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ABSTRACT

In total damage the rupture occurs on a moving surface aldngjvstrong discontinuties
of displacement gradient are localized. A damage modalisas proposed based on a
continuous transition from undamaged to damaged matémi#his new framework, the
evolution of damage is associated with a moving layer ofditength/.. With this de-
scription, initiation and propagation of damage can be edifn the same constitutive
law. Using a normality law based on the driving force asgedavith the motion of the
layer, the solution of the rate boundary value problem oppgation and displacement
satisfies a variational inequality. Characterization afueness is then given.
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1. INTRODUCTION

Generally, fracture mechanics is not adapted to model tigeadation of solids under
mechanical loading. The initiation of defect requires dgeaodelization for describing
the gradual loss of local stiffness.

Severall approaches are usefull to describe such situ&@nnstance, constitutive laws
based on second gradient description of damage [1,2] orepield [3,4] have been re-
cently proposed for this purpose. In this paper we proposéuty the model of damage
proposed recently using of level-set approach [5].

For elastic quasi-brittle material, the evolution of theeiface separating the undamaged
materiald = 0 to the damaged oné= 1 have been studied in a framework based on an
energetical description [6,7]. In total brittle damages ttamaged zone can not support
any further tension after some critical prescribed valustress, strain, or free energy.
With this property, the dissipation is obtained by an in&gtong a moving surface [6]
where the driving forcé&7(s) has the form of an energy release rate. When the velocity
of propagationd(s)) of the damaged front is governed by a normality rule basethisn
driving force, many variational formulations of the rateubdary value problems have



been established [6,7,8]. The rate boundary value probterbrittle material can have
multiplicity of solutions when the propagation law is goved by a generalized Griffith’s
law:

a(s) 20, G(s) < G., (G(s)—Goal(s)=0. (1)

This model has no characteristic length. Moreover it has s®wn that taking into
account of surface energy along the damaged front playseaomlthe uniqueness of
the velocitya(s). In this case the front is more stable [9] because the nevindriorce
depends now on the mean curvaturgof the moving front:

Gp(s) = G(s) — km(s)B < G, (2)

Using this framework, the propagation of an existing irdeef between an undamaged
and a damaged zone is studied. The presence of surface elergyy [ stabilizes the
propagation of the interface. This interface has no thiskrend mechanical quantities
present discontinuties.

To avoid these discontinuities, a new approach is propoasddon the propagation of
a moving layer inside which the damage is a continuous fanatif the position. The
evolution of damage is then associated to the motion of a lafygnite length [5].

The initial material and the damaged material are sepalgtedcsurfacd’. This boundary
is a moving interface. A surface is an isopotential or a lesetl Through the interface the
material changes its mechanical properties. In the prapdsscription, this transition is
continuous.

2. THE MODEL OF DAMAGE

We consider a bod§ under tensio™ overo$); and prescribed displacemertton the
complementary part of the bounda?§?,,. Under this loading, the body is deformed and
a displacement field described the motion of all material points of the body.

The material of the body has an elastic behaviour with maadiving with damage. The
free energy of the body (e, d) is a function of the straie = 1(Vu” + Vu) and of a
scalar damage variable0 < d < 1.

The state equations are defined classically as:

ow ow
g = %7 Y = _%7 (3)
whereco is the Cauchy stress. The mechanism of dissipation is ordytoulamage and
the dissipation of the whole body is reduced to

Dm:/YddQZO. (4)
Q

When damage is established the whole body is decomposegaphrts, the undamaged
body (2, the transition zon€). (where0 < d < 1) and the damaged materi@} where



(d = 1). On the boundaryX2. the free energy is continuous, there is no discontinuties
of the stress vector and the moduli of elasticity are comtirsu Then when the layét,

IS moving, there exists no dissipation along the boundartheflayer. A more detall
discussion is given in [5].

The level-sety = 0 gives the position of' the part of boundary2. whered = 0. We
assume that the damageis a continuous explicit functiod(¢) of the distance to the
surfacel.

In the domain where the gradient of the level-set is contusyithe damage is defined by
d=0,¢<0 ; d(¢)>0,0<¢<l. ; d¢)=1 ¢>l. (5)

Then the surfacé(X,t) = d, is also a level-set. This representation of damage is illus-
trated Figure 1. The minimum length separating the leveitse 0 to the level-setl = 1

is ..

The description of the behaviour of the system is relatedhéomotion of a layer with
thicknesd < [..

3. ON THE MOTION OF A LAYER

We study the motion of a thick layer. The study is made for @larotion to simplify
the expression. The cunde is the interface separating the undamaged material to the
damaged one. A point/; of I is referred by its curvilinear coordinatesits position is

. . . dX
X, (s). The local frame is then defined by the tangential vegto« d—". The normal
S
vector NV satisfies the Fresnet relation
dT dN
—— — N —— = KT 6
ds 7 ds e (6)
wherex is the curvature of the curdg, at point.X .

A point M of the layer has coordinatés, z) in the frame(7', V),

X=X,+zN (7)
then the local frame aX is defined by
dX = dst + dzv (8)
and depends on the position inside the layer,
r=(1-k2)T, v=N 9)

The level-setp(X ,t) = 0 is the curvel’, during the motion the local fram@’, V) is
: _ 0, 09
changing. We know thaV = @/H@H, and
—.0+—=—=0, (10)

this defines the normal velocity(s): ¢ = a(s)N, The same is true for all level set
o(X,t) = 2.



Figure 1.The local frame

Actual geometry and convected geometry. The actual positionX! of a point of I
satisfies the equation of motion’™* = X* + ¢(s)dt, the evolution of the local frame is
then deduced. For any geometrical quanfitas?, N, x, we can define the derivative
following the motion of the surfacE by

D.G = lim St =G
dt—0 dt
and we obtain
do dg d’¢ _do
D,T=—=N N DN=——NT Drx=N—-—-2=7T.
PET IS T e T T & R TRy T e

A point X = X + zN of the layer is on the level-set{ X, ¢) = 2. Attime t + dt, the
actual position isX "™ such that

lt+dt — ngdt 4 Zﬂt+dt (11)
then the evolution oX is given by,

o (-X) da
DX = lim == = a(s)N — oL (12)

At point X the variation of any mechanical quantitigsX , ¢) following the motion of the
layer is then

fX+nD. X, t+n)— f(X;t) df  Of

D,f =lim,_ =—+—=—D,X 13
f Zmn 0 n 8t + 31 EL S ( )

K

For the functiony(X,t) = z, we haveV¢ = N, A¢p = — ] andD, dS = —ka dS.
— ZKR

These definitions are usefull to characterize the fact timtiamage variabléis a con-
tinuous function ot»( X, t) = .



Variations of averaged quantity on the layer. To study the evolution of the driving
force associated to the motion of the layer, we must studgvb&ition of quantities such
as

!
F= / f(1—z2k)dz F = / F ds, (14)

o I

we obtain
D,F = Da/ fdQ :/DaF—a(S)liF ds (15)
Qe r

! l

D, F = /(1 — 28)D, f dz—/ 2f Dk dz (16)

The dissipation of the system. With this definition, the dissipation is obtained as

l .
Dm:/F/O V() (1-x6)$dsds. (17)

The evolution of the level-set is given by the evolution af thoving surface (X, t) = z
then '

¢ —a(s)Vo.N =0, (18)
where the velocity: is the normal speed of the ispand N = V¢/||V¢|| is the normal
vector to the surface = -.

The driving force associated to the velocitis given by the motion of the layer according
to the dissipation

D,, = / G(s)a(s) dS,whereG(s) = /l YVd.N det(1 — k¢)de. (19)
r o

The curvature plays now a role in the expression of the casisip.

The velocitya is determined with respect to a constitutive law based onltiving force
G(s). As in previous paper [10], we propose to consider a gere@iGriffith’s law for
(U(s,t) <L)

a(s) 2 0, G(s) < G(s) = / YV.VAN (1-rke)dg, (G(s)— G(s))a(s) = 0, (20)

which is an averaged yielding function on the layer. Thisegahzes the normality rule
proposed for a sharp interface. Now, the damage in the layswntinuous with a given
gradient, this is a model of continuum with graded damage.

The definition of the driving force (eq.19) and the normaléy.20) ensures the positivity
of entropy production.



4. AMODEL OF BAR WITH A MOVING LAYER

Analysis of the system. The free energyv for unixial response is

1 9 ow
I - 21
w(e,d) = SB(d)e?, Y ==, (21)
whered varies from0 to 1, the Young modulug’(d) is a continuous fonction af, then
there is no discontinuity at = 0. For comparison with a sharp interface we consider the
matching condition€/(0) = E; andE(1) = Es.

2(X,1)
11'.
., X
0 -
a
Eg E(d:l—l- El e %,
Y $d 4
T
Lzt -

Figure 2:The propagation of a layer

On Figure 2 the value of the damage parameter is givewQy (t) = I'(t) — X)

H(X,t) <0 d(X,t) =0,
0< (X, t) <l d(X,t) =/l (22)
(X, 1) > 1. d(X,t) = 1.

The damage parametéris an increasing function of the distangeo the boundary”
separating the sound material to the damaged one. Thedarth) is a given continuous
function of¢

Initially I'(¢) = 0 and the propagation of the layer begins at the origin of thedmathe
thicknesd'(¢) = [(t) is smaller thari.. The thickness increasesitcand after this step of
initialization, the thickness is kept constant.

For the given constitutive laws, the dissipation is local anly due to damagé,, = Yd.
From the integration over the layer we get the total disgypadue to damage inside the
bar:

l
D,, = / Yd dg. (23)
Assuming thatl is a continuous function af, then £ becomes a continuous function of
: I : dd dFE
¢. The prime denotes the derivative with respecbtd’(¢) = — andE'(¢) = —. To

d¢



define the local forc&” (eq.3) we need the derlvatl\%g

dE _ dEdo
dd  d¢ dd’
The fact that this derivative must be finite implies propg=tonE’(¢), d'(¢). Moreover,
the local forceY is ) )
E'(¢) E'(¢) o

T2d(0)° T 2ERdNg) (@3)

As the velocitys satisfies) = a(s), the total dissipation is finally expressed as

(24)

_a : 2 _E/(Qb) o a
Dy, = 2/0 by ( E2(¢))d¢ - G(luz) ) (26)
whereG(l,X) is
1, 1 1
G(,%) = =37 (27)

27 VE(/l) E(O))'
When! = ., we recover the expression obtained for a sharp interfaceyhich the

dissipation isD,, = G. a. In this case, the straia and the moduli of elasticity are
discontinuous. The total energy is given by T'/L, & = a l):

VL2 (28)

and the dissipation is given by

L PE R S 29

D,, =
So when the layer is established, the dissipations destchipe sharp interface or by a
moving layer are identical.

If ¢ vanishes the limit valu& (0, ) is

12 E'(9)
Y0, 2)=—==1i .

02 =55 70

When we adopt the normality rule (eq.20), the valu&’aihust be smaller thak.. This
defines the critical value for initiation of damage in a pahthe bar. From (eq.30), the
corresponding critical value af is 33, such that
132 . E'(9)

2E7 o0 d(9)

(30)

=Y, (31)

It can be noticed that the critical valag, depends of the damage law and is generally
greater from>.. We assume that the dissipation of the system is the same tivedayer
moves with the limit thicknesk this gives a relation between the valjeanddG..

D,, = Gea =Yd(l.)a (32)



5. ON THE RATE BOUNDARY VALUE PROBLEM

At time t the actual position of a material point is defined by the dispimnenty, the
position of the layef’, [(s) is known and the solution is inside the domain of revergipili

l l
F = / Yd(6)(1 — kz)dz — YC/ d(p)(1 -k z)dz <0. (33)
The evolution is governed by
a(s) >0, F<0, a(s)F=0 (34)

It is obvious that(s) is positive if F' = 0. At this statel’ satisfiQsF < 0. The derivation
of the consistency conditiom/” = 0 implies thata(s) > 0 if ' = 0. Then the set of
admissible field:(s) satisfies

/(a(s) —a*(s))DyF ds >0 (35)
r
this is a variational inequality to solve on the set of adibissfields :

a*(s) >0, alongl'" = {s € T'/F(s) = 0}. (36)

We must explain the variations @t following the motion of the layeD, F whereF' is
defined by (eq.33):

D, /l f(l—kz)dz = /l D.f(1 —kz)dz — /l 2fDgyrdz (37)

For f(e, ¢) = Yd'(¢) we have the property

B _of B of =z dadf
Du¢ =0, Duf(e.6) = 5-Due=f+ag-————— (38)
After simplification and integration by parts alohigve obtain
l l
0 < /(&— a®) / f(1 = k2)dz +/ a(?—j;(l — Rz) — zan)dz] ds
da d
//fdz dsdsa—a)ds (39)
As f = %a — a?—i the inequality becomes

da d
< 1 _ _ _ * . _ *
0 / a—a* / RZ dZ) ds /F(& a )La ds 15‘1% 18(& a ) ds

whereL, M are functions of the actual state

L:—/O (gi gi(l—/ﬁz)—zf/ﬁ dz M:—/Olfzdz (40)



Property of the solution. The solution of the rate boundary value problem satisfies the
variational inequality

OF . oF .
a—y‘(y—y)Jr%(a—a)SO (41)
where
F = [Lew:cw:ewan— [a [ U ewnoaas
Q I o
d
o [+ L as

The proof is easy to obtain. Studying the properties of trexaorF give conditions on
stability and uniqueness of velocitys) as proposed in [6,9]. It can be observed that the
presence of andda/ds in the functional give a non local contribution along thevalr,

this have a strong influence on the regularity:oT his variational inequality is extended
without strong difficulties to 3D, the main point is to intnozk a curvature tensor for the
surfacel” and to generalize the derivation of any quantity followihg tmotion ofl".

We study now the evolution of a cylinder under radial extensi

The response of a cylinder. We consider a cylinder with external radiés in plane
strain. For analytical treatment we consider that the sheadulus is constant and the
damage parameter governs the evolution of the bulk moduduthis case, the Lamé
coefficient) is a function ofd. The solution for isotropic elasticity is given by the rddia
displacement. = u(R)e,. The solution of the problem of linear elasticity is

dr
2 — A/ rar
Fu =4 1y
The constant! is determined by the prescribed displacement at pist R, : u(R.) =
ER., whereE is a increasing function, then

R
L=X\+2u (42)

rdr
L(r)

Initially, the body is homogeneous with characteristic= \,, L; = \; + 2u, and when
d = 0 the value os the constantis= (\,+2u)2FE, the total energy i8/ = 27 R?2(\, +
w)E?. For some critical value of, the damage initiates, andis no more uniform. We
assume for example that

Re
RE = AK = A / (43)

1 1=9¢fl. ¢/l

d(?”) = ¢/lc (45)

During the initiation of the layer, the positionof the interfacd” determines the value of
the level seth = v — R, then

/Re rdr  R2 %1

L 2L, +6_ZC(L2—L1

K(y) =

), Lo =\ +2u. (46)



In this case,
2

R
W =2rR?E?*(—“~ —2u), o(R.) =A—2uE. 47
(K(V) n), o(Re) f (47)

The release rate of energy

AN, Wy o3 ey 30 S 4
G =%y ~ 2l g = A — ) (48)
as the dissipation is
Y 2
Dm:Yc/ rlir:wyc% (49)

We deduce that, during the initiation of the layéiis constant. An indentical answer is
obtained when the layer has the maximum thickrigsBhe response of the cylinder with
this model of graded damage is exactly the respons of the alatséned by the sharp
interface, but the main difference is : the model of sharerfate is not able to described
the phase of initiation of damage, unless through complakyars based on stability and
bifurcation [12].

6. CONCLUSIONS

A new approach of damage based on a motion of a thick layerdes froposed, which
permits to initiate damage and its evolution with the samestitutive law. The example
on a bar shows the influence of the development of the movireg [an the global respons
of the system.

The choice of the dissipation process governed by a geredadiriterion of Griffith and
normality rule provides that the evolution is solution of @iational inequality which
allow us to study stability and bifurcation. The generalma of this framework to more
complex constitutive equations including plasticitycagerform in the same form as
proposed in [6].
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