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Abstract 
This paper explores the benefits of transforming spectral 

peaks in voice conversion. First, in examining classic GMM-
based transformation with cepstral coefficients, we show that 
the lack of transformed data variance ("over-smoothing") can 
be related to the choice of spectral parameterization. 
Consequently, we propose an alternative parameterization 
using spectral peaks. The peaks are transformed using HMMs 
with Gaussian state distributions. Two learning variants and 
post-processing treating peak evolution in time are also 
examined. In comparing the different transformation 
approaches, spectral peaks are shown to offer higher inter-
speaker feature correlation and yield higher transformed data 
variance than their cepstral coefficient counterparts.     
Index Terms: voice conversion, spectral transformation, 
spectral peaks 

1. Introduction 
Spectral transformation plays a crucial role in Voice 

Conversion (VC), both in identifying speakers' voices and 
ensuring high quality synthesis. The goal of spectral 
transformation is to transform the spectral envelope of a 
(source) speaker into that of a different (target) speaker. The 
transformation methodology can be described in three stages: 
first, analysis of the speech signal in order to extract spectral 
envelope parameters; second, training through learning a 
mapping between the source and target parameters; third, 
transformation of the source parameters to estimate those of 
the target. Based on this methodology, the performance of a 
VC system depends on two key factors:  i) the choice of 
spectral parameters and ii) the choice of model for learning 
and transformation.  

Traditional approaches to spectral transformation typically 
use Gaussian Mixture Models (GMM) [1] on cepstral 
coefficients or Line Spectral Frequencies (LSF). These 
approaches generally succeed in capturing and reproducing 
certain characteristic traits of the target speaker. However, the 
transformed data in these cases exhibits little variance, a 
problem often called "over-smoothing," [2], [3]. Chen et al. 
showed in [2] that this lack of variance in the transformed data 
results from a weak correlation between the source and target 
parameters. In addressing this problem, Chen et al. assume 
that the target variance is the same as that of the source and 
suggest a MAP adaptation algorithm to adjust the 
transformation function. Alternatively, in [3], Toda et al 
address this problem by also modifying the transformation 
function, but with the introduction of a "global variance" 
parameter to ensure that the transformed data variance mimics 
the target variance. In both of these cases, the "over-
smoothing" problem is attributed to the transformation model 
and heuristics are introduced in order to increase the 
transformed data variance.  

Fundamentally, the small transformed data variance is a 
result of low correlation between the source and target spectral 
features, as captured in the transformation model. There exist 
two possible explanations for this low inter-speaker 
correlation. First, this problem could be attributed to the 
transformation model, as in the previously mentioned works. 
Explicitly, the "mixing" of the data may destroy inherent inter-
speaker correlation. This erroneous mixing translates into a 
source-to-target mapping problem, commonly referred to as 
the "one-to-many" problem, [4]. The second possible 
explanation for the low inter-speaker correlation could be that 
the chosen spectral parameters are not capturing a meaningful 
link between the source and target speech. While the first 
hypothesis has often been assumed in related works, this paper 
seeks to address the second. Specifically, we can alleviate the 
"one-to-many" mapping problem by following the work in [4] 
and introducing context-dependent parameters into the GMM 
modeling, creating a "Phonetic GMM." In using a Phonetic-
GMM, we then effectively reduce the problems resulting from 
the transformation model choice and can consequently focus 
our problem analysis on the transformation parameter choice. 

In this paper, we will show that, even when ensuring 
correct mappings between the source and target features (on a 
phoneme-level), there still remains a low inter-speaker feature 
correlation in a classic transformation approach. Explicitly, 
these results indicate that the problem of low-correlation 
between the source and target features is due to the parameter 
choice (in this particular case, the cepstral coefficients) rather 
than the choice of transformation model. Consequently, we 
seek an alternative spectral parameterization that can better 
capture a meaningful link between the source and target 
speech. Specifically, we examine the use of spectral peaks as 
an alternate parameterization for voice conversion.  

The structure of this paper is as follows. Section 2 begins 
by defining some general notation and metrics for 
transformation evaluation. These metrics are then applied to a 
classic approach to VC using discrete cepstral coefficients 
(DCC) in a Phonetic GMM, "DCC-GMMP." This evaluation 
shows that the chosen parameters, as expressed in the model, 
exhibit low inter-speaker correlation and are thus inadequate 
for conversion. In section 3, an alternative parameterization 
for the spectral envelope, along with an adapted model for 
transformation, is presented. Specifically, we consider spectral 
peaks and their transformation using a Hidden Markov Model 
(HMM) with Gaussian-state distributions, the "Peak-HMM." 
Two variants in the model learning related to the alignment 
between the source and target models are also described. In 
section 4, the different approaches, DCC-GMMP and Peak-
HMM (with variants), are compared using a common 
reference for the spectral envelope. Additionally, in section 5, 
a post-processing technique that treats spectral peak evolution 
in time is examined. In section 6, a subjective evaluation of 
the transformation results based on informal listening tests is 



discussed. Finally, in section 7, we conclude our evaluation 
and discuss avenues for future work.                                       

2. Spectral Transformation Evaluation 
Before considering the metrics for evaluating spectral 

transformation, we begin by introducing some general 
notation. Let's consider N aligned source and target frames 
parameterized respectively by vectors x and y, of dimension P.  
The feature vectors are classified intoQ  model classes, to be 
defined. For each class q, we consider the sample 

mean )(pqµ , variance 2))(( pqσ and cross-covariance 

2))(( pxy
qσ  of the thp  parameter component. We consider 

each parameter component independently, corresponding to a 
constraint that all covariance matrices be diagonal. Assuming 
a Gaussian distribution for each component of the source and 

target feature vectors, the transformation function for the thp  
parameter component is the Maximum Likelihood (ML) 
Estimator, )(ˆ py , given by  
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where )( px  belongs to class q. All of the transformation 
functions considered in this work follow (1). With the notation 
defined above, we can now consider formalizing evaluation 
metrics.  

2.1. Metrics for Evaluation 

In this paper, we will consider three criteria for the 
evaluation of spectral transformation. First is the strength of 
the link between the source and target parameters in the 
model. Formally, this is expressed in the correlation. 
Specifically, we consider the average correlation between 
source and target parameters in the model 
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This criterion is critical in determining the capacity of the 

parameters in the model for transformation, as the source-
target feature correlation scales the factor in (1) that is 
dependent on the source data to be transformed. Similarly, the 
variance of the transformed data will depend on this factor 
and, thus, the correlation. Generally, the variance of the 
transformed data captures the influence of the correlation in 
the transformation results. Accordingly, the second criterion 
that we consider compares the transformed variances for each 
class to those of the target. Specifically, we consider the 
average ratio of the variances, VR, 
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where )(ˆ py
qσ  represents the sample variance of the 

transformed data and qN  frames are considered in class q. 

Finally, for an indicator of the transformation quality, we 
consider the absolute error between the transformed and target 

frame envelopes; specifically, the Mean Squared Error (MSE) 
normalized by the target parameter energy: 
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Together, these three criteria (2)-(4) form a complete 

evaluation of spectral transformation, both of the approach and 
the results.  

2.2. Speech Data  

Our speech data is taken from corpora used in France 
Télécom's speech synthesis system Baratinoo, which contains 
speech sampled at 16kHz whose phonetic labeling and 
segmentation is manually verified. Currently, we consider 
transforming only vowels, as these are among the most 
important phonemes in speaker identification. In this work, a 
parallel corpus consisting of a female (source) and male 
(target) speaker is used. The source and target speech frames 
are analyzed pitch synchronously. The three center ("stable") 
frames of each source and target phoneme are automatically 
aligned. The remaining frames are aligned uniformly in time, 
within each phoneme. The training and test data sets each 
consist of 100 distinct phrases (roughly 30,000 aligned frames 
per set).  

2.3. Evaluating "Classic" Spectral Transformation 

Given the evaluation criteria described in section 2.1, we 
can now re-visit a classic approach to spectral transformation. 
In particular, we consider DCCs, as described in [1], with no 
cutoff frequency and no frequency-scale warping. In order to 
avoid erroneous source-to-target mappings, we model each 
phoneme with a Gaussian distribution, as in [4]. Table 1 
summarizes the evaluation results. We consider the correlation 
for different model orders in parentheses; since higher order 
coefficients capture more detail, we can expect less correlation 
as we increase the cepstral order. Additionally, we have 
included the MSE,meanε , for "transformed" data calculated 

using only the target mean in (1), corresponding to a VQ-type 
conversion scheme.    

Table 1. Evaluation Results: Classic Transformation 

XYρ  
order 40 (20, 10) 

 
0.08 (0.12, 0.16) 

VR 0.02 

ε  -8.46 dB 

meanε  -8.19 dB 

   
The results in Table 1 show weak links between the source 

and target parameters, as evident by the low average 
correlation (for all cepstral orders). Accordingly, the low ratio 
of variances shows that there is very little variation in the 
transformed data. What's more, the difference between the 
MSE using the entire transformation function versus only the 
mean is a fraction of a dB. Hence, the estimated target 
parameters are essentially the target means. These results 
verify those in [2] and [3]. However, in this case, one-to-one 



mappings between the source and target frames, within a 
phoneme, are ensured. Based on these observations, we 
hypothesize that the lack of inter-speaker feature correlation is 
primarily due to the parameter choice. Consequently, we seek 
an alternative spectral parameterization for transformation, 
namely spectral peaks.   

3. Transforming Spectral Peaks 

3.1. Peak Modeling & Analysis 

Similarly to [5]-[6], we model the spectral envelope for 
frame n as a sum of Gaussian peaks 
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where f indicates frequency and nM  is the number of peaks in 

frame n. The number of peaks for each frame is not fixed but 

is limited to 20. The parameters [ ] T
m
n

m
n

m
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represent the frequency, amplitude and variance of the thm  
peak in frame n (of the source speaker in this case). As 
discussed in [5] and [6], this representation offers an intuitive 
and flexible representation for the spectral envelope in a 
conversion context. 

For the peak analysis, as in [6], the Gaussian peak 
parameters are selected from peak-picking directly on the 
Discrete Fourier Transform (DFT), using a frequency mask to 
avoid modeling harmonic peaks and to increase resolution in 
regions more sensitive to human hearing. The peak variance is 
then calculated to fill-in the envelope in-between peak 
amplitudes. We note here that, given this parameter 
estimation, the spectral peak variance does not carry a physical 
meaning. Consequently, later in learning, this parameter is not 
considered in determining model classes. Finally, for the 
current work, we do not use the inter-frame alignment 
described in [6], as we do not currently consider the evolution 
of spectral parameters in time in the analysis stage of VC.           

3.2. Learning 

The number of peaks determined from the analysis 
described above can vary for each source and target frame. 
Thus, there is no inherent intra or inter-speaker alignment 
between peaks and the Phonetic GMM described in section 
2.2 cannot be directly applied. In order to model the source 
and target speaker spaces with this peak representation, we 
consider the spectral envelope as a sequence of peaks in 
frequency. Explicitly, for frame n of the source speaker, we 

have the following sequence 
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spectral peak parameters. The ensemble of source (or target) 
peak sequences, for a particular phoneme, can then be 
modeled by an HMM, as in [7]. Unlike [7], we do not 
currently consider the time dimension. Letting the states in this 
HMM follow a Gaussian distribution, we can then use an ML 
estimator (1) to transform the spectral peaks. This 
transformation process will be described in section 3.3. We 
refer to this modeling of spectral peaks using a single HMM 
per phoneme as a Peak-HMM. The learning procedure is 
summarized as follows. 

 

Peak-HMM Learning: (For Phoneme k) 

    Data: k
y
n

m
n

x
n

m
n NnMmyMmx :1,:1,;:1, ===  

   For each source & target speaker (independently): 
       i.  Data clustering: Generate Gaussian Classes (States) 
      ii.  Generate HMM from Gaussian States 
   Joint Source-Target Space 
     iii.  Inter-Speaker State Alignment (2 Proposed Methods) 
     iv.  Calculate Cross-Covariance 

 
First, all of the source (or target) peaks (frequency & 

amplitude) are grouped using a simplified GMM with 20 
classes. The simplification consists in using a MAP constraint 
on the EM algorithm so that each peak is associated with a 
single class. Statistically insignificant classes are then 
removed. These Gaussian classes then form the states in the 
phoneme HMM. In the second step (ii), the transition 
probabilities and initial probability distribution for the speaker 
HMMs are calculated.  The third step (iii), determines an 
alignment between the source and target HMM states in a 
phoneme. Two methods for this inter-speaker state alignment 
will be described in the following subsections. Given the 
particular inter-speaker state alignment, in the final step (iv), 
the cross-covariance for each source-target state pair is 
calculated. This calculation considers the source and target 
peaks corresponding to the same frame in time, that belong to 
the states (classes) satisfying the respective aligned pair. 
 

3.2.1. Method 1: One-to-One Sequence Alignment 

 
The first method for inter-speaker state alignment simply 

imposes a one-to-one alignment between the source and target 
classes. That is, the alignment follows the ordering in 
frequency of the classes (i.e. state q of the source HMM is 
aligned to state q of the target HMM). In cases for which the 
number of source and target states is not identical, the final 
source states (highest in frequency) are repeated or removed in 
order to match the number of target HMM states. With the 
possible exception of source classes representing the highest 
peak frequencies, this alignment ensures both full 
representation of the source and target classes as well as one-
to-one source-to-target mappings (i.e. no repeated classes in 
the source or target spaces).  

3.2.2. Method 2: Aligning Most Probable Peak 
Sequences 

 
The second proposed method involves comparing the class 

mean frequencies. Considering only the HMM statistics, we 
estimate the most-likely state sequence for the target and 
source speaker.  Each of the most-likely target states is aligned 
to the most-likely source state closest in frequency. Each 
remaining un-aligned source state (most likely or not) is then 
aligned to the target state (most likely or not) nearest in 
frequency. With this method, we assure coverage of the most 
probable target classes and all of the source classes while 
limiting "warping" of the frequency axis in transformation by 
aligning source-target classes nearest in frequency.  
   



3.3. Transformation 

The following diagram in Figure 1 describes the 
transformation process, namely how to transform an observed 
source peak sequence into an estimated target peak sequence.  

 
Figure 1: Peak-HMM Transformation 

 
The first step in this transformation is to find the most 

likely source state sequence given the observed source peak 
sequence. This problem can be solved using a Viterbi 
algorithm, as described in [8]. Each state in this sequence 
corresponds to a target state, according to the inter-speaker 
state alignment determined in the Peak-HMM learning. Given 
these estimated target states, we find the most probable target 
state sequence, allowing the addition of target states, if 
necessary. In the final estimation step, for each target state 
related to an observed source peak, the ML estimator (1) is 
used to estimate the corresponding target peak. The estimated 
target peaks from the remaining target states in the sequence, if 
any, are taken as the target state mean. Finally, given the 
estimated target peak sequence, the estimated target envelope 
is generated from (5).   

4. Evaluation Results 
As in the case evaluating a classic spectral transformation 

in section 2.2, the capability of a chosen model to transform 
the chosen spectral parameters is indicated by the average 
correlation (2). Examining this correlation for the peak 
parameters, considering each variant in the learning, we have 
the following results shown in Table 2. For each proposed 
method in the Peak-HMM, the correlation between peak 
parameters is nearly identical. This similarity shows that the 
source-target inter-speaker feature correlation does not depend 
significantly on the chosen source-to-target alignment. This 
observation indicates that there exists an overall inter-speaker 
correlation between the ensembles of peaks that is not a direct 
result of the model constraints on source-to-target mappings.   

Of the three parameters in Table 2, the peak log-amplitude 
is the most relevant. Considering the peak frequency, 
transformation of this parameter is essentially carried out in 
selecting the state sequence. Significant variations in 
frequency will not exist within the model states, as this would 
correspond to a change in state. Considering the peak 
variance, as previously discussed in section 3.1, this is a less 
important parameter in transformation. Consequently, the most 
significant indication of the Peak-HMM's capability for 
transformation is given by the average correlation of the peak 
amplitude (log amplitude). Comparing these values with those 
for the classic transformation approach in Table 1, we find a 
significant increase in correlation using spectral peaks rather 
than DCCs. In other words, the link between the source and 

target parameters, as expressed in the model, is stronger in the 
Peak-HMM. 

Table 2. Peak-HMM Parameter Correlation 

correlation parameter 
Method (1) Method (2) 

frequency 0.10 0.10 

log(amplitude) 0.39 0.38 

sqrt(variation) 0.27 0.26 

 
In order to examine the accuracy of the Peak-HMM in 

estimating the target parameters, we need to consider the 
remaining evaluation metrics in (3), (4). Additionally, we seek 
to compare the Peak-HMM results with those of the classical 
approach to transformation described in section 2. 
Consequently, a common reference for both approaches must 
be considered. We select the peak envelope calculated from 
the DFT, given by (5), as the reference envelope for the source 
and target speakers. For the phonetic GMM, the DCCs (order 
40) are calculated from this reference envelope and the 
corresponding model and results are examined. Note that the 
reference envelopes are not the same as in section 2.2, thus, 
the results could change from Table 1. However, we state here 
that parameter correlation for cepstral order 40 remained the 
same as in Table 1, 0.08. In the case of the Peak-HMM (all 
variants), learning and transformation are carried out as 
described in section 3 in the spectral peak domain. The 
resulting transformed envelopes are then parameterized with 
DCCs (order 40). In this parameterization, we consider 
frequencies up to the final peak, as the drop-off past this peak 
can be significant, thus influencing the resulting DCCs. 
Applying the metrics (3) and (4) to both transformation 
results, considering the averaged DCC statistics for each 
phoneme, we have the following results in Table 3.  

 

Table 3. Evaluation Results: DCC-GMMP vs Peak-HMM  

 DCC-
GMMP  

Peak-HMM 
Method (1) 

Peak-HMM 
Method (2) 

VR 0.01 0.41 0.34 
MSE: ε  -7.86 -5.29 -5.06 

 
In Table 3, there is significantly larger similarity between 

the transformed and target data variance for the Peak-HMM as 
compared to the Phonetic GMM with DCCs. Note that, unlike 
the work in [2] and [3], this variance is not a result of heuristic 
constraints introduced in the transformation function, but 
rather a result of the differences in the transformation domain; 
notably, a difference in parameter choice and, consequently 
transformation model. Considering the MSE, we see that the 
DCC-GMMP gives higher accuracy in a frame-by-frame 
transformed-target comparison. This result can be expected as 
GMM-based transformation is intended to minimize the 
overall mean squared error in the discrete cepstrum domain. 
Among the peak-HMM variants, the method for inter-speaker 
state alignment with one-to-one mappings covering all target, 
and the majority of source, classes. The frame-by-frame 
envelope comparison indicates that the Peak-HMM (in all 
cases) is currently lacking in estimation accuracy, according to 
the objective metrics examined here. We will later discuss 
observations on informal subjective evaluations of the 
different transformation approaches. Nonetheless, the stronger 

Observed 
Source Peak 
Sequence 

Estimated 
Target Peak 
Sequence 

Estimated  
Source State 
Sequence 

Estimated  
Target State 
Sequence 

Inter-speaker 
state alignment 

ML Estimator 



source and target links for the Peak-HMM and the ability to 
better capture the variation in the target spectral envelope 
show that this type of approach holds promise for spectral 
transformation.          

5. Post-Processing of Spectral Envelope 
Discontinuities 

Discontinuities in the transformed spectral envelope 
between adjacent frames can generate artifacts that diminish 
the transformed speech quality, as described in [2] and [5]. In 
[2], median and lowpass filtering are employed to smooth 
discontinuities in a sequence of transformed envelopes. 
Alternatively, the work in [5] considers "event functions" to 
smooth the evolution of spectral peaks across a sequence of 
frames. In this work, we propose a type of median filtering of 
transformed spectral peak parameters across a sequence of 
frames within a phoneme. Specifically, beginning with the 
center frame of the phoneme, we average the transformed peak 
parameters with those of the frames immediately to the left and 
to the right. The peaks between two frames are aligned by 
locally minimizing the distance between peak locations in 
frequency, as proposed in the analysis stage in [6]. Peaks of 
the center frame that are not aligned with peaks from the 
neighboring frames on either side are removed. This process of 
aligning peaks in frequency and averaging the transformed 
peak parameters is continued for each frame individually, 
moving outward from the center frame (to the left and to the 
right) to the phoneme boundary. Applying this post-processing 
technique to the frames transformed using the Peak-HMM (for 
all alignment methods), we have the following results shown 
in Table 4.      
 
Table 4. Post-Processing Evaluation Results: Peak-HMM 
 

 Method (1) Method (2) 

VR 0.36 0.28 

MSE: ε  -5.39 -5.17 

 
These results show that the averaging of transformed spectral 
peak parameters in time reduces the transformed data variance 
by approximately 5%. However, the MSE is improved by 
about 0.1dB in both cases. While these objective results do not 
show a significant difference using the post-processing 
considering the evolution of spectral peaks in time, the 
following section notes an important improvement in 
subjective quality.   

6. Subjective Evaluation: Informal 
Listening Tests 

Informal listening tests were conducted on a selection of 
phrases in order to compare the converted speech quality. 
Specifically, an HNM [1] is used in analysis and synthesis. In 
order to evaluate the transformed spectral envelope, we 
consider the target speech, with only the harmonic amplitudes 
converted. That is, the harmonic amplitudes from the original 
target speech analysis are replaced with harmonic amplitudes 
sampled from the transformed envelopes. In this way, we are 
able to isolate the effect of only the spectral envelope on the 
converted speech quality.  

First, we note that, while the absence of a peak in the 
spectral envelope (especially in mid-to-high frequencies) may 
significantly increase the MSE in a frame, this absence might 

not significantly affect the perceptual quality. This indicates 
that, while the MSE may be high, the perceptual quality is not 
necessarily poor. This is particularly relevant in the case of 
transforming peaks because errors are often localized in 
certain regions of the frequency spectrum, unlike the case of 
transforming cepstral coefficients in which errors in 
transformation affect all frequencies.  

Second, in comparing the different alignment methods for 
the Peak-HMM, neither could be consistently judged as 
superior to the other.   

Third, in all examined cases for the Peak-HMM, the post-
processing alignment never worsened the quality. For the 
sections of speech exhibiting high quality, no degradation was 
perceived. For artifacts resulting from spectral discontinuities 
between frames, the proposed post-processing improved the 
perceived quality in the majority of cases. These observations 
seem to follow those found in [2], though more thorough 
evaluation should be carried out to confirm this. 

Finally, in comparing informal observations on the overall 
quality of the GMM-based transformation of the cepstral 
coefficients versus HMM-based transformation of spectral 
peaks, we make the following initial remarks. In the GMMP-
DCC case, we note a "muffling" or "loss-of-presence," a 
degradation that is always perceived continuously. 
Conversely, it seems that the Peak-HMM can, in some 
instances, yield a higher converted speech quality comparable 
to the analysis-synthesis quality. However, in other cases, the 
converted speech can also be severely degraded and sound 
very unnatural. These degradations could result from both 
problems in the source-to-target state mappings and in the 
peak classification. Overall, these observations indicate that 
there is potential in using a Peak-HMM approach in VC in 
order to achieve high converted speech quality.      

In this section, the authors have given informal 
observations on the converted speech quality. It must be 
emphasized that the original prosody and harmonic phases 
from the analysis of the target speech have been kept in all 
cases; the only feature that we are evaluating is the spectral 
envelope conversion. More conclusive results should involve 
more formal testing and conversion with a wider variety of 
speakers.   

7. Conclusions & Future Work 
This work has shown that the "over-smoothing" problem 

in spectral transformation can be reduced by choosing an 
adequate spectral parameterization. Spectral peaks have been 
shown to better capture the correlation between source and 
target speech, as compared to cepstral coefficients. While the 
transformation accuracy needs to be improved, the increased 
inter-speaker feature correlation and, consequently, the 
increase in transformed data variance, demonstrate promise in 
using spectral peaks for voice conversion. 

Further work will be conducted in order to find a more 
robust peak classification and source-to-target state mapping. 
One possible approach for this could be to incorporate the 
time-evolution of spectral peaks in analysis, as in [6], and in 
learning the transformation model, as in [7].  

Furthermore, more extensive subjective testing and 
evaluation with a wider variety of speakers will be necessary 
to examine the different methods for transformation more 
thoroughly.   
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