are vanishing: 0 lilili gde

and 0 lmnlmnlmn
  . Only six independent non-linear elastic constants and compliances

exist: ijk
EC , ijk

D
ijk

E SS  . lmiQ , lmiM and lmiL tensors related to electrostriction are simply

connected, like in isotropic materials: vnilvmnlmi MQ   and ji
E

lmjlmi SLM  , although the

number of independent coefficients is larger. The only difference between the m3m and 432 point

groups comes from the non-linear piezoelectricity phenomenon which appears only in the 432 case.

Among the thirty-two crystal classes, eleven are centrosymmetric (m3m case) and twenty-one are non-

centrosymmetric, but of these, 432 is a special case. For point group 432, non-linear piezoelectricity
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and electrostriction, are indeed disentangled. The various non-linear piezoelectric tensors are simply

connected and only one independent component 124B has to be determined:

124441241211124 )( RSBSSF EEE  . Ten of the non-centrosymmetric crystal classes represent the

polar crystal classes, which show a spontaneous polarization. For all this crystal classes, the

entanglement of non linear piezoelectricity, non linear dielectric susceptibility and electrostriction is

very strong. The hexagonal 6mm polar crystal class corresponds to a number of important materials in

the wurtzite structure. The tensors describing non-linear piezoelectricity have 8 independent

components : 311B , 312B , 313B , 333B , 344B , 115B , 125B , 135B whereas the tensor describing

electrostriction has 6 components : 11L , 12L , 13L , 31L , 33L , 44L . Using relation

kji
E

mjlkji
E

lmjki
E

lpmkpmplkplmi SeeSLSdBdBM  )( , we can compare the non-linear piezoelectric,

electrostrictive and elastic contributions. In the case of nitride compounds like GaN, the

electrostrictive contribution is the most important, but non-linear piezoelectric effect can not be

ignored [1].

4. Determination of non-linear coefficients using density functional theory

The methods of density-functional perturbation theory (DFPT) may be used to calculate various

physical responses. In fact the efficient use of the "2n+1" theorem [8], using only by-products of a

first-order perturbation calculation, in principle gives the second and third-order derivatives of the

total energy at the level of the ATK model, if the atomic-displacement variables are eliminated.

Second-order derivatives may be used with an existing DFPT implementation [9] to calculate various

physical response properties of insulating crystals, including elastic constants, linear piezoelectric

tensors, linear dielectric susceptibility, as well as tensor properties related to internal atomic

displacements like Born charges. Third-order derivatives of the total energy are related to a number of

physical properties described in this work, like the non-linear electrical susceptibility, the non-linear

elasticity, the photo-elastic and electrostrictive effects. However, most practical implementations of

the DFPT are restricted to some quantities related to internal atomic displacements. DFT simulations

are performed using a state of the art DFT implementation [9] within the local density approximation

(LDA). Plane wave basis sets were used with a kinetic energy cutoff of 950 eV after convergence

studies. The sets of k-points were generated following the procedure of Pack and Monkhorst and Pack

[10] namely 10 10 10. Polarisation and stress tensor components can be studied as a function of the

electric field and strain tensor components. We applied various electrical or strain conditions for the

DFT determination of all the coefficients in the case of the GaN and AlN crystals [1]. In figure 3, the

variations of 3 and 3P are reported as a function of 3 for AlN.
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Figure 3. Variations of 3 and 3P calculated using a state of the art DFT implementation [9] are

reported as a function of 3 for AlN.
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