N
N

N

HAL

open science

3D-models recognition from a 2D sketch
Jean-Philippe Vandeborre, Mohamed Daoudi, Christophe Chaillou

» To cite this version:

Jean-Philippe Vandeborre, Mohamed Daoudi, Christophe Chaillou. 3D-models recognition from a 2D
sketch. CESA’98/TEEE IMACS Multiconference, Apr 1998, France. pp.529-532. hal-00725657

HAL Id: hal-00725657
https://hal.science/hal-00725657
Submitted on 27 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00725657
https://hal.archives-ouvertes.fr

3D models recognition from a 2D sketch

Jean-Philippe Vandeborre', Mohamed Daoudi’, Christophe Chaillou'

"LIFL : Laboratoire d'Informatique
Fondamentale de Lille
Batiment M3, Cité Scientifique
59658 Villeneuve d'Ascq - France

? GRIF : Groupe de recherche
Image et Forme - ENIC
Rue G. Marconi, Cité Scientifique
59658 Villeneuve d'Ascq - France

e-mail : vandebor@lifl.fr, daoudi@enic.fr, chaillou@lifl.fr

Abstract

Three dimensional models become more and more important in computer images. The problem which consists to recognize a
three dimensional model in a two dimensional image appears. We are interesting in the recognition of simple polyhedral
objects. To do that we have developed two interfaces. The user sketch interface allows a user to express his request
graphically with adapted sketching tools. Another interface allows us to build the object database : the administrator interface
computes characteristic views from a three dimensional object. These interfaces avoid the problem of processing bitmap
images and its problems of segmentation : shadows, deleted lines, low resolution, lack of details etc... In this approach, both
the objects to be recognized and the user sketch are represented by weighted graphs and indexed by a polynomial

characterization of characteristic views in a hash-table.

keys words : image indexing, three dimensional image database, graphs, user sketch.

1. INTRODUCTION

Actually, and more in the future, images occupy a
preponderant place in many domains like medicine, art,
education, design. Professionals and the great public can
find these images in large databases. Thus the problem is
to match object features with image request features. One
way to resolve that problem is to have textual attributes
for each image in the database (models) and to be able to
describe in the same way the request image. But this type
of description is approximate, subjective and is
confronted to the linguistic barrier. We must then find
features which describe the shape of objects without the
use of any spoken language. That puts the fundamental
problem of primitives extraction.

S.Matusiak, M.Daoudi and F.Ghorbel [1] propose to use
invariant descriptors which are independent under a
general affine transformation to index two dimensional
image database. B.Lamiroy and P.Gros [2] use similitude
invariants. L.Morin, P.Brand and R.Mohr [3] use
projective invariants. F.J.Stein [4] proposes to use super-
segments which approximate a curve in a polygonal
manner. Many methods are adapted for two dimensional
image database.

In this paper we propose to resolve the problem which
consists to find three dimensional models corresponding
to a two dimensional sketch made by a user. This paper is
organized as follows. The second section presents the
characterization of our models in terms of graphs. Section
three describes the indexing principle based on

polynomial characterization of the graphs. Section four
focuses on the obtained results and the applications based
on the method described in the above sections. Finally,
the fifth section draws some conclusions.

2. MODEL CHARACTERIZATION

We have some hypothesis on the models : they are simple
polyhedral objects as the one shown in Figure 1. This
means that an object has, at most, three edges meeting at
a vertex.

Hence, we can build an exhaustive catalogue of the
possible appearances of the edges (twenty) of a
polyhedral object. Each geometric node appearance will
have a code associated with it. These codes will be used
to weight the graphs.

Figure 1. A simple polyhedral object in "L" shape

A three dimensional object is represented by a set of
characteristic views and each characteristic view is
described in term of a graph (P.J.Flynn and A.K.Jain [5]).
A characteristic view is obtained by rotation of a virtual
object around itself or by the movement of a virtual



camera around the virtual object. Of course, these two
processes are equivalent. The number of characteristic
views must be sufficient to describe the object completely
(see Section 4). Each graph is weighted according to the
geometry (the appearance) of his edges given in the
exhaustive catalogue and then decomposed into
subgraphs. An n vertices characteristic view graph is
decomposed into #n subgraphs. A subgraph is formed by a
beginning node as well as the nodes that are at a distance
less or equal to p edges away from this node (see Figure

=F 74

Figure 2. An example of a characteristic view of an
object and a few subgraphs extracted from this view

With a small value of p, the obtained subgraphs are not
discriminative and with large value, all the subgraphs
tend to be the same as the characteristic view from which
they are extracted. In this method, p is equal to three.
Figure 2 shows a characteristic view of an "L" shaped
object and three of its eleven subgraphs. At last, a
polynomial characterization is computed for each
subgraph. These polynomial characterizations will be
used for the indexing process as described in the next
section.

With this decomposition, we have a three layer database
structure. Graphs (subgraphs) are extracted from
characteristic views. Characteristic views are extracted
from objects. An object may well have more than two
characteristic views associated with it (see Figure 3). A
subgraph does not necessarily belong to only one
characteristic view. In the same way, a characteristic view
can be extracted from two or more different objects. For
example, every objects with a rectangular side have a
common characteristic view which consists of a simple
rectangle.

Figure 3. The database structure

Each unknown subgraph extracted from the user's sketch
(which represents a drawn characteristic view) votes for a
number of objects of the higher layer of the database
structure. This process is repeated for each unknown
subgraph belonging to the unknown sketch. The
characteristic view that received the largest number of
votes is the model that best matches the unknown view.

According to the database structure there can be two or
more views that match with the unknown sketch. A good
example is the case of a simple rectangular sketch made
by the user. Every object with a rectangular side has a
view that match with the sketch.

3. INDEXING

We are facing the problem of comparing a request object
with many objects stored in a database. We cannot
compare the unknown object with each object in the
database. This process spends too much time. It is then
necessary to introduce the notion of indexing function.
This function allows to quickly access to the searched
object without comparing the unknown object with each
object in the database. It gives a quasi-constant access
time to the database.

The indexing function computes a key (a code) for the
unknown object and compare it with those stored in the
database. Ideally two different elements to be indexed
should have different keys. Practically this is not the case
but a good code can limit the collision problem. When a
code collision happens (ie. two different elements to be
indexed have the same key) it can be solved by the key
storage structure. The keys can be sorted or stored in a
search tree or in a hash-table.

The graph matching problem is a very hard problem. As
R.Horaud and H.Sossa [6], we use the polynomial
characterization, we reduce practically the graph
matching problem to a polynomial equality problem.

A lot of books deal with graphs computation but it can be
useful to remind that graphs can be represented by their
adjacency matrices. The adjacency matrix of a graph G is
a nxn square matrix where 7 is the number of nodes of the
graph G. The adjacency matrix M of a graph can be
defined as follows :

{weight(i ,j) if there is an edge between nodes i and j

% |0if i = j or if there is no edge between the two nodes

where weight(i, j) is the weight of the edge between node
i and node j of the graph G according to code in the
exhaustive catalogue of possible edge appearances.

The location of the coefficients in the adjacency matrix
depends on the numbering of the nodes of the graph. If 4,
and A, are the adjacency matrices of two graphs G, and
G,, we can easily see that Gy is equivalent to G, if and
only if there exists a permutation matrix P such that :

Ay =P. 4. P

To solve the problem of finding the permutation matrix,
we use a algebraic characterization which is invariant by
permutation of lines and columns between themselves :
the polynomial characterization. It is computed as
follows :

p(G)=det (x.1- M)
where M, is the adjacency matrix of the graph G and / is
the identity matrix.
Mathematically, the polynomial characterization equality

is not sufficient for two graphs to be equivalent. But in
practice, there is a few number of graphs with the same



polynomial characterization that are not equivalent.
Theses cases are counterbalanced by the vote process
described in Section 2.

In our method, we use a hash-table to store the
polynomial characterization with links to the
corresponding models. As we can see in Figure 4,
characteristic views are not kept in the implanted
structure because they are not useful in the recognition
process.

polynomial

Lﬂobj 17 obj 2| obj 3]

Figure 4. An element of the hash-table

The hash-code is computed with the coefficients of the
polynomial characterization.

4. RESULTS AND APPLICATIONS

The theoretical part of the project (graphs and polynomial
characterization) has been entirely developed and tested.
Characteristic views were manually entered, point by
point, to test the system. This is the kernel, the search
engine of this recognition system but the interface part is
very important in our approach.

(0 18 0 0
a a 18 0 15 19
0 15 0 0
7 0 0 0
0o 0 0 0

0

bl

a a’ 0
7
0
—> —> |
0
0

19

19)

18

19

cwooo o
T owoooo

19)

w o
cocox
coo
oo o

19

oo oo
°

18

=
cococowo

° o o
% o o

1

I3
°

Figure 5. A view of an "L" shaped object

The Figure 5 shows a view of an "L" shaped object and
another view in the same conditions but with a
transformation by a rotation and a light scale. Except the
transformation these are two same views of a same
object. A subgraph is extracted from the two views from
the same point location (a and a’ on the Figure 5). These
subgraphs give different adjacency matrices because of
the different numbering of the graphs nodes. The
polynomial characterizations given by the kernel of our
method are equal for these two different matrices :
x"-2014x° + 545476x° - 11364856x

Then they are recognized to be extracted from the same
view of an object, which is true.

We are interesting in recognition of three dimensional
models from a two dimensional sketch made by a user.
That's why we have developed two types of interface : a
user sketching interface (Figure 6) and a characteristic
views construction interface (Figure 8).

With the sketching interface, the user can express his

request in a graphical manner. He draws a view of the

object he wants to find in the data base. The interface

offers tools to keep the sketch in the limits described in

the hypothesis at the beginning of the second section of

this paper :

. only straight lines can be drawn.

. ends of line are guided by a grid of cursors.

. no more than three lines meeting at an edge.

. no crossing lines which would form a four vertices
edge.

. no isolated lines.

. closed shape.

&. pair
i oge
I Lancer ke requéte l Afficher le résuliat l Effacer écran I

)

Figure 6. The sketching interface

The sketch can be saved in a file for future changes. Once
the sketch is finished, a button must be pressed to start
the recognition process. User's sketch is a request picture,
then it is considered as a characteristic view. The final
sketch is stored in a file to make the communication
between the user interface and the search engine. This file
consists of a list of points coordinates and links to others
points. The kernel read this file, computes results and
then write a file with them. Finally, the sketching
application reads the results file and displays the results
on the screen as a list of found objects and a
representation of the three dimensional objects
considered.

w votes =(alx]
Résultat des votes :
¥ cale en L COx]| caleenlL

Figure 7. The result of a request

The second interface is a characteristic views
construction interface. At the beginning of our search
engine tests, we were forced to draw needed views on
paper, estimate points positions and enter each set of
points in a separate file (one file for a view) of a standard
form. Thanks to the characteristic views construction
interface all we have to do is building a three dimensional
model and the interface displays it and makes it rotate
around itself. When we think the obtained view is



interesting, the interface write a standard characteristic
view file to be opened by the search engine. All theses
files of characteristic views are used by the search engine
to compute its hash-table.

(7 Cale.3d - OpenGl [_[O[x]
Fichier Edion Affichage 2

SECIKIE)
Prét NOM 7

Figure 8. The characteristic views construction
interface

5. CONCLUSIONS

Characteristic views are extracted from three dimensional
objects and represented by graphs. This representation in
characteristic views is independent of the spatial position
of the three dimensional object. The objects can be
rotated, translated or scaled, the graphs of a characteristic
view will not change. The polynomial characterization of
the graphs allows practically the reduction of graphs
matching problem to a polynomial equality problem that
is simpler (two polynomials are equals if they have the
same degree and if all their coefficients are equals). We
choose polynomial characterization for simplicity of
implementation but there exist others characterizations
based on polynomial like the second immanantal
polynomial associated with an nxn Laplacian matrix of a
graph described in [6].

Our method is application oriented. The user sketch
interface allows the expression of a request in a graphical
manner. There is no need to have a picture of an object. A
bitmap picture needs to be processed and many errors of
segmentation may occur. The user sketch interface gives
tools to the user to express his request while keeping it in
the limit of the model hypothesis described in Section 2.
The characteristic views construction interface can be
considered has a database administrator tool. This
interface allows the creator or the administrator of the
model database to add an object and create the
characteristic views of this object without anything else
than the three dimensional object.

6. REFERENCES

[1] S. Matusiak, M. Daoudi et F. Ghorbel, "Indexation
d'une base de données d'images par une description de
formes invariantes aux affinités", CORESA'97, 26-27
mars 1997.

[2] Bart Lamiroy and Patrick Gros, "Reconnaissance
d'objets par indexation géométrique étendue”, équipe
MOVI, GRAVIR-IMAG & INRIA Rhone-Alpes, 1996.

[3] Luce Morin, Pascal Brand and Roger Mohr,
"Indexing with Projective Invariants", SSPR'94

[4] Fridtjof Johannes Stein, "Structural Indexing for
Object Recognition", a dissertation presented for the
degree of Doctor of Philosophy (Computer Science),
April 1992.

[5] Patrick J. Flynn and Anil K. Jain, "CAD-Based
Computer Vision : From CAD Models to Relational
Graphs" in IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 13, n°2, February 1991.

[6] Radu Horaud and Humberto Sossa, "Polyhedral
Object Recognition by Indexing" in Pattern Recognition,
Vol. 28, n°12, pp. 1855-1870, 1995.



