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ABSTRACT

In this paper we present a three-dimensional model retrieval system. A three-dimensional model is des
ribed
by two invariant des
riptors : a shape index and a histogram of distan
es between meshes. This work fo
uses
on extra
ting invariant des
riptors that well represent a three-dimensional model, and on 
ombining theses
des
riptors in order to get a better retrieval performan
e. An experimental evaluation demonstrates the good
performan
e of the approa
h.

1. INTRODUCTION

The use of three-dimensional image and model databases throughout the Internet is growing both in number
and in size. Firstly, the development of the modeling tools, as well as the 3D s
anners fa
ilitates the 
reation of
three-dimensional models. Se
ondly, 3D graphi
s hardware have be
ome fast and 
heap enough to allow three-
dimensional data to be pro
essed and displayed qui
kly on desktop 
omputers. Finally, the World Wide Web is
enabling a

ess to three-dimensional models 
onstru
ted by people all over the world, providing a me
hanism
for wide-spread distribution of high quality.

Te
hniques dealing with traditional information systems have been adequate for many appli
ations involv-
ing alphanumeri
 re
ords. They 
an be ordered, indexed and sear
hed for mat
hing patterns in a straightfor-
ward manner. However, in many three-dimensional databases appli
ations, the information 
ontent of three-
dimensional models is not expli
it, and is not easily suitable for dire
t indexing, 
lassi�
ation and retrieval.

Di�erent kinds of approa
hes exist to represent three-dimensional obje
t models. For example, the well-
known 3D format for the Web, VRML1, uses a hierar
hy tree stru
ture : an obje
t is des
ribed as a tree where
ea
h node is a geometri
 information, an appearan
e information, or even a light position or a sound 
all-ba
k,
and so on. Many 3D tools are also able to use a simple data format : a set of 
at polygons { often triangles {
whi
h 
an be des
ribed by listing their three-dimensional verti
es and edges. The main interest of su
h format
is that every other format 
an be exported to this simple one. This make it a very widely used format, whi
h
is why we are interested in indexing su
h three-dimensional models.

In this paper, we des
ribe and analyze two methods for 
omputing three-dimensional shape signatures and
dissimilarity measures. The �rst shape index, introdu
ed by Koenderink2, is de�ned as a fun
tion of the two
prin
ipal 
urvatures. This shape index is lo
al but sensitive to noise. The se
ond index, a distan
e index
introdu
ed by Osada3, is based on a histogram of the distan
es between random points on the surfa
e. This
index is globally robust to the noise but does not take the lo
al deformation into a

ount.

Then, we propose to 
ombine these three-dimensional shape signatures in di�erent ways. The results obtained
on the �fty three-dimensional models database show the e�e
tiveness of our approa
h, and also the problems
whi
h are yet to be solved. In order to evaluate the performan
e of the proposed te
hnique on ea
h model of
the database, we have used the re
all/pre
ision 
riteria. We have also used a 
lassi�
ation matrix to see the
global performan
e of our 
ombining methods versus single shape and distan
e indexes used individually.
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2. INVARIANT DESCRIPTORS

Indexing data is a way to �nd a suitable form for the information, for a given appli
ation. This form is 
alled an
index. In a sear
h engine, the role of the index is to represent the original data in a very short way. Intuitively,
this means that the index should be invariant to some geometri
 transformations of the obje
t (translation,
rotation, s
aling), and should have a 
ertain robustness to the noise.

Two indexes are used by our approa
h. The �rst one, shape index2, is a lo
al index and is invariant to
geometri
 transformations, but it is not robust to noise. The se
ond one, distan
e index3, is a global index and
is invariant to geometri
 transformations and is also robust to noise.

2.1. Lo
al Des
riptors

The proposed three-dimensional shape des
riptor des
ribed in detail aims at providing an intrinsi
 shape de-
s
ription of three-dimensional mesh models. It exploits some lo
al attributes of the three-dimensional surfa
e.
The surfa
e and 
urvature notions are well developed in Ref. 4.

The shape index, introdu
ed by Koenderink2, is de�ned as a fun
tion of the two prin
ipal 
urvatures of the
surfa
e. The main advantage of this index is that it gives the possibility to des
ribe the form of the obje
t at a
given point. The drawba
k is that it loses the information about the amplitude of the surfa
e shape.

Let p be a point on the three-dimensional surfa
e. Let us denote by k1p and k2p the prin
ipal 
urvatures
asso
iated with the point p. The shape index at point p, denoted by Ip, is de�ned as :

Ip =
2

�
ar
tan

k1p + k2p

k1p � k2p
with k1p � k2p: (1)

The shape index value belongs to the interval [0; 1℄ and is not de�ned for planar surfa
es. The shape spe
trum
of the three-dimensional mesh is the histogram of the shape indexes 
al
ulated over the entire mesh.

The estimation of the prin
ipal 
urvatures is the key step of the shape spe
trum extra
tion. Indeed, the
spe
trum extra
tion performan
es strongly depend on the a

ura
y of estimates. Computing these 
urvatures

an be a
hieved in di�erent ways, ea
h with advantages and drawba
ks; Ref. 5 proposes �ve pra
ti
al methods
to 
ompute them. We 
hoose to 
ompute the 
urvature at ea
h vertex of the mesh by �tting a quadri
 to the
neighborhood of this vertex using the least-square method.

The parametri
 surfa
e approximation is a
hieved by �tting a quadri
 surfa
e through the 
loud of the m

points f(xi; yi; zi)g
m
i=1 made at the 
entroids of the 
onsidered fa
e and its 1-adja
ent fa
es.

Let S = (x; y; z) = (x; y; f(x; y)) be a point of the three-dimensional surfa
e de�ned by the analyti
al
fun
tion f . Here, f is expressed as a se
ond order polynomial :

f(x; y) = a0x
2 + a1y

2 + a2xy + a3x+ a4y + a5

where the ais are real 
oeÆ
ients.

By denoting a = (a0; a1; a2; a3; a4; a5)
t and b(x; y) = (x2; y2; xy; x; y; 1)t, the previous equation 
an be

expressed by using the standard matrix notations :

f(x; y) = at � b(x; y)

The parameter ve
tor a = (a0; a1; a2; a3; a4; a5)
t is determined by applying a linear regression pro
edure.

Given the data points denoted by f(xi; yi; zi)g
m

i=1, the parameter ve
tor 
orresponding to the optimal �t (in the
mean square error sense) is given by the following equation :

a = (

NX
i=1

b(xi; yi)b
t(xi; yi))

�1 � (

NX
i=1

zib(xi; yi))



We 
an then 
al
ulate the two fundamental forms I and II :

I =

�
< ~Su; ~Su > < ~Su; ~Sv >

< ~Su; ~Sv > < ~Sv ; ~Sv >

�

II =

�
< ~Suu; ~N > < ~Suv; ~N >

< ~Suv ; ~N > < ~Svv; ~N >

�

~Suu = �~S
�u2

~Svv =
�~x
�v2

~Suv =
�~S
�u�v

The prin
ipal 
urvatures k1 and k2 are the eigenvalues of the Weingarter endomorphism W :

W = I�1 � II

The shape index 
an now be 
omputed by (1). We now have NbFa
es values, whi
h 
an be represented as
a histogram. This histogram (1024 intervals) is our �rst index for the obje
t. Figure 2 shows an example of a
su
h spe
trum for the obje
t quadru2 represented in �gure 1.

2.2. Global Des
riptors

Global des
riptors are a mean to handle the obje
t in its globality. This means that rather to be atta
hed to
the details of the obje
t, we give more importan
e to its general aspe
t. The moments6 are there the traditional
mathemati
al tool. The moments present a main drawba
k : they rely on the obje
t being des
ribed by a
fun
tion, de�ned in the three-dimensional spa
e, whi
h 
ould for instan
e asso
iate 1 or 0 to ea
h 3D point,
depending on whether it is inside or outside the obje
t. Very few obje
ts are de�ned or 
onvertible to su
h a
fun
tion, whi
h makes the moments method often impossible to use. To avoid this problem, we 
an also grab
the Z-Bu�er of an obje
t's view, whi
h 
onsist of 2D data we 
ould use to generate the moments. But we want
to stay in the three-dimensional spa
e, so we 
annot use this method.

A new method has been re
ently proposed by Osada et al.3, based on shape distributions. The main idea
is to fo
us on the statisti
al distributions of a shape fun
tion measuring geometri
al properties of the three-
dimensional model. They are represented as histograms, just like for the lo
al approa
h. The range of possible
fun
tions is very wide : from fun
tions based on distan
es to fun
tions based on angles, surfa
es or volumes.
The 
hoi
e is limited by the properties the des
riptor has to give. A

ording to Osada et al.3, the distan
e
between random points gives good results 
ompared to other simple methods.

We take two random fa
es of the obje
ts, then we take two random points on those two fa
es. Finally, we

ompute the Eu
lidean distan
e between those two points. The method is iterated N times, N being big enough
to give a good approximation of the distribution. We then build the histogram (1024 intervals) of all the values.

One 
ould noti
e that the Eu
lidean distan
e, and thus this index, are not invariant by s
aling for the
moment. This is obviously be
ause the Eu
lidean distan
e is not either. So, we have to normalize the spe
trum
before using it. One way to do it is to normalize the mean value of the distribution. We �rst 
ompute this
value :

MV (f) =

Z
1

0

x � f(x) � dx

The new histogram is then de�ned by :

fnorm(x) = f(
x

MV (f)
)

The fnorm is the new distribution, invariant to s
aling.

Figure 3 shows an example of a su
h distribution for the obje
t quadru2 represented in �gure 1.



Figure 1: Obje
t quadru2 (5804 fa
es)

Figure 2: Shape histogram for the obje
t quadru2 Figure 3. Distan
e distribution for the obje
t quadru2

3. COMPARING DESCRIPTORS

Ea
h obje
t is now partially des
ribed by two histograms, whi
h are used to 
ompute a similarity between the
obje
ts, as shown on �gure 4. The �rst thing to de�ne is how the 
orresponding histograms of two obje
ts will
be 
ompared, in order to �nd a distan
e between them.

d1 d2

Shape ShapeDistance Distance

3D−objects

Spectrums

Distances

Indexation
  ( offline )

Comparison
  ( online )

Figure 4: Working s
heme

There are several ways to 
ompare distributions : the Minkowski Ln norms, Kolmogorov-Smirnov distan
e,
Mat
h distan
es, and many others. We 
hoose to use the L1 norm, as in Ref. 3, be
ause of its simpli
ity and
its good results :

dl1(f1; f2) =

Z
1

�1

jf1(x)� f2(x)j � dx

The histograms are being interpolated before anything else, in order to get rid of some problems, like
quantization, noise et
. The interpolation is being made with 64 linear segments by the least-square method.



Then, a simple integration of the interpolations is made, giving a real number as a result. Noti
e that
although the same method is applied to the two types of histogram, the numbers given are not 
omparable.

4. COMBINING RESULTS

We now have to join those two values, des
ribed in the above se
tion, in one �nal mark. From now, please
noti
e that the main goal of our approa
h is not to give an absolute distan
e between two obje
ts, but rather
to 
ompare an obje
t to a lot of others in a database, hunting the nearest obje
t to the request. Our results

an then be relative to our database.

We �rst 
ompute the rank of ea
h obje
t, sorting them by de
reasing \lo
al distan
e", and next, by de
reasing
\global distan
e". We now have two integers, between 1 and NbObje
ts, named Ranks for the shape index,
and Rankd for the distan
e index. Those values are merged in a single one, with a formula. The 
hoi
e of this
formula is very important, be
ause the �nal results will greatly depend on it. Intuitively, there are di�erent
strategies :

� support the obje
ts having good results with both approa
hes. This is what we 
all the \AND" method.
It 
ould be implemented with the following formula :

F =

�
1�

Ranks � 1

NbObje
ts

�
�

�
1�

Rankd � 1

NbObje
ts

�

� support the obje
ts having good results with one approa
h, the other one having less importan
e. This is
what we 
ould the \OR" method. It 
ould be implemented with the following formula :

F = 1�

�
(Ranks � 1) � (Rankd � 1)

NbObje
ts�NbObje
ts

�

� support the obje
ts having good results with one approa
h, without 
aring about the other one. This is
what we 
all the \MIN" method. It 
ould be implemented with the following formula :

F =
Min(Ranks; Rankd)

NbObje
ts

� use the mean of the two results :

F =
(Ranks +Rankd)

2 �NbObje
ts

This way, we now have one �nal real number, between 0 and 1, whi
h represents the 
on�den
e one 
ould
have in the result.

5. RESULTS

5.1. Three-dimensional Models Database

The methods des
ribed above have been implemented and tested on a three-dimensional database 
ontaining
�fteen models, 
lassi�ed by ourselves in seven 
lasses. The models are simple meshes of approximatively 500 to
25000 fa
es, without any hierar
hy stru
ture.

Some of the obje
ts are represented on �gures 5 to 10. They have been extra
ted from a bigger database,
in order to make some 
lasses and to have a few obje
ts per 
lass. We 
hoose some very di�erent obje
ts, so
that the 
lasses 
ould be easily determined without ambiguity :



Class id Content Obje
t range Examples
A 8 airplanes (1-8) biplane, jets, 747...
M 5 mis
 (9-13) banana, statue, du
k-toy, heart, \eight"
P 7 
hess pie
es (14-20) bishop, queen...
H 8 humans (21-28) men, women, dressed or not, alien
F 6 �shes (29-34) dolphins, shark...
Q 8 quadrupedes (35-42) tri
eratops, horse, 
ow...
C 8 
ars (43-50) pors
he, old 
ar, 
abriolet...

The \mis
" 
lass, being 
onsidered just as noise in our database, is not a real 
lass. It is therefore meaningless
to sear
h for a \mis
" obje
t.

We have sele
ted the obje
ts whi
h have a good mesh, obje
ts with too many singularities have been
eliminated. But some obje
ts, generally the human-made obje
ts, still have a mesh regularity problem : large

at surfa
es are represented with a few number of big fa
es.

5.2. Evaluating the Method

One of the biggest problems relating to resear
h and retrieval engines is their evaluation. The �rst diÆ
ulty
is to de�ne the word "similar", talking about three-dimensional obje
ts. Does that mean that the obje
ts are
visually similar, or that they have the same usage ? Does a sailing ship look like an over
raft ? As far as the
user is 
on
erned, it depends. If the sailing ship is the only obje
t at the user disposal, and that the user is
looking for an over
raft, the answer would surely be "yes". But if the user is looking for all the �sh boats,
the answer would rather be "no". A
tually, an over
raft does not visually look like a sailing ship, but the user
thinks so be
ause he/she knows that they both are boats.

As our database is 
lassi�ed, we assume, for ea
h request, that the obje
t from the same 
lass as the request
are relevant, and that the other are not. We 
an then use the re
all-pre
ision 
urves7 to evaluate the algorithm.
They give a mean to estimate the performan
e of the engine for some example requests extra
ted from the
database. We 
an also use a 
lassi�
ation matrix (even if the goal of our approa
h is not to 
lassify the obje
ts
of a database), to have a global idea of the performan
e of our 
ombining methods in 
omparison of the single
indexes : shape and distan
e alone.

5.3. Experimental Results

The sear
h engine �nds good results very easily for most obje
ts of the database. But a few obje
ts do not
give good results. This se
tion shows some examples with the 
orresponding re
all-pre
ision 
urves. The �rst
two examples are good working examples, and the third and fourth ones 
learly show the problems in the way
models are made.

5.3.1. A typi
al human obje
t

A typi
al human obje
t is represented on �gure 6. We 
an see on the re
all-pre
ision 
urve (�gure 11) asso
iated
with its resear
h that the shape index gives ex
ellent results. On the other hand, the distan
e index is mu
h
worse. The mixing methods are showing good results, although they are not perfe
t. We also note that the

urves are 
rossing, showing that no method is always better than another.

5.3.2. A �sh

The �sh represented on �gure 8 is interesting, be
ause it shows the opposite 
ase as the human. This time, the
shape index gives bad results, and the distan
e index is the only trustworthy. We see that the mixing methods
give good results, and even more, some are giving better results than the best single method (distan
e index).
See �gure 12 for the re
all-pre
ision 
urve.

This example shows the interest of the mixing methods.



Figure 5: Obje
t 
hess1 (496 fa
es) Figure 6: Obje
t human6 (14946 fa
es)

Figure 7: Obje
t human7 (14776 fa
es) Figure 8: Obje
t �sh6 (23020 fa
es)

Figure 9: Obje
t quadru6 (22258 fa
es) Figure 10: Obje
t 
ar2 (6556 fa
es)
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Figure 11: Re
all-pre
ision 
urve for human6
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Figure 12: Re
all-pre
ision 
urve for �sh6
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Figure 13: Re
all-pre
ision 
urve for human7

5.3.3. Another human obje
t that does not work

The obje
t represented on �gure 7 is not really a human, but rather human shaped. As shown on �gure 13, the
two single indexes (shape and distan
e) are showing individually bad results, and so do the mixing methods.
The problem in this 
ase is that the morphology of the alien is quite di�erent from the one of the humans,
lo
ally or globally. This example shows that we are missing another index, whi
h 
ould represent the fa
t that
an obje
t has two arms and two legs. Having this kind of stru
ture (typi
ally a hierar
hy tree stru
ture) from
a mesh is not in the s
ope of our work : it is a diÆ
ult problem on its own.

5.3.4. A 
ar obje
t with a non regular mesh

Figure 10 shows the 
ar the engine has been requested for. The re
all-pre
ision 
urve, as 
an be seen on �gure
14, shows that the shape index has great diÆ
ulties to re
ognize the 
ars. This is typi
ally the 
ase of the
human-made obje
t, where the mesh is not regular be
ause planar surfa
es are represented by a few number
of big triangles. Our algorithm 
annot really 
ompute a good shape index of su
h obje
ts with a non regular
mesh.

5.4. Classi�
ation

Although our aim is not to 
reate a 
lassifying engine, a good mean to evaluate the performan
e of the sear
h
engine is to see how it 
an 
lassify the whole database. This se
tion shows and analyzes some diagrams in this
goal.

5.4.1. Classi�
ation matrix

The �gure 17 shows a 
lassi�
ation matrix. Ea
h 
olumn represents an obje
t of the database (
olumn 1

orresponds to obje
t 1 et
.) whi
h has been used as a request for the sear
h engine. Ea
h little square shows
how the obje
t of the given row was ranked. If the obje
t 23 was ranked last when the obje
t 50 was requested,
then the square at the interse
tion of 
olumn 50 and line 23 is white 
olored. The darker the square is, the best
the rank is. This also means that the diagonal is 
ompletely bla
k be
ause ea
h obje
t is always the best result
of its own request.
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Figure 14: Re
all-pre
ision 
urve for 
ar2

Figure 15: Classi�
ation matrix for the shape index Figure 16. Classi�
ation matrix for the distan
e index

5.4.2. Single methods

The 
lassi�
ation matri
es for the single methods are shown in �gures 15 and 16. Several 
omments 
an be
made on these diagrams. First, both single methods have diÆ
ulties in retrieving some 
lasses. The shape
index mixes up airplanes and �shes. The reason for this is a 
ommon point between the 
lasses : their obje
ts
are both lo
ally 
ylindri
al shaped. The distan
e index does not have this problem, thanks to the wings of the
airplanes.

Similarly, the distan
e index has some advantages over the shape index. It has for instan
e no diÆ
ulty in

lassifying the 
ars, whereas the shape index mixes them up with airplanes.

This shows that a single index is not suÆ
ient to provide a good sear
h engine.

5.4.3. Mixing methods

First, we have noti
ed that the di�erent mixing methods are quite equivalent in terms of results. We will
therefore only analyze one method : the OR method, whi
h seems slightly (but not always) better. Figure 17
shows the 
lassi�
ation matrix for this method.



We noti
e that the method 
an 
orre
t some weaknesses of the single methods. For example, the shape
index matrix shows some diÆ
ulties with the 
ars, and the distan
e matrix shows some diÆ
ulties with the
airplanes. Those problems do not exist anymore with the OR method.

On the other hand, the shape index is quite able to 
lassify humans and �shes, whereas the distan
e index
has some problems with these 
lasses. So, the OR method 
annot totally 
lassify these two 
lasses 
orre
tly.

Nevertheless, the mixing method gives better results than single methods. It is easy to see on �gure 17 that
the diagonal of the matrix is dark 
olored, and the rest of the matrix is quite bright.

Figure 17: Classi�
ation matrix for the OR method

5.5. Computational requirements

In order to make a useful sear
h engine, the sear
h pro
ess has to be eÆ
ient. Our test ma
hine was :

� CPU Pentium III, 666Mhz

� RAM 128Mo

� Linux system (kernel 2.2)

On this ma
hine, the sear
h engine needs 2ms by obje
t in the database to give the s
ores. For our database
of 50 obje
ts, that means that it is only 1/10s of 
omputing.

Please also note that the time needed to 
reate the index is note in
luded; it is typi
ally 10-20s.



6. CONCLUSION

In this paper, we propose some algorithms whi
h 
ombine two three-dimensional invariant des
riptors for three-
dimensional mesh models. One is based on shape index and the se
ond is based on the distribution of distan
es.
We 
ompare the results obtained by di�erent strategies of 
ombination. The results show that theses 
ombina-
tions are more performed than using one des
riptor.

The results show the limitation of the approa
h when the mesh is not regular. Three-dimensional models

ome from di�erent sour
es, so it is not always possible to 
ontrol the mesh detail level. By the way, we are
working to improve the approa
h with a prepro
essing step whi
h uses multi-resolution.
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