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Abstract

In this paper we present a three-dimensional model re-

trieval system. In our approach, a three-dimensional model

is described by three invariant descriptors: a curvature in-

dex which consists of a histogram of the principal curva-

tures of each face of the mesh, a histogram of distances

between the faces, and a histogram of the volumes based

on each face. This work focuses on extracting these invari-

ant descriptors from the three-dimensional models, and on

combining these descriptors in order to improve retrieval

performance. An experimental evaluation demonstrates the

satisfactory performance of our approach on a fifty three-

dimensional models database.

1 Introduction

The use of three-dimensional image and model databases

throughout the Internet is growing both in number and in

size. The development of modeling tools, 3D scanners,

3D graphic accelerated hardware, Web3D and so on, is en-

abling access to three-dimensional materials of high qual-

ity. Techniques dealing with traditional information sys-

tems have been adequate for many applications involving

alphanumeric records. They can be ordered, indexed and

searched for matching patterns in a straightforward manner.

However, in many three-dimensional database applications,

the information content of 3D models is not explicit, and is

not easily suitable for direct indexing, classification and re-

trieval. Different approaches exist to represent 3D models

(VRML for instance). But the triangle mesh is the most

widely used particularly because it is the format directly

used by accelerated graphic hardware. A 3D model is de-

scribed by a set of flat polygons – often triangles – which

can be defined by listing their three-dimensional vertices

and edges.

In this paper, we briefly describe three methods for com-

puting three-dimensional shape signatures and dissimilarity

measures. The first index is a curvature index, introduced

by Koenderink [2]. The second one is a distance index intro-

duced by Osada [3]. At last, the third index, introduced by

Zhang [7], is a volume index. Then, we propose to combine

these three-dimensional shape signatures in different ways.

The results obtained on a fifty three-dimensional models

database show the effectiveness of our approach, and also

the problems which are yet to be solved. We have used the

classification matrices to look at the global performance of

the single indices used individually, and the performance of

our combining methods. At last, we present some conclu-

sions and perspectives of our work.

2 Invariant descriptors

Indexing data is a way to find a suitable form for the in-

formation, for a given application. This form is called an

index. In a search engine, the role of the index is to repre-

sent the original data in a very succinct manner. Intuitively,

this means that the index should be invariant to some ge-

ometric transformations of the object (translation, rotation,

scaling), and should have a certain robustness to noise.

Three indices are used in our approach. The first one,

curvature index [2], is a local index and is invariant to ge-

ometric transformations, but it is not robust to noise. The

second one, distance index [3], is a global index which is

invariant to geometric transformations and is also robust

to noise. Finally, volume index [7] is another local index

which is invariant to geometric transformations and robust

to noise, but not very discriminative as a stand-alone index.

2.1 Curvature index

The proposed three-dimensional curvature descriptor

aims at providing an intrinsic shape description of three-



dimensional mesh models. It exploits some local attributes

of the three-dimensional surface. The curvature index, in-

troduced by [2], is defined as a function of the two principal

curvatures of the surface. The main advantage of this index

is that it gives the possibility to describe the shape of the

object at a given point. The drawback is that it loses the

information about the amplitude of the surface shape, and

that it is also sensitive to noise.

Let ✂ be a point on the three-dimensional surface. Let

us denote by ✄✆☎✝ and ✄✟✞✝ the principal curvatures associated

with the point ✂ . The curvature value at point ✂ is defined

as: ✠ ✝☛✡ ✞☞✍✌✏✎✒✑✔✓✒✌✏✕✗✖✙✘✚✜✛ ✖✣✢✚✖ ✘✚✥✤ ✖ ✢✚✧✦✩★ ✓✒✪ ✄✆☎✝✬✫ ✄✭✞✝ . The curvature

index value belongs to the interval ✮ ✯✱✰✜✲✜✳ and is not defined

for planar surfaces. The curvature spectrum of the three-

dimensional mesh is the histogram of the curvature values

calculated over the entire mesh. The estimation of the prin-

cipal curvatures is the key step of the curvature spectrum ex-

traction. Computing these curvatures can be achieved in dif-

ferent ways, each with advantages and drawbacks; [5] pro-

poses five practical methods to compute them. We choose

to compute the curvature at each face of the mesh by fitting

a quadric to the neighborhood of this face (ie. the centroid

of this face and the centroids of its 1-adjacent faces) using

the least-square method. We can then calculate the princi-

pal curvatures ✄✆☎ and ✄✭✞ as the eigenvalues of the Wein-

garten endomorphism ✴ ✡ ✠ ✤ ☎✶✵✷✠✸✠ where ✠ and ✠✸✠ are

respectively the first and the second fundamental forms [1].

Hence, the curvature index can be computed with ✠ ✝ . We

now have ✹✻✺✣✼✍✽✿✾✔❀❂❁ values, which can be represented as a

histogram. This histogram (1024 intervals) is our first index

for the object. Figure 1 shows an example of a such spec-

trum for the object quadru2 represented in the same figure.

2.2 Distance index

Global descriptors are a means to handle the object in its

globality. This means that rather than being attached to the

details of the object, we give more importance to its general

aspect. In this case, the moments [4] are generally the tradi-

tional mathematical tool. A new method has been recently

proposed by [3], based on distance distributions. The main

idea is to focus on the statistical distributions of a shape

function measuring geometrical properties of the 3D model.

They are represented as histograms, just as in the curvature

index approach. The range of possible functions is very

wide: from functions based on distances to functions based

on angles. According to [3], the distance between random

points gives good results compared to other methods. This

index is globally robust to the noise but does not take the

local deformation into account.

We take two random faces of the objects. Then we take

two random points on those two faces. Finally, we com-

pute the Euclidean distance between those two points. The

method is iterated ✹ times, ✹ being big enough to give an

accurate approximation of the distribution. We then build

the histogram (1024 intervals) of all the values. Presently,

the Euclidean distance, and thus this index, is not invariant

by scaling. This is obviously because the Euclidean dis-

tance is not invariant. So, we have to normalize the spec-

trum before using it. One way is to normalize the mean

value of the distribution. Figure 1 shows an example of a

such distribution for the object quadru2 represented in the

same figure.

2.3 Volume index

As a second local invariant, we have used the vol-

ume distribution of a three-dimensional object based on

[7]. The proposed method calculates the volume of three-

dimensional objects as a mesh representation by computing

the volume of each of the basic tetrahedrons composing the

object. To compute each volume, we first have to be sure

that all faces are triangular because we calculate the volume

for tetrahedrons. The object is re-centered and so we calcu-

late the volume of the tetrahedrons created with a triangu-

lar face joined to the origin of the coordinate system: ❃ ✡☎❄✆❅❇❆✩❈✆❉✜❊ ✞✜❋✥☎❍● ❈ ✞ ❊✏❉ ❋✥☎❍● ❈✆❉✜❊ ☎✣❋■✞ ❆❏❈ ☎ ❊✏❉ ❋❍✞ ❆❏❈ ✞ ❊ ☎✔❋ ❉ ● ❈ ☎ ❊ ✞✙❋ ❉✙❑ .
As done with the curvature index, a volume is computed

for each face of the model. The results are then represented

as a volume distribution histogram. This histogram is our

second local index. Figure 1 shows an example of such a

spectrum for the object quadru2 represented in the same fig-

ure.

Figure 1. From left to right: object quadu2

(5804 faces), curvature, distance and volume
histograms for this object

3 Comparing the histograms

Each object is now described by three histograms which

are used to compute a similarity between the objects, as

shown in figure 2.

There are several ways to compare distribution spec-

trum: the Minkowski Ln norms, Kolmogorov-Smirnov dis-

tance, Match distances, and many others. We choose to use

the L1 norm because of its simplicity and its accurate re-

sults: ▲✏▼ ☎ ❅❖◆ ✲✏✰ ◆◗P✸❑ ✡❙❘❯❚✤ ❚❲❱ ◆ ✲ ❅❳❈❨❑❩❆❬◆◗P✟❅❳❈❨❑ ❱ ✵❂▲ ❈ . We inter-

polate the histograms in 64 linear segments by the least-

square method in order to circumvent some problems like
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Figure 2. Working scheme

quantization, noise etc. Then, a simple integration of these

interpolations is made, giving a real number as a result. No-

tice that although the same method is applied to the three

types of histogram, the numbers given are not comparable.

4 Combining the results

We must now combine these different values described

in the above section into one final mark. From now, please

notice that the main goal of our approach is not to give an

absolute distance between two objects, but rather to com-

pare one object to many others in a database, specifically

hunting for the nearest object to the request. Our results

can then be relative to our database. We first compute the

rank of each object according to each index, sorting them

by decreasing values. We now have three integers, between

1 and ❭❫❪✔❴✍❪❛❵✷❜■❝✣❞❇❡ , named ❢❤❣✸✐❦❥✿❧ for the curvature index,❢✶❣✷✐❦❥✷♠ for the distance index, and ❢❤❣✷✐❦❥✷♥ for the volume

index. Those values are merged into a single one, using a

formula. Intuitively, there are different strategies to merge

these values:♦ support the objects having satisfactory results with one

approach, the other one having less importance. This

is what we call the “OR” method:♣❲qsr✏t✧✉✩✈ ❢✶❣✷✐❦❥✷✇ t①r■②❩③ ✈ ❢❤❣✷✐❦❥✷♠ t④r❍②⑤③ ✈ ❢❤❣✸✐❦❥✸♥ t①r■②❭✻❪✜❴✍❪❛❵✷❜❍❝✔❞❇❡✍⑥⑦❭✻❪✔❴✍❪❛❵✷❜■❝✣❞❇❡❤⑥⑦❭✻❪✔❴✍❪❛❵✷❜■❝✣❞❇❡⑨⑧♦
use the mean of the three results. The “MEAN”

method: ♣sq ✈ ❢✶❣✷✐❦❥✷✇❯⑩❶❢❤❣✷✐❦❥✸♠❷⑩❶❢❤❣✷✐❦❥✸♥ ②❸ ③ ❭✻❪✜❴✍❪❛❵✷❜❍❝✔❞❇❡
This way, we now have one final real number, between 0

and 1, which represents the confidence one could have in

the result. Note that the same kind of formula can be used to

merge only two rank values. We have tested other methods

of mixing rank values, but the two methods presented in this

paper have given the best results.

5 Experiments and results

One of the biggest problems relating to search engines is

their evaluation. As our database is classified (see section

5.1), we assume, for each request, that the objects from the

same class as the request are relevant, and consequently the

others are not. To evaluate the global performances of the

different stand-alone indices and of our combining meth-

ods, we have used classification matrices.

5.1 Three­dimensional models database

The methods described above have been implemented

and tested on a 3D model database containing fifty mod-

els which have been collected from the MPEG-7 3D shape

core experiments [6] and arranged by ourselves into seven

classes. Note that this manual classification has only been

done for the purposes of our experiment. This classifi-

cation is never used to improve the retrieval task of the

search engine. The classes are the following: A-class (8

“airplanes” objects), M-class1 (5 “misc” objects), P-class

(7 “chess pieces” objects), H-class (8 “humans” objects),

F-class (6 “fishes” objects), Q-class (8 “quadrupedes” ob-

jects) and C-class (8 “cars” objects). The models are simple

meshes of approximatively 500 to 25000 faces, without any

hierarchical structure. Moreover, it is important to notice

that the mesh level of detail are very different from an ob-

ject to another.

5.2 Classification matrix

Each column of a classification matrix (eg. figure 3) rep-

resents an object of the database (column 1 corresponds to

object 1, etc.) which has been used as a request for the

search engine. Each small square shows how the object of

the given row was ranked. The darker the square is, the bet-

ter the rank. For example the object number 23 was ranked

last when the object 50 was requested, then the square at the

intersection of column 50 and line 23 is white in color. This

also means that the diagonal is entierly black because each

object is always the best result of its own request.

5.3 Single methods

The classification matrices for the single indices are

shown in figure 3. The first observation is that all single

methods have difficulties in retrieving some classes, par-

ticularly the volume index. For example, the curvature in-

dex has no difficulty to classify the airplanes, but has many

problem with the car class. Similarly, the distance index

1the “misc” class, being considered just as noise in our database, is not

a real class. It is therefore meaningless to search for a “misc” object.



gives an accurate classification for the cars, but cannot give

satisfactory results for the airplane class. Both curvature

and distance indices have advantages and drawbacks. The

volume index as a stand-alone index is not discriminative at

all except, perhaps, for the chess pieces. The inefficiency of

the volume index is certainly due to the mesh irregularity of

certain objects.

Figure 3. From left to right: classification ma­

trices for the curvature, distance and volume

descriptors as stand alone indices

In conclusion, the study of these matrices shows that a

single index is not sufficient to provide a good search en-

gine.

5.4 Mixing methods

Firstly, we have observed that the two mixing methods

are quite equivalent in terms of results. Figure 4 shows the

classification matrices for the OR and the MEAN methods

with the curvature and the distance indices. We have tested

the mixing methods with the three indices. Unfortunately,

the volume method is not a great improvement for the mix-

ing methods because of its weakness as a stand-alone in-

dex. From now, let us study the mixing methods with the

curvature and the distance indices. Comparing these ma-

trices (figure 4) with the ones for the stand-alone indices

(figure 3), we observed that all mixing methods can cor-

rect some weaknesses of the stand-alone indices methods.

For example, the curvature index matrix shows some diffi-

culties with the cars, and the distance matrix shows some

difficulties with the airplanes. Those problems no longer

exist when using any of the mixing methods. On the other

hand, the curvature index is quite able to classify humans

and fishes, whereas the distance index has some problems

with these classes. So, the mixing methods cannot entierly

organize these two classes correctly. Nevertheless, any mix-

ing methods give better results than any of the single meth-

ods.

6 Conclusion and furture works

In this paper, we propose some algorithms which com-

bine three three-dimensional invariant descriptors for 3D

mesh models: curvature, distance and volume. We compare

the results obtained by different strategies of combination.

Figure 4. Classification matrices for mixing
methods between curvature and distance in­

dices. On the left: the OR method, on the
right: the MEAN method

The results show that these combinations provide superior

results than using a single descriptor. But they also show

the limitation of the approach when the mesh is not reg-

ular: 3D models come from different sources, so it is not

always possible to control the mesh level of detail. For ex-

ample, it is not always possible to determine the curvature

of large planar faces because our algorithm is based on the

local approximation of the mesh by a quadric with the help

of the neighborhood of this face. The problem is the same

for the volume index: if the mesh level of detail is not uni-

form, the volume of certain faces is not discriminative. In

order to address this problem, we are working to improve

the approach with a preprocessing step which uses multi-

resolution.
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