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ABSTRACT

In total damage the rupture occurs on a moving surface along which strong discontinuties
of displacement gradient are localized. A damage modelisation is proposed based on a
continuous transition from undamaged to damaged material.In this new framework, the
evolution of damage is associated with a moving layer of finite lengthlc. With this de-
scription, initiation and propagation of damage can be unified in the same constitutive
law. Using a normality law based on the driving force associated with the motion of the
layer, the solution of the rate boundary value problem of propagation and displacement
satisfies a variational inequality. Characterization of uniqueness is then given.
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1. INTRODUCTION

Generally, fracture mechanics is not adapted to model the degradation of solids under
mechanical loading. The initiation of defect requires damage modelization for describing
the gradual loss of local stiffness.

Severall approaches are usefull to describe such situation. For instance, constitutive laws
based on second gradient description of damage [1,2] or phase field [3,4] have been re-
cently proposed for this purpose. In this paper we propose tostudy the model of damage
proposed recently using of level-set approach [5].

For elastic quasi-brittle material, the evolution of the interface separating the undamaged
materiald = 0 to the damaged oned = 1 have been studied in a framework based on an
energetical description [6,7]. In total brittle damage, the damaged zone can not support
any further tension after some critical prescribed value instress, strain, or free energy.
With this property, the dissipation is obtained by an integral along a moving surface [6]
where the driving forceG(s) has the form of an energy release rate. When the velocity
of propagation (a(s)) of the damaged front is governed by a normality rule based onthis
driving force, many variational formulations of the rate boundary value problems have



been established [6,7,8]. The rate boundary value problem for brittle material can have
multiplicity of solutions when the propagation law is governed by a generalized Griffith’s
law:

a(s) ≥ 0, G(s) ≤ Gc, (G(s) − Gc)a(s) = 0. (1)

This model has no characteristic length. Moreover it has been shown that taking into
account of surface energy along the damaged front plays a role on the uniqueness of
the velocitya(s). In this case the front is more stable [9] because the new driving force
depends now on the mean curvatureκm of the moving front:

Gβ(s) = G(s) − κm(s)β ≤ Gc, (2)

Using this framework, the propagation of an existing interface between an undamaged
and a damaged zone is studied. The presence of surface energydensityβ stabilizes the
propagation of the interface. This interface has no thickness and mechanical quantities
present discontinuties.

To avoid these discontinuities, a new approach is proposed based on the propagation of
a moving layer inside which the damage is a continuous function of the position. The
evolution of damage is then associated to the motion of a layer of finite length [5].

The initial material and the damaged material are separatedby a surfaceΓ. This boundary
is a moving interface. A surface is an isopotential or a level-set. Through the interface the
material changes its mechanical properties. In the proposed description, this transition is
continuous.

2. THE MODEL OF DAMAGE

We consider a bodyΩ under tensionT d over∂ΩT and prescribed displacementud on the
complementary part of the boundary∂Ωu. Under this loading, the body is deformed and
a displacement fieldu described the motion of all material points of the body.

The material of the body has an elastic behaviour with modulievolving with damage. The
free energy of the bodyw(ε, d) is a function of the strainε = 1

2
(∇uT + ∇u) and of a

scalar damage variabled, 0 ≤ d ≤ 1.

The state equations are defined classically as:

σ =
∂w

∂ε

, Y = −
∂w

∂d
, (3)

whereσ is the Cauchy stress. The mechanism of dissipation is only due to damage and
the dissipation of the whole body is reduced to

Dm =

∫

Ω

Y ḋ dΩ ≥ 0. (4)

When damage is established the whole body is decomposed in three parts, the undamaged
bodyΩ1, the transition zoneΩc (where0 < d < 1) and the damaged materialΩ2 where



(d = 1). On the boundary∂Ωc the free energy is continuous, there is no discontinuties
of the stress vector and the moduli of elasticity are continuous. Then when the layerΩc

is moving, there exists no dissipation along the boundary ofthe layer. A more detail
discussion is given in [5].

The level-setφ = 0 gives the position ofΓ the part of boundaryΩc whered = 0. We
assume that the damaged is a continuous explicit functiond(φ) of the distance to the
surfaceΓ.

In the domain where the gradient of the level-set is continuous, the damage is defined by

d = 0, φ ≤ 0 ; d′(φ) ≥ 0, 0 ≤ φ < lc ; d(φ) = 1, φ ≥ lc. (5)

Then the surfaced(X, t) = do is also a level-set. This representation of damage is illus-
trated Figure 1. The minimum length separating the level-set d = 0 to the level-setd = 1
is lc.

The description of the behaviour of the system is related to the motion of a layer with
thicknessl ≤ lc.

3. ON THE MOTION OF A LAYER

We study the motion of a thick layer. The study is made for plane motion to simplify
the expression. The curveΓ is the interface separating the undamaged material to the
damaged one. A pointMt of Γ is referred by its curvilinear coordinatess, its position is

Xo(s). The local frame is then defined by the tangential vectorT =
dXo

ds
. The normal

vectorN satisfies the Fresnet relation

dT

ds
= κN,

dN

ds
= −κT (6)

whereκ is the curvature of the curveΓo at pointXo.

A point M of the layer has coordinates(s, z) in the frame(T , N),

X = Xo + zN (7)

then the local frame atX is defined by

dX = dsτ + dzν (8)

and depends on the position inside the layer,

τ = (1 − κz) T , ν = N (9)

The level-setφ(Xo, t) = 0 is the curveΓ, during the motion the local frame(T , N) is

changing. We know thatN =
∂φ

∂X
/||

∂φ

∂X
||, and

∂φ

∂X
.φ +

∂φ

∂t
= 0, (10)

this defines the normal velocitya(s): φ = a(s)N , The same is true for all level set
φ(X, t) = z.
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Figure 1:The local frame

Actual geometry and convected geometry. The actual positionXt
o of a point of Γ

satisfies the equation of motionXt+dt
o = Xt

o + φ(s)dt, the evolution of the local frame is
then deduced. For any geometrical quantityG asT , N, κ, we can define the derivative
following the motion of the surfaceΓ by

DaG = lim
dt→0

Gt+dt − Gt

dt
.

and we obtain

DφT =
dφ

dS
.N N, DφN = −

dφ

dS
.N T , Dφκ = N.

d2φ

dS2
− 2

dφ

dS
.T .

A point X = Xo + zN of the layer is on the level-setφ(X, t) = z. At time t + dt, the
actual position isXt+dt such that

Xt+dt = Xt+dt
o + z N t+dt (11)

then the evolution ofX is given by,

DaX = lim
dt→0

(x − X)

dt
= a(s)N − z

da

dS
T (12)

At point X the variation of any mechanical quantitiesf(X, t) following the motion of the
layer is then

Daf = limη→0

f(X + ηDaX, t + η) − f(X, t)

η
=

∂f

∂t
+

∂f

∂X
.DaX (13)

For the functionφ(X, t) = z, we have∇φ = N , ∆φ = −
κ

1 − zκ
andDa dS = −κa dS.

These definitions are usefull to characterize the fact that the damage variabled is a con-
tinuous function ofφ(X, t) = z.



Variations of averaged quantity on the layer. To study the evolution of the driving
force associated to the motion of the layer, we must study theevolution of quantities such
as

F =

∫ l

o

f(1 − zκ)dz F̄ =

∫

Γ

F dS, (14)

we obtain

DaF̄ = Da

∫

Ωc

f dΩ =

∫

Γ

DaF − a(s)κF dS (15)

DaF =

∫ l

o

(1 − zκ)Daf dz −

∫ l

o

zfDaκ dz (16)

The dissipation of the system. With this definition, the dissipation is obtained as

Dm =

∫

Γ

∫ l

o

Y d′(φ) (1 − κ φ) φ̇ dφ dS. (17)

The evolution of the level-set is given by the evolution of the moving surfaceφ(X, t) = z
then

φ̇ − a(s)∇φ.N = 0, (18)

where the velocitya is the normal speed of the iso-φ andN = ∇φ/||∇φ|| is the normal
vector to the surfaceφ = z.

The driving force associated to the velocitya is given by the motion of the layer according
to the dissipation

Dm =

∫

Γ

G(s)a(s) dS, whereG(s) =

∫ l

o

Y ∇d.N det(1 − κφ)dφ. (19)

The curvature plays now a role in the expression of the dissipation.

The velocitya is determined with respect to a constitutive law based on thedriving force
G(s). As in previous paper [10], we propose to consider a generalized Griffith’s law for
(l(s, t) ≤ lc)

a(s) ≥ 0, G(s) ≤ Ḡ(s) =

∫ l

o

Yc∇d.N (1− κφ)dφ, (G(s)− Ḡ(s))a(s) = 0, (20)

which is an averaged yielding function on the layer. This generalizes the normality rule
proposed for a sharp interface. Now, the damage in the layer is continuous with a given
gradient, this is a model of continuum with graded damage.

The definition of the driving force (eq.19) and the normality(eq.20) ensures the positivity
of entropy production.



4. A MODEL OF BAR WITH A MOVING LAYER

Analysis of the system. The free energyw for unixial response is

w(ε, d) =
1

2
E(d)ε2, Y = −

∂w

∂d
, (21)

whered varies from0 to 1, the Young modulusE(d) is a continuous fonction ofd, then
there is no discontinuity atd = 0. For comparison with a sharp interface we consider the
matching conditionsE(0) = E1 andE(1) = E2.

Figure 2:The propagation of a layer

On Figure 2 the value of the damage parameter is given by (φ(X, t) = Γ(t) − X)










φ(X, t) ≤ 0 d(X, t) = 0,

0 ≤ φ(X, t) ≤ lc d(X, t) = φ/lc,

φ(X, t) ≥ lc d(X, t) = 1.

(22)

The damage parameterd is an increasing function of the distanceφ to the boundaryΓ
separating the sound material to the damaged one. The functiond(φ) is a given continuous
function ofφ

Initially Γ(t) = 0 and the propagation of the layer begins at the origin of the bar, so the
thicknessΓ(t) = l(t) is smaller thanlc. The thickness increases tolc and after this step of
initialization, the thickness is kept constant.

For the given constitutive laws, the dissipation is local and only due to damagedm = Y ḋ.
From the integration over the layer we get the total dissipation due to damage inside the
bar:

Dm =

∫ l

o

Y ḋ dφ. (23)

Assuming thatd is a continuous function ofφ, thenE becomes a continuous function of

φ. The prime denotes the derivative with respect toφ, d′(φ) =
dd

dφ
andE ′(φ) =

dE

dφ
. To



define the local forceY (eq.3) we need the derivative
dE

dd

dE

dd
=

dE

dφ

dφ

dd
. (24)

The fact that this derivative must be finite implies properties onE ′(φ), d′(φ). Moreover,
the local forceY is

Y = −
E ′(φ)

2d′(φ)
ε

2 = −
E ′(φ)

2E2d′(φ)
Σ2. (25)

As the velocityφ satisfiesφ̇ = a(s), the total dissipation is finally expressed as

Dm =
a

2

∫ l

o

Σ2(−
E ′(φ)

E2(φ)
)dφ = G(l, Σ)a, (26)

whereG(l, Σ) is

G(l, Σ) =
1

2
Σ2(

1

E(l/lc)
−

1

E(0)
). (27)

When l = lc, we recover the expression obtained for a sharp interface, for which the
dissipation isDm = Gc a. In this case, the strainε and the moduli of elasticity are
discontinuous. The total energy is given by (x = Γ/L, ẋ = a l):

W =
1

2
(

x

E1

+
1 − x

E2

)LΣ2 (28)

and the dissipation is given by

Dm = −
∂W

∂x
ẋ =

1

2
(

1

E2

−
1

E1

)Σ2a (29)

So when the layer is established, the dissipations described by a sharp interface or by a
moving layer are identical.

If φ vanishes the limit valueY (0+, Σ) is

Y (0+, Σ) = −
1

2

Σ2

E2
1

lim
φ→0

E ′(φ)

d′(φ)
. (30)

When we adopt the normality rule (eq.20), the value ofY must be smaller thanYc. This
defines the critical value for initiation of damage in a pointof the bar. From (eq.30), the
corresponding critical value ofΣ is Σo such that

−
1

2

Σ2
o

E2
1

lim
φ→0

E ′(φ)

d′(φ)
= Yc (31)

It can be noticed that the critical valueΣo depends of the damage law and is generally
greater fromΣc. We assume that the dissipation of the system is the same whenthe layer
moves with the limit thicknesslc this gives a relation between the valueYc andGc.

Dm = Gca = Ycd(lc)a (32)



5. ON THE RATE BOUNDARY VALUE PROBLEM

At time t the actual position of a material point is defined by the displacementu, the
position of the layerΓ, l(s) is known and the solution is inside the domain of reversibility.

F =

∫ l

o

Y d′(φ)(1 − κz)dz − Yc

∫ l

o

d′(φ)(1 − κ z)dz ≤ 0. (33)

The evolution is governed by

a(s) ≥ 0, F ≤ 0, a(s)F = 0 (34)

It is obvious thata(s) is positive ifF = 0. At this stateF satisfiesḞ ≤ 0. The derivation
of the consistency conditionaF = 0 implies thata(s) > 0 if Ḟ = 0. Then the set of
admissible fielda(s) satisfies

∫

Γ

(a(s) − a∗(s))DaF ds ≥ 0 (35)

this is a variational inequality to solve on the set of admissible fields :

a∗(s) ≥ 0, alongΓ+ = {s ∈ Γ/F (s) = 0}. (36)

We must explain the variations ofF following the motion of the layerDaF whereF is
defined by (eq.33):

Da

∫ l

o

f(1 − κz)dz =

∫ l

o

Daf(1 − κz)dz −

∫ l

o

zfDaκdz (37)

Forf(ε, φ) = Y d′(φ) we have the property

Daφ = 0, Daf(ε, φ) =
∂f

∂ε

Daε = ḟ + a
∂f

∂z
−

z

1 − zκ

da

ds

∂f

∂s
(38)

After simplification and integration by parts alongΓ we obtain

0 ≤

∫

Γ

(a − a∗)
[

∫ l

o

ḟ(1 − κz)dz +

∫ l

o

a
(∂f

∂z
(1 − κz) − zfκ2

)

dz
]

ds

−

∫

Γ

(

∫ l

o

fdz)
da

ds

d

ds
(a − a∗) ds (39)

As ḟ =
∂f

∂ε

ε̇ − a
∂f

∂φ
the inequality becomes

0 ≤

∫

Γ

(a−a∗)
(

∫ l

o

∂f

∂ε

: ε̇(1−κz) dz
)

ds−

∫

Γ

(a−a∗)La ds−

∫

Γ

da

ds
M

d

ds
(a−a∗) ds

whereL, M are functions of the actual state

L = −

∫ l

o

(∂f

∂ε

:
∂ε

∂z
(1 − κz) − zfκ2

)

dz M = −

∫ l

o

fz dz (40)



Property of the solution. The solution of the rate boundary value problem satisfies the
variational inequality

∂F

∂v
.(v − v∗) +

∂F

∂a
(a − a∗) ≤ 0 (41)

where

F =

∫

Ω

1

2
ε(v) : C(d) : ε(v) dΩ −

∫

Γ

a

∫ l

o

∂f

∂ε

: ε(v)(1 − κz) dz ds

+

∫

Γ

1

2
(a2M + L(

da

ds
)2) ds

The proof is easy to obtain. Studying the properties of the operatorF give conditions on
stability and uniqueness of velocitya(s) as proposed in [6,9]. It can be observed that the
presence ofa andda/ds in the functional give a non local contribution along the curveΓ,
this have a strong influence on the regularity ofa. This variational inequality is extended
without strong difficulties to 3D, the main point is to introduce a curvature tensor for the
surfaceΓ and to generalize the derivation of any quantity following the motion ofΓ.

We study now the evolution of a cylinder under radial extension.

The response of a cylinder. We consider a cylinder with external radiusRe in plane
strain. For analytical treatment we consider that the shearmodulus is constant and the
damage parameter governs the evolution of the bulk modulus.In this case, the Lamé
coefficientλ is a function ofd. The solution for isotropic elasticity is given by the radial
displacementu = u(R)er. The solution of the problem of linear elasticity is

R2u(R) = A

∫ R

o

rdr

L(r)
, L = λ + 2µ (42)

The constantA is determined by the prescribed displacement at pointR = Re : u(Re) =
ERe, whereE is a increasing function, then

ReE = AK = A

∫ Re

o

rdr

L(r)
(43)

Initially, the body is homogeneous with characteristicλ1 = λo, L1 = λ1 + 2µ, and when
d = 0 the value os the constant isA = (λo +2µ)2E, the total energy isW = 2πR2

e2(λo +
µ)E2. For some critical value ofE the damage initiates, andλ is no more uniform. We
assume for example that

1

L(φ)
=

1 − φ/lc
λ1 + 2µ

+
φ/lc

λ2 + 2µ
(44)

d(r) = φ/lc (45)

During the initiation of the layer, the positionγ of the interfaceΓ determines the value of
the level setφ = γ − R, then

K(γ) =

∫ Re

o

rdr

L
=

R2
e

2L1

+
γ3

6lc
(

1

L2 − L1

), L2 = λ1 + 2µ. (46)



In this case,

W = 2πR2
eE

2(
R2

e

K(γ)
− 2µ), σ(Re) = A − 2µE. (47)

The release rate of energy

G = −
∂W

∂γ
= 2πR2

eE
2 K ′

K2
= πA2γ2

lc
(

1

L2

−
1

L1

) (48)

as the dissipation is

Dm = Yc

∫ γ

o

rdr

lc
= πYc

γ2

lc
(49)

We deduce that, during the initiation of the layerA is constant. An indentical answer is
obtained when the layer has the maximum thicknesslc. The response of the cylinder with
this model of graded damage is exactly the respons of the caseobtained by the sharp
interface, but the main difference is : the model of sharp interface is not able to described
the phase of initiation of damage, unless through complex analysis based on stability and
bifurcation [12].

6. CONCLUSIONS

A new approach of damage based on a motion of a thick layer has been proposed, which
permits to initiate damage and its evolution with the same constitutive law. The example
on a bar shows the influence of the development of the moving layer on the global respons
of the system.

The choice of the dissipation process governed by a generalized criterion of Griffith and
normality rule provides that the evolution is solution of a variational inequality which
allow us to study stability and bifurcation. The generalization of this framework to more
complex constitutive equations including plasticitycan be perform in the same form as
proposed in [6].
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