
HAL Id: hal-00725634
https://hal.science/hal-00725634

Submitted on 27 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Bayesian Framework for 3D Models Retrieval Based
on Characteristic Views

Tarik Filali Ansary, Jean-Philippe Vandeborre, Saïd Mahmoudi, Mohamed
Daoudi

To cite this version:
Tarik Filali Ansary, Jean-Philippe Vandeborre, Saïd Mahmoudi, Mohamed Daoudi. A Bayesian
Framework for 3D Models Retrieval Based on Characteristic Views. 2nd IEEE International Sym-
posium on 3D Data Processing Visualization and Transmission (3DPVT’04), Sep 2004, Thessaloniki,
Greece. �hal-00725634�

https://hal.science/hal-00725634
https://hal.archives-ouvertes.fr


A Bayesian Framework for 3D Models Retrieval Based on Characteristic Views

Tarik Filali Ansary, Jean-Philippe Vandeborre, Said Mahmoudi, Mohamed Daoudi

MIIRE Research Group (INT / LIFL UMR CNRS 8022)

ENIC Telecom Lille I
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Abstract

The management of big databases of three-dimensional

models (used in CAD applications, visualization, games,

etc.) is a very important domain. The ability to character-

ize and easily retrieve models is a key issue for the designers

and the final users. In this frame, two main approaches ex-

ist: search by example of a three-dimensional model, and

search by a 2D view. In this paper, we present a novel

framework for the characterization of a 3D model by a set of

views (called characteristic views), and an indexing process

of these models with a Bayesian probabilistic approach us-

ing the characteristic views. The framework is independent

from the descriptor used for the indexing. We illustrate our

results using different descriptors on a collection of three-

dimensional models supplied by Renault Group.

1 Introduction

The use of three-dimensional images and models

databases throughout the Internet is growing both in number

and in size. The development of modeling tools, 3D scan-

ners, 3D graphic accelerated hardware, Web3D and so on,

is enabling access to three-dimensional materials of high

quality. In recent years, many systems have been proposed

for efficient information retrieval from digital collections of

images and videos. However, the solutions proposed so far

to support retrieval of such data are not always effective in

application contexts where the information is intrinsically

three-dimensional.

A similarity metric has to be defined to compute a vi-

sual similarity between two 3D models, given their descrip-

tions. Two families of methods for 3D models retrieval ex-

ist: 3D/3D (direct model analysis) and 2D/3D (3D model

analysis from its 2D views) retrieval.

For example, Vandeborre et al. [11] propose to use full

three-dimensional information. The 3D objects are repre-

sented as mesh surfaces and 3D shape descriptors are used.

The results obtained show the limitation of the approach

when the mesh is not regular. This kind of approach is not

robust in terms of shape representation.

Sundar et al. [7] intend to encode a 3D object in the form

of a skeletal graph. They use graph matching techniques

to match the skeletons and, consequently, to compare the

3D objects. They also suggest that this skeletal matching

approach has the ability to achieve part-matching and helps

in defining the queries instinctively.

In 2D/3D retrieval approach, two serious problems arise:

how to characterize a 3D model with few 2D views, and

how to use these views to retrieve the model from a 3D

models collection.

Abbasi and Mokhtarian [14] propose a method that elim-

inates the similar views in the sense of a distance among

CSS (Curvature Scale Space) from the outlines of these

views. At last, the minimal number of views is selected

with an optimization algorithm. Dorai and Jain [2] use, for

each of the model in the collection, an algorithm to gener-

ate 320 views. Then, a hierarchical classification, based on

a distance measure between curvatures histogram from the

views, follows.

Mahmoudi and Daoudi [15] also suggest to use the CSS

from the outlines of the 3D model extracted views. The

CSS is then organized in a tree structure called M-tree.

Chen and Stockman [8] as well as Yi and al.[9] propose

a method based on a bayesian probabilistic approach. It

means computing an a posteriori probability to recognize

the model when a certain feature is observed. This prob-

abilistic method gives good results, but the method was

tested on a small collection of 20 models.

Chen et al. [5][4] defend the intuitive idea that two 3D

models are similar if they also look similar from different

angles. Therefore, they use 100 orthogonal projections of

an object and encode them by Zernike moments and Fourier

descriptors. They also point out that they obtain better re-

sults than other well-known descriptors as the MPEG-7 3D

Shape Descriptor.

In this paper, we propose a framework for 3D models in-



dexing based on 2D views. The goal of this framework is

to provide a method for optimal selection of 2D views from

a 3D model, and a probabilistic Bayesian method for 3D

models indexing from these views. The framework is to-

tally independent from the 2D view descriptor used, but the

2D view descriptors should provide some properties. The

entire framework has been tested with three different 2D

descriptors.

This paper is organized in the following way. In section

2 and 3, we present the main principles of our framework

for characteristic views selection and probabilistic 3D mod-

els indexing. In section 4, three different 2D view descrip-

tors are explained in details. Finally, the results obtained

from a collection of 3D models are presented for each 2D

view descriptor showing the excellent performances of our

framework.

2 Selection of characteristic views

In this paragraph, we present our algorithm for opti-

mal characteristic views selection from a three-dimensional

model.

2.1 Generating the set of views

Let Db={M1,M2,...,MN} be a collection of N three-

dimensional models. We wish to represent a 3D model Mi

of this collection by a set of 2D views.

For each model Mi of the collection, we generate a set of

2D views from multiple viewpoints that are equaly spaced

around the object. To generate these views, we first scale

the object that it can fit on a unit sphere and we translate

it, that it can be centred on the space origin. To generate

these viewpoints that are equaly spaced, we subdivide an

icosahedron once by using the Loop’s subdivision scheme

to generate the 80 faceted polyhedron. The center of the

icosahedron is the origin, and its radius is equal to 2 units.

Then we place a camera at each face-center looking at the

coordinate origin. Each of this projection is considered as a

2D view of the object.

Discrimination of characteristic views

Let VM = {V 1
M , V 2

M , . . . , V v
M} be the set of 2D views

from the three-dimensional model M , where v is the total

number of views.

Among this set of views, we have to select those that

characterize effectively the three-dimensional model ac-

cording to a feature of these views.

Selection of characteristic views

The next step is to reduce the set of views of a model M
to a set that represents only the most important views. This

set is called the set of characteristic views V cM .

A view V k
M is a characteristic view of a model M for

a distance ε, if the distance between this view and all the

other characteristic views of M is greater than ε. That is to

say:

V j
M ∈ V cM ⇔ ∀V ck

M ∈ V cM , DV j

M
,V ck

M

> ε

With DV j

M
,V ck

M

the distance between the descriptor of the

view V j
M and the descriptor of V ck

M .

However, the choice of the distance threshold ε is

important and depends on the complexity of the three-

dimensional model. This information is not a priori known.

To solve the problem of determining the distance thresh-

old ε, we adapted the previous algorithm by taking into ac-

count an interval of these distances from 0 to 1 with a step

of 0.001. The final set of characteristic views is then the

union of all the sets of characteristic views for every ε in

]0 . . . 1[.

2.2 Properties of the views selection algorithm

To reduce the number of characteristic views, we filter

this set of views in a way that for each model it verifies two

criterions:

• Each view of the model M must be represented by at

least one characteristic view. This means:

∀V j
M ∈ VM , ∃V ck

M such as ℜ(V j
M ) = V ck

M

With ℜ an application associating to each element of

VM an elements of V cM ;

• Characteristic views must be non-redundant. Let V rj
M

be the set of views represented by the characteristic

view V cj
M . A characteristic view V cj

M is redundant if

there is a set of characteristic views for which the union

of represented views includes V rj
M : V rj

M ⊂
⋃

V rk
M .

Figure 1. Characteristic views of a cube.

3 Probabilistic approach for 3D indexing

Each model of the collection Db is represented by a set

of characteristic views Vc = {V c1, V c2, . . . , V c
v̂
}, with v̂



the number of characteristic views. To each characteristic

view corresponds a set of represented views called V r.

Considering a request 2D view Q, we wish to find the

model Mi ∈ Db which one of its characteristic views is the

closest to the request view Q. This model is the one that has

the highest probability P (Mi, V cj
Mi

|Q).
Let H be the set of all the possible hypotheses of cor-

respondence between the request view Q and a model M ,

H = {h1 ∨ h2 ∨ . . .∨ h
v̂
}. A hypothesis hk means that the

view k of the model is the view request Q. The sign ∨ rep-

resents logic or operator. Let us note that if an hypothesis

hk is true, all the other hypotheses are false.

P (Mi, V cj
Mi

|Q) can be expressed by P (Mi, V cj
Mi

|H).
The closest model is the one that contains a view having

the highest probability. Using the Bayes theorem, we have:

P (Mi, V cj
Mi

|H) =
P (H, V cj

Mi
|Mi)P (Mi)

P (H)

We also have:

P (H, V cj
Mi

|Mi) =

v̂∑

k=1

P (hk, V cj
Mi

|Mi)

The sum
∑v̂

k=1 P (hk, V cj
Mi

|Mi) can be reduced to the

only true hypothesis P (hj , V cj
Mi

|Mi).
By integrating this remark, we obtain:

P (Mi, V cj
Mi

|H) =

P (hj |V cj
Mi

, Mi)P (V cj
Mi

|Mi)P (Mi)
∑N

i=1

∑v̂
j=1 P (hj |V cj

Mi
, Mi)P (V cj

Mi
|Mi)P (Mi)

With P (M) the probability to observe the model M .

P (Mi) = αe
(−α.N(V cj

Mi
)/N(V c))

Where N(V cj
Mi

) is the number of characteristic views of

the model M , and N(V c) is the total number of character-

istic views for the set of the models of the collection Db. α
is a parameter to hold the effect of the probability P (Mi).
The algorithm conception makes that, the greater the num-

ber of characteristic views of an object, the more it is com-

plex. Indeed, simple object (e.g. a cube) can be at the root

of more complex objects.

On the other hand:

P (V cj
Mi

|Mi) = 1 − βe
(−β.N(V rj

Mi
)/N(V rMi

))

Where N(V rj
Mi

) is the number of views represented by the

characteristic view j of the model M , and N(V rMi
) is the

total number of views represented by the model Mi. The

β coefficient is introduced to reduce the effect of the view

probability. We use the values α = β = 1/100 which give

the best results during our experiments. The greater is the

number of represented views N(V rj
Mi

), the more the char-

acteristic view V cj
Mi

is important and the best it represents

the three-dimensional model.

The value P (hj |V cj
Mi

, Mi) is the probability that,

knowing that we observe the characteristic view j of the

model Mi, this view is the request view Q:

P (hj |V cj
Mi

, Mi) = e
−Dhq,h

V
j

Mi

With Dhq,h
V

j

Mi

the distance between the 2D descriptors

of Q and of the V cj
Mi

characteristic view of the three-

dimensional model Mi.

4 Descriptors used for the implementation

The framework described in this paper is independent

from the 2D descriptor used, but it requires some properties

from it. The descriptor used must be:

• translation invariant;

• rotation invariant;

• scale invariant.

The framework is also independent from the distance

D(Vi, Vj) used to compare two views i and j but it requires

that the distance is normalized between 0 and 1.

To test our framework with different types of descriptors,

we implemented our system with three different descriptors:

• the curvatures histogram;

• the Zernike moments;

• the Curvature Scale Space (CSS) descriptor.

4.1 Curvatures histogram

The curvatures histogram is based on shape descriptor,

named curvature index, introduced by Koenderink and Van

Doorn [10]. This descriptor aims at providing an intrin-

sic shape descriptor of three-dimensional mesh-models. It

exploits some local attributes of a three-dimensional sur-

face. The curvature index is defined as a function of the two

principal curvatures of the surface. This three-dimensional

shape index was particularly used for the indexing pro-

cess of fixed images [13], depth images [2], and three-

dimensional models [11][16].

Computation of the curvatures histogram for a 2D view

To use this descriptor with our 2D views, a 2D view

needs to be transformed in the following manner. First

of all, the 2D view is converted into a gray-level image.



The Z coordinate of the points is then equal to the gray-

intensity of the considered pixel (x, y, I(x, y)) to obtain a

three-dimensional surface in which every pixel is a point of

the surface. Hence, the 2D view is equivalent to a three-

dimensional terrain on which a 3D descriptor can be com-

puted.

Let p be a point on the three-dimensional terrain. Let

us denote by k1 and k2 the principal curvatures associated

with the point p. The curvature index value at this point is

defined as:

Ip =
2

π
arctan

k1
p + k2

p

k1
p − k2

p

with k1
p ≥ k2

p

The curvature index value belongs to the interval [-1,+1]

and is not defined for planar surfaces. The curvature his-

togram of a 2D view is then the histogram of the curvature

values calculated over the entire three-dimensional terrain.

Figure 2 shows the curvatures histogram for a view of one

of our 3D models collection.

Figure 2. Curvatures histogram of a 2D view.

Comparison of views described by the curvature his-

togram

Each view is then described with its curvatures his-

togram. To compare two views, it is enough to compare

their respective histograms. There are several ways to com-

pare distribution histograms: the Minkowski Ln norms,

Kolmogorov-Smirnov distance, Match distances, and many

others. We choose to use the L1 norm because of its sim-

plicity and its accurate results.

DL1
(f1, f2) = (

∫ +∝

−∝

|f1 − f2|)

The calculation of the distance between the histograms of

two views can be then considered as the distance between

these views.

4.2 Zernike moments

Zernike moments are complex orthogonal moments

whose magnitude has rotational invariant property. Zernike

moment are defined inside the unit circle, and the orthogo-

nal radial polynomial ℜmn(P ) is defined as:

ℜmn(P ) =

(n−|m|)/2∑

s=0

(−1)s (n − s)

s(n+|m|
2 − s)!(n−|m|

2 − s)!
Pn−2s

where n is a non-negative integer, and m is a non-zero in-

teger subject to the following constraints:n − |m| is even

and |m| ≤ n . The (n, m) of the Zernike basis function

Vnm(ρ, φ) defined over the unit disk is:

Vnm(ρ, φ) = ℜmn(P ) exp(jmφ), ρ ≤ 1

The Zernike moment of an image is the defined as

Zmn =
n + 1

π

∫ ∫

unitdisk

Vnm(ρ, φ)f(ρ, φ)

where Vnm is a complex conjugate of Vnm. Zernike mo-

ments have the following properties: the magnitude of

Zernike moment is rotational invariant; they are robust to

noise and minor variations in shape; there is no information

redundancy because the bases are orthogonal.

An image can be better described by a small set of its

Zernike moments than any other type of moments such

as geometric moments, Legendre moments, rotational mo-

ments, and complex moments in terms of mean-square er-

ror; a relatively small set of Zernike moments can charac-

terize the global shape of a pattern effectively, lower order

moments represent the global shape of a pattern and higher

order moments represent the detail.

The defined features on the Zernike moments are only

rotation invariant. To obtain scale and translation invari-

ance, the image is first subjecte to a normalization process.

The rotation invariant Zernike features are then extracted

from the scale and translation normalized image. Scale

invariance is accomplished by enlarging or reducing each

shape such that its zeroth order moment m00 is set to be

equal to a prederminated value β.

Translation invariance is achieved by moving the origin

to the centroid before moment calculation. In summary, an

image function f(x, y) can be normalized with respect to

scale and translation by transforming it into g(x, y) where :

g(x, y) = f(x/a + x, y/a + y)

With (x, y) being the centroid of f(x, y) and a =
√

β/m00.

Note that in the case of binary image m00 is the total num-

ber of shape pixels in the image.

To obtain translation invariance, it is necessary to know

the centroid of the object in the image. In our system it

is easy to achieve translation invariance, because we use bi-

nary images, the object in each image is assumed to be com-

posed by black pixels and the background pixels are white.

In our current system, we extracted Zernike features starting

from the second order moments. We extract up to twelfth

order Zernike moments corresponding to 47 features.



To compare two Zernike moments descriptors we use

the Euclidian Distance. The detailed description of Zernike

moment can be found in [17][1].

4.3 Curvature Scale Space

Assuming that each image is described by its contour, the

representation of image curves γ, which correspond to the

contours of objects, are described as they appear in the im-

age [12] [6]. The curve γ is parameterized by the arc-length

parameter. It is well known that there are different curve

parameterization to represent a given curve. The normal-

ized arc-length parameterization is generally used when the

invariance under similarities of the descriptors is required.

Let γ(u) be a parameterized curve by arc-length, which is

defined by γ = {(x(u), y(u))|u ∈ [0, 1]}. An evolved γσ

version of γ{γσ|σ ≥ 0} can be computed. This is defined

by:

γσ = {x(u, σ), y(u, σ)|u ∈ [0, 1]}

where:

x(u, σ) = x(u) ∗ g(u, σ)

y(u, σ) = y(u) ∗ g(u, σ)

with * being the convolution operator and g(u, σ) a Gaus-

sian width σ. It can be shown that curvature k on γσ is given

by:

k(u, σ) =
xu(u, σ)yuu(u, σ) − xuu(u, σ)yu(u, σ)

(xu(u, σ)2 + yu(u, σ)2)3/2

The curvature scale space (CSS) of the curve σ is defined

as a solution to:

k(u, σ) = 0

The curvature extrema and zeros are often used as break-

points for segmenting the curve into sections corresponding

to shape primitives. The zeros of curvature are points of in-

flection between positive and negative curvatures. Simply

the breaking of every zero of curvature provides the sim-

plest primitives, namely convex and concave sections. The

curvature extrema characterize the shape of these sections.

Figure 4 shows the CSS image corresponding to the con-

tour of an image corresponding to a view of a 3D model,

(figure 3).

The X and Y axis respectively represent the normalized

arc length (u) and the standard deviation (σ). Since now,

we will use this representation. The small peaks on CSS

represent noise in the contour. For each σ, we represented

the values of the various arc length corresponding to the

various zero crossing. On the Figure 4, we notice that for

σ = 12 the curve has 2 zero-crossing. So we can note that

the number of inflection points decreases when non convex

curve converges towards a convex curve.

The CSS representation has some properties as:

• The CSS representation is invariant under the similar-

ity group (the composition of a translation, a rotation,

and a scale factor).

• Completeness: this property ensures that two contours

will have the same shape if and only if all their CSS

are equal.

• Stability gives robustness under small distortions

caused by quantization.

• Simplicity and real time computation. This property is

very important in database applications.

Figure 3. Contour corresponding to a view of
a 3D model from the collection.

Figure 4. Curvature Scale Space correspond­
ing to figure 3 .

In order to compare the index based on CSS, we used the

geodesic distance defined in [3]. Given two points (s1, σ1)
and (s2, σ2), with σ1 < σ2, their distance D can be defined

in the following way:

D((s1, σ1), (s2, σ2)) = log(
σ2(1 +

√
1 − (φσ1)2)

σ1(1 +
√

1 − (φσ1)2)) − φL
)

where :

φ =
2L√

(σ1
2 − σ2

2)2 + L2(L2 + 2(σ1
2 + σ2

2))

5 Experiences and results

We implemented the algorithms, described in the previ-

ous sections, using C++ and the TGS OpenInventor.

To measure the performance, we classified the 132 mod-

els of our collection into 13 classes based on the judgment

of two adult persons (figure 5).



We used several different performance measures to ob-

jectively evaluate our method: the First Tier (FT), the sec-

ond Tier (ST), and Nearest Neighbor (NN) match percent-

ages, as well as the recall-precision plot.

Recall and precision are well known in the literature of

content-based search and retrieval. The recall and precision

are defined as follow:

Recall = N/Q, Precision = N/A

With N the number of relevant models retrieved in the top

A retrievals. Q is the number of relevant models in the col-

lection, that are, the class number of models to which the

query belongs to.

Figure 5. Collection classes.

FT, ST, and NN percentages are defined as follows. As-

sume that the query belongs to the class C containing Q

models. The FT percentage is the percentage of the models

from the class C that appeared in the top (Q-1) matches.

The ST percentage is similar to FT, except that it is the

percentage of the models from the class C the top 2(Q-1)

matches. The NN percentage is the percentage of the cases

in which the top matches are drawn from the class C.

We test the performance of our method with and without

the use of the probabilistic approach. To produce results,

we queried a random model from each class. Five random

views were taken form every selected model. Results are

the average of 70 queries.

As mentioned before, we used three different descriptors

in our probabilistic framework.

5.1 Curvature histogram

The main problem with the curvature histogram is its

dependency on the light position. A small change in the

lightening make changes in the curvature, that leads to a

difference in the curvature histogram. In our tests, we are

controlling the light position, but in real use conditions, this

constraint can be very hard for the user. Table 1 shows per-

formance in terms of the FT, ST, and NN. Figure 6 shows

the recall precision plot, we can notice the contribution of

the probabilistic approach to the improvement of the result.

The results show that the curvature histogram give very ac-

curate results in a controled environement.

Figure 6. Curvature histogram overall recall

precision.

Methods Performances

FT ST NN

With Proba 28.88 40.65 51.46

Without Proba 27.84 37.26 47.18

Table 1. Retrieval performances.

Figure 7 and 8 show an example of querying by using

the methods with probabilistic approach.

Figure 7. Request input is a random view of a

model.



Figure 8. Top 4 retrieved models from the col­

lection.

5.2 Zernike moments

The mechanical parts in the collection contain holes so

they can be fixed to other mechanical parts. Sometimes the

positions and the dimensions of the holes can differentiate

between two models from the same class. Zernike moments

give global information about the edge image of the 2D

view. Table 2 shows performance in terms of the FT, ST,

and NN. Figure 9 shows the recall precision plot, we can

notice again the contribution of the probabilistic approach

to the improvement of the results. The results shows that

the Zernike Moments give the best results on our models

collection.

Figure 9. Zernike moments overall recall pre­

cision.

Methods Performances

FT ST NN

With Proba 55.77 82.33 72.88

Without Proba 51.68 70.13 65.27

Table 2. Retrieval performances.
Figure 10 and 11 show an example of querying by using

the method with probabilistic approach.

Figure 10. Request input is a random view of

a model.

Figure 11. Top 4 retrieved models from the

collection.

5.3 Curvature Scale Space

As mentioned before the collection used in the test is pro-

vided by the car manufacturer Renault and is composed of

mechanical parts. Most of the mechanical parts and due to

industrial reasons does not have a curved shape. The main

information in the CSS is the salient curves, which in the

occurrence are rare in the shapes of the models. This partic-

ularity of our current collection explains the problem with

the curvature scale space. In the cases where the model

shape is curved, the recognition rate is very high, but in

most 3D model curves from our collection, the shape is not

much curved. Table 3 shows performance in terms of the

FT, ST, and NN. Figure 12 shows the recall precision plot,

we can notice again the contribution of the probabilistic ap-

proach to the improvement of the results. The results show

that the Curvature Scale Space don’t give accurate results

on our models collection.

Figure 12. Curvature Scale Space overall re­

call precision.

Methods Performances

FT ST NN

With Proba 25.13 39.13 51.37

Without Proba 24.98 35.10 49.28

Table 3. Retrieval performances.

Figure 13 and 14 show an example of querying by using

the method with probabilistic approach. The request image



is a model that gives good results with CSS due to the curves

it contains.

Figure 13. Request input is a random view of

a model.

Figure 14. Top 4 retrieved models from the

collection.

6 Conclusion and future work

We have presented a new framework to extract charac-

teristic views from a 3D model. The framework is indepen-

dent from the descriptors used to describe the views. We

have also proposed a bayesian probabilistic method for 3D

models retrieval from a single random view.

Our algorithm for characteristic views extraction let us

characterize a 3D model by a small number of views.

Our method is robust in terms of shape representations

it accepts. The method can be used against topologically

ill defined mesh-based models, e.g. polygon soup models.

This is because the method is appearance based: practically

any 3D model can be stored in the collection.

The evaluation experiments showed that our framework

gives very satisfactory results with different descriptors. In

the retrieval experiments, it performs significantly better

when the probabilistic approach for retrieval is used.

Currently, our researches consider only 2D views. In the

future, we plan to focus on real images, and also to adapt

our framework to 3D/3D retrieval and test it on larger col-

lections.
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