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Abstract

This paper explores the benefits of transformingcsal
peaks in voice conversion. First, in examining sia$sMM-
based transformation with cepstral coefficients, shew that
the lack of transformed data variance ("over-smiogth can
be related to the choice of spectral parameteozati
Consequently, we propose an alternative parametieriza
using spectral peaks. The peaks are transformed ¢iMs
with Gaussian state distributions. Two learningiarsis and
post-processing treating peak evolution in time afso
examined. In comparing the different transformation
approaches, spectral peaks are shown to offer higter-
speaker feature correlation and yield higher tamséd data
variance than their cepstral coefficient counterpar
Index Terms. voice conversion, spectral transformation,
spectral peaks

1. Introduction

Spectral transformation plays a crucial role in &éoi
Conversion (VC), both in identifying speakers' voicasd
ensuring high quality synthesis. The goal of spéctr
transformation is to transform the spectral envelad a
(source) speaker into that of a different (targgt@aker. The
transformation methodology can be described inetlstages:
first, analysis of the speech signal in order toraet spectral
envelope parameters; second, training through ilegra
mapping between the source and target parametars, t
transformation of the source parameters to estirtiaise of
the target. Based on this methodology, the perfocmaf a
VC system depends on two key factors: i) the chate
spectral parameters and ii) the choice of modelldarning
and transformation.

Traditional approaches to spectral transformatyquically
use Gaussian Mixture Models (GMM) [1] on cepstral
coefficients or Line Spectral Frequencies (LSF).eSéh
approaches generally succeed in capturing and dapitag
certain characteristic traits of the target speakemwever, the
transformed data in these cases exhibits littldanae, a
problem often called "over-smoothing," [2], [3]. Ghet al.
showed in [2] that this lack of variance in thensBormed data
results from a weak correlation between the soarmktarget
parameters. In addressing this problem, Chen easslume
that the target variance is the same as that ofdliece and
suggest a MAP adaptation algorithm to adjust
transformation function. Alternatively, in [3], Tadet al
address this problem by also modifying the tramsfdion
function, but with the introduction of a "global nance"
parameter to ensure that the transformed datancarienimics
the target variance. In both of these cases, theer‘o
smoothing" problem is attributed to the transfoipratmodel
and heuristics are introduced in order to incredlse
transformed data variance.

the

Fundamentally, the small transformed data variaecae
result of low correlation between the source amgetaspectral
features, as captured in the transformation modetre exist
two possible explanations for this low inter-speake
correlation. First, this problem could be attrimiteo the
transformation model, as in the previously menttbmerks.
Explicitly, the "mixing" of the data may destroyhierent inter-
speaker correlation. This erroneous mixing traesldhto a
source-to-target mapping problem, commonly refertieecds
the "one-to-many" problem, [4]. The second possible
explanation for the low inter-speaker correlati@uld be that
the chosen spectral parameters are not captunmegaaingful
link between the source and target speech. Whie fitist
hypothesis has often been assumed in related wibikspaper
seeks to address the second. Specifically, we ibawviade the
"one-to-many" mapping problem by following the wonk[4]
and introducing context-dependent parameters imtoGMM
modeling, creating a "Phonetic GMM." In using a Réiic-
GMM, we then effectively reduce the problems résglfrom
the transformation model choice and can consequémtis
our problem analysis on the transformation paranutteice.

In this paper, we will show that, even when engurin
correct mappings between the source and targetrésaton a
phoneme-level), there still remains a low interade feature
correlation in a classic transformation approacRpli€itly,
these results indicate that the problem of low-aation
between the source and target features is duestparameter
choice (in this particular case, the cepstral c¢oiefits) rather
than the choice of transformation model. Consequemik
seek an alternative spectral parameterization ¢hat better
capture a meaningful link between the source amdeta
speech. Specifically, we examine the use of spegtaks as
an alternate parameterization for voice conversion.

The structure of this paper is as follows. Secfobegins
by defining some general notation and metrics for
transformation evaluation. These metrics are thpplied to a
classic approach to VC using discrete cepstral imiefts
(DCCQC) in a Phonetic GMM, "DCC-GMMP." This evaluation
shows that the chosen parameters, as expresshd mddel,
exhibit low inter-speaker correlation and are tinedequate
for conversion. In section 3, an alternative patenization
for the spectral envelope, along with an adaptedehéor
transformation, is presented. Specifically, we adeisspectral
peaks and their transformation using a Hidden Marodel
(HMM) with Gaussian-state distributions, the "Pé#lidM."
Two variants in the model learning related to thignanent
between the source and target models are alsoilgedcin
section 4, the different approaches, DCC-GMMP andk+Pea
HMM (with variants), are compared using a common
reference for the spectral envelope. Additiondtysection 5,
a post-processing technique that treats spectedd peolution
in time is examined. In section 6, a subjectivelwation of
the transformation results based on informal listgriests is



discussed. Finally, in section 7, we conclude otalieation
and discuss avenues for future work.

2. Spectral Transformation Evaluation

Before considering the metrics for evaluating séctr
transformation, we begin by introducing some genera
notation. Let's consideN aligned source and target frames
parameterized respectively by vectgrandy, of dimensiorP.
The feature vectors are classified i@@anodel classes, to be

defined. For each clasy, we consider the sample
mean tg @), variance (aq(p))2 and cross-covariance

(a@fy(p))2 of the pth parameter component. We consider

each parameter component independently, correspgridia
constraint that all covariance matrices be diagoAssuming
a Gaussian distribution for each component of thece and

target feature vectors, the transformation funcfamthe pth
parameter component is the Maximum Likelihood (ML)
Estimator, y(p), given by

ay’ (p)

(1)
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where x(p) belongs to clasg). All of the transformation

functions considered in this work follow (1). Withe notation
defined above, we can now consider formalizing @a@bn
metrics.

2.1. Metricsfor Evaluation

In this paper, we will consider three criteria ftre
evaluation of spectral transformation. First is gteength of
the link between the source and target parameterthe
model. Formally, this is expressed in the correfati
Specifically, we consider the average correlaticgtwieen
source and target parameters in the model
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This criterion is critical in determining the capigof the
parameters in the model for transformation, as gberce-
target feature correlation scales the factor in {at is
dependent on the source data to be transformedla8imthe
variance of the transformed data will depend ois factor
and, thus, the correlation. Generally, the varianéethe
transformed data captures the influence of theetation in
the transformation results. Accordingly, the secaniterion
that we consider compares the transformed variafocesach
class to those of the target. Specifically, we aasthe
average ratio of the variancé4,

QN[ 1 adp) |
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where ag(o) represents the sample variance of the
transformed data an®l, frames are considered in clags

Finally, for an indicator of the transformation tjtia we
consider the absolute error between the transfoameldtarget

frame envelopes; specifically, the Mean SquaredrHIMISE)
normalized by the target parameter energy:
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Together, these three criteria (2)-(4) form a catel
evaluation of spectral transformation, both ofaipproach and
the results.

2.2. Speech Data

Our speech data is taken from corpora used in France
Télécom's speech synthesis systamatinoo, which contains
speech sampled at 16kHz whose phonetic labeling and
segmentation is manually verified. Currently, wensider
transforming only vowels, as these are among thestmo
important phonemes in speaker identification. lis thork, a
parallel corpus consisting of a female (source) anale
(target) speaker is used. The source and targetlpgeames
are analyzed pitch synchronously. The three cefistable™)
frames of each source and target phoneme are atitatya
aligned. The remaining frames are aligned uniforinlyime,
within each phoneme. The training and test data eath
consist of 100 distinct phrases (roughly 30,000redd frames
per set).

2.3. Evaluating " Classic" Spectral Transformation

Given the evaluation criteria described in sectoh, we
can now re-visit a classic approach to spectralsframation.
In particular, we consider DCCs, as described in \jih no
cutoff frequency and no frequency-scale warpingoider to
avoid erroneous source-to-target mappings, we medeh
phoneme with a Gaussian distribution, as in [4]bl&al
summarizes the evaluation results. We considecdnelation
for different model orders in parentheses; singhéi order
coefficients capture more detail, we can exped tesrelation
as we increase the cepstral order. Additionally, have
included the MSEg, , for "transformed” data calculated

using only the target mean in (1), corresponding ¥Q-type
conversion scheme.

Table 1.Evaluation Results: Classic Transformation

o
order 40 (20, 10) | 0-08 (012, 0.16)
VR 0.02
£ -8.46 dB
Emean -8.19 dB

The results in Table 1 show weak links betweersthece
and target parameters, as evident by the low agerag
correlation (for all cepstral orders). Accordinglige low ratio
of variances shows that there is very little véoiatin the
transformed data. What's more, the difference batwihe
MSE using the entire transformation function versng the
mean is a fraction of a dB. Hence, the estimatedetar
parameters are essentially the target means. Thesdts
verify those in [2] and [3]. However, in this casme-to-one



mappings between the source and target frames,inwiéh
phoneme, are ensured. Based on these observatigns,
hypothesize that the lack of inter-speaker featoreelation is
primarily due to the parameter choice. Consequenty seek
an alternative spectral parameterization for tramsétion,
namely spectral peaks.

3. Transforming Spectral Peaks

3.1. Peak Modeling & Analysis

Similarly to [5]-[6], we model the spectral envetoffor
framen as a sum of Gaussian peaks

My, _ M2
sq(f)=2a§‘exn[—%}

m=1

®)

wheref indicates frequency anil,, is the number of peaks in
framen. The number of peaks for each frame is not fixat b

T
is limited to 20. The parameterqu=[fnm,a|’q",v,T]

represent the frequency, amplitude and variancehefm™
peak in framen (of the source speaker in this case). As
discussed in [5] and [6], this representation sffen intuitive
and flexible representation for the spectral ernpelan a
conversion context.

For the peak analysis, as in [6], the Gaussian peak

parameters are selected from peak-picking direotly the
Discrete Fourier Transform (DFT), using a frequen@sknto
avoid modeling harmonic peaks and to increase wéeal in
regions more sensitive to human hearing. The pagknce is
then calculated to fill-in the envelope in-betwe@eak
amplitudes. We note here that, given
estimation, the spectral peak variance does nof egohysical
meaning. Consequently, later in learning, this petar is not
considered in determining model classes. Finalty, the
current work, we do not use the inter-frame alignime
described in [6], as we do not currently considher évolution
of spectral parameters in time in the analysisestdg/C.

3.2. Learning

The number of peaks determined from the analysis

described above can vary for each source and t&a@yeae.
Thus, there is no inherent intra or inter-speakenement
between peaks and the Phonetic GMM described itiosec
2.2 cannot be directly applied. In order to moded source
and target speaker spaces with this peak repreisentave
consider the spectral envelope as a sequence &k fra
frequency. Explicitly, for framen of the source speaker, we

have the following sequencexn:[ﬁ,...,x,’]“,...,xf'}""x} of

spectral peak parameters. The ensemble of sourcer@et)
peak sequences, for a particular phoneme, can then
modeled by an HMM, as in [7]. Unlike [7], we do not
currently consider the time dimension. Letting stegtes in this
HMM follow a Gaussian distribution, we can then aseML
estimator (1) to transform the spectral peaks.
transformation process will be described in sectoB. We
refer to this modeling of spectral peaks usingreglsi HMM

per phoneme as a Peak-HMM. The learning procedsire i
summarized as follows.

this parameter

This

Peak-HMM Learning: (For Phoneme k)
Data:xy, m=1:M); y', m=1:M}, n=1:Ny
For each source & target speaker (independently)
i. Data clustering: Generate Gaussian Classes ¢ptate
ii. Generate HMM from Gaussian States
Joint Source-Target Space

iii. Inter-Speaker State Alignment (2 Proposed Methods
iv. Calculate Cross-Covariance

First, all of the source (or target) peaks (frequyeil
amplitude) are grouped using a simplified GMM wid®
classes. The simplification consists in using a M@Rstraint
on the EM algorithm so that each peak is associaféu a
single class. Statistically insignificant classese athen
removed. These Gaussian classes then form thes statae
phoneme HMM. In the second stepi),( the transition
probabilities and initial probability distributicior the speaker
HMMs are calculated. The third stefii); determines an
alignment between the source and target HMM statea
phoneme. Two methods for this inter-speaker stig@raent
will be described in the following subsections. &ivthe
particular inter-speaker state alignment, in tmalfistep i),
the cross-covariance for each source-target staie is
calculated. This calculation considers the sounce target
peaks corresponding to the same frame in time,télaing to
the states (classes) satisfying the respectivaedigair.

3.2.1. Method 1: One-to-One Sequence Alignment

The first method for inter-speaker state alignm&ntply
imposes a one-to-one alignment between the soutéaaget
classes. That is, the alignment follows the ordgriim
frequency of the classes (i.e. stat®f the source HMM is
aligned to stateg of the target HMM). In cases for which the
number of source and target states is not identthal final
source states (highest in frequency) are repeateshwmved in
order to match the number of target HMM states.hWite
possible exception of source classes representiadighest
peak frequencies, this alignment ensures both
representation of the source and target classeglass one-
to-one source-to-target mappings (i.e. no repealaskes in
the source or target spaces).

full

3.2.2. Method 2: Aligning Most Probable Peak
Sequences

The second proposed method involves comparingléss ¢
mean frequencies. Considering only the HMM statistive
estimate the most-likely state sequence for thgetaand
source speaker. Each of the most-likely targeestia aligned
to the most-likely source state closest in freqyert€ach
remaining un-aligned source state (most likely of) fis then
aligned to the target state (most likely or notanest in
frequency. With this method, we assure coveraggefmost
probable target classes and all of the source edassile
limiting "warping" of the frequency axis in transfoation by
aligning source-target classes nearest in frequency



3.3. Transformation

The following diagram in Figure 1 describes the
transformation process, namely how to transfornolaserved
source peak sequence into an estimated targetspealence.

Figure 1: Peak-HMM Transformation

Observed
Source Peak
Sequence

Estimated
Source State
Sequence

G Inter-speaker
state alignment

Estimated Estimated
Target Peak Target State
Sequence Sequence

ML Estimator

The first step in this transformation is to findetimost
likely source state sequence given the observedcsqueak
sequence. This problem can be solved using a Viterb
algorithm, as described in [8]. Each state in thésjuence
corresponds to a target state, according to ther-spteaker
state alignment determined in the Peak-HMM learn{Biyen
these estimated target states, we find the mostapte target
state sequence, allowing the addition of targetestaif
necessary. In the final estimation step, for eaulyet state
related to an observed source peak, the ML estmafois
used to estimate the corresponding target peake$timated
target peaks from the remaining target statesdrséguence, if
any, are taken as the target state mean. Finalgngthe
estimated target peak sequence, the estimated tmgelope
is generated from (5).

4. Evaluation Results

As in the case evaluating a classic spectral toamsftion
in section 2.2, the capability of a chosen modetrémsform
the chosen spectral parameters is indicated byatleeage
correlation (2). Examining this correlation for theeak
parameters, considering each variant in the legrnire have
the following results shown in Table 2. For eaclpwosed
method in the Peak-HMM, the correlation betweenkpea
parameters is nearly identical. This similarity wlothat the
source-target inter-speaker feature correlatiors ame depend
significantly on the chosen source-to-target aligntn This
observation indicates that there exists an ovérntdr-speaker
correlation between the ensembles of peaks thadtia direct
result of the model constraints on source-to-tangggbpings.

Of the three parameters in Table 2, the peak loglitude
is the most relevant. Considering the peak freguenc
transformation of this parameter is essentiallyriedrout in
selecting the state sequence. Significant variation
frequency will not exist within the model states,this would
correspond to a change in state. Considering thak pe
variance, as previously discussed in section B3i$,is a less
important parameter in transformation. Consequetitly most
significant indication of the Peak-HMM's capabilitipr
transformation is given by the average correlatbthe peak
amplitude (log amplitude). Comparing these valuéh those
for the classic transformation approach in Tablevé,find a
significant increase in correlation using specpebks rather
than DCCs. In other words, the link between there®wand

target parameters, as expressed in the modetpisgstr in the
Peak-HMM.

Table 2.Peak-HMM Parameter Correlation

par ameter correlation
Method (1) | Method (2)
frequency 0.10 0.10
log(amplitude) 0.39 0.38
sqrt(variation) 0.27 0.26

In order to examine the accuracy of the Peak-HMM in
estimating the target parameters, we need to censite
remaining evaluation metrics in (3), (4). Addititlgawe seek
to compare the Peak-HMM results with those of tlassical
approach to transformation described in section 2.
Consequently, a common reference for both appreachest
be considered. We select the peak envelope cadcufabm
the DFT, given by (5), as the reference envelopé¢hfe source
and target speakers. For the phonetic GMM, the D@@ter
40) are calculated from this reference envelope &l
corresponding model and results are examined. Matethe
reference envelopes are not the same as in sezirthus,
the results could change from Table 1. Howeverstage here
that parameter correlation for cepstral order 4@aieed the
same as in Table 1, 0.08. In the case of the P& Hall
variants), learning and transformation are carrimat as
described in section 3 in the spectral peak domaime
resulting transformed envelopes are then pararmetenivith
DCCs (order 40). In this parameterization, we oo@si
frequencies up to the final peak, as the drop-afft phis peak
can be significant, thus influencing the resultilfCCs.
Applying the metrics (3) and (4) to both transfotima
results, considering the averaged DCC statistias efach
phoneme, we have the following results in Table 3.

Table 3.Evaluation Results; DCC-GMMP vs Peak-HMM

DCC- Peak-HMM Peak-HMM

GMMP Method (1) Method (2)
VR 0.01 0.41 0.34
MSE: ¢ -7.86 -5.29 -5.06

In Table 3, there is significantly larger similgrivetween
the transformed and target data variance for ttaPBM as
compared to the Phonetic GMM with DCCs. Note thatjke
the work in [2] and [3], this variance is not auk®f heuristic
constraints introduced in the transformation fumcti but
rather a result of the differences in the transfiirom domain;
notably, a difference in parameter choice and, egaently
transformation model. Considering tMSE, we see that the
DCC-GMMP gives higher accuracy in a frame-by-frame
transformed-target comparison. This result canxXpeeed as
GMM-based transformation is intended to minimizee th
overall mean squared error in the discrete cepsttamain.
Among the peak-HMM variants, the method for intpeaker
state alignment with one-to-one mappings coverihtgeget,
and the majority of source, classes. The framermé
envelope comparison indicates that the Peak-HMM &lin
cases) is currently lacking in estimation accuracgording to
the objective metrics examined here. We will latiscuss
observations on informal subjective evaluations tbe
different transformation approaches. Nonetheldss stronger



source and target links for the Peak-HMM and thditatio
better capture the variation in the target specatratelope
show that this type of approach holds promise foectal
transformation.

5. Post-Processing of Spectral Envelope
Discontinuities

Discontinuities in the transformed spectral envelop
between adjacent frames can generate artifactsdthanish
the transformed speech quality, as described imf#] [5]. In
[2], median and lowpass filtering are employed tnosth
discontinuities in a sequence of transformed emado
Alternatively, the work in [5] considers "event fitions" to
smooth the evolution of spectral peaks across aeseg of
frames. In this work, we propose a type of mediliering of
transformed spectral peak parameters across a rem|uod
frames within a phoneme. Specifically, beginninghwihe
center frame of the phoneme, we average the tnanstbpeak
parameters with those of the frames immediateth¢deft and
to the right. The peaks between two frames arenedigby
locally minimizing the distance between peak lamadi in
frequency, as proposed in the analysis stage inAéaks of
the center frame that are not aligned with peaksnfthe
neighboring frames on either side are removed. piusess of
aligning peaks in frequency and averaging the foamed
peak parameters is continued for each frame indalig,
moving outward from the center frame (to the leftl do the
right) to the phoneme boundary. Applying this posieessing
technique to the frames transformed using the PHak4 (for
all alignment methods), we have the following réeswghown
in Table 4.

Table 4.Post-Processing Evaluation Results: Peak-HMM

Method (1) Method (2)
VR 0.36 0.28
MSE: ¢ -5.39 -5.17

These results show that the averaging of transforepectral
peak parameters in time reduces the transformedwdatance
by approximately 5%. However, the MSE is improved b
about 0.1dB in both cases. While these objectisalte do not
show a significant difference using the post-prees
considering the evolution of spectral peaks in tintiee
following section notes an important improvement in
subjective quality.

6. Subjective Evaluation: Informal
Listening Tests

Informal listening tests were conducted on a silpodf
phrases in order to compare the converted speealityqu
Specifically, an HNM [1] is used in analysis andhthesis. In
order to evaluate the transformed spectral envelope
consider the target speech, with only the harmaniplitudes
converted. That is, the harmonic amplitudes fromdhginal
target speech analysis are replaced with harmanfimdes
sampled from the transformed envelopes. In this, way are
able to isolate the effect of only the spectraledope on the
converted speech quality.

First, we note that, while the absence of a peakh&:
spectral envelope (especially in mid-to-high freggies) may
significantly increase the MSE in a frame, thiseatz® might

not significantly affect the perceptual quality.iFtindicates
that, while the MSE may be high, the perceptualitjis not

necessarily poor. This is particularly relevanttle case of
transforming peaks because errors are often |@zhlin

certain regions of the frequency spectrum, uniiie ¢ase of
transforming cepstral coefficients in which errois

transformation affect all frequencies.

Second, in comparing the different alignment meshfou
the Peak-HMM, neither could be consistently judges
superior to the other.

Third, in all examined cases for the Peak-HMM, plost-
processing alignment never worsened the quality. the
sections of speech exhibiting high quality, no delgtion was
perceived. For artifacts resulting from spectralcdntinuities
between frames, the proposed post-processing irafdrtive
perceived quality in the majority of cases. Thebseovations
seem to follow those found in [2], though more thath
evaluation should be carried out to confirm this.

Finally, in comparing informal observations on theerall
quality of the GMM-based transformation of the degs
coefficients versus HMM-based transformation of cérz
peaks, we make the following initial remarks. I tBMMP-
DCC case, we note a "muffling" or "loss-of-presehica
degradation that is always perceived continuously.
Conversely, it seems that the Peak-HMM can, in some
instances, yield a higher converted speech quaditgparable
to the analysis-synthesis quality. However, in piteses, the
converted speech can also be severely degradedcamal
very unnatural. These degradations could resulin flmth
problems in the source-to-target state mappings ianthe
peak classification. Overall, these observatiordicate that
there is potential in using a Peak-HMM approactVid in
order to achieve high converted speech quality.

In this section, the authors have given informal
observations on the converted speech quality. Istnhe
emphasized that the original prosody and harmohiases
from the analysis of the target speech have been ikeall
cases; the only feature that we are evaluatingp@sspectral
envelope conversion. More conclusive results shauldlve
more formal testing and conversion with a widerietsr of
speakers.

7. Conclusions & Future Work

This work has shown that the "over-smoothing" peafbl
in spectral transformation can be reduced by cimgosin
adequate spectral parameterization. Spectral peaks been
shown to better capture the correlation betweencgsoand
target speech, as compared to cepstral coefficigvitsle the
transformation accuracy needs to be improved, ricecased
inter-speaker feature correlation and, consequenthe
increase in transformed data variance, demongtrataise in
using spectral peaks for voice conversion.

Further work will be conducted in order to find an@
robust peak classification and source-to-targdt staapping.
One possible approach for this could be to incafeoithe
time-evolution of spectral peaks in analysis, a$6ih and in
learning the transformation model, as in [7].

Furthermore, more extensive subjective testing and
evaluation with a wider variety of speakers will bhecessary
to examine the different methods for transformatioore
thoroughly.
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