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Abstract

Nowadays, with the exponential growing of 3D object

representations in private databases or on the web, it is all

the more required to match these objects from some views.

To improve the results of their matching, we work on the

characteristic views of an object. The aim of this study is to

find how many characteristic views are required and what

relative positions are optimal.

This is the reason why the visual hulls are used. From

some 2D masks, the nearest possible 3D mesh from the orig-

inal object is computed. OpenGL views are used to build the

visual hulls of 3D models from a given collection and then

the distance between the visual hulls and the models are

measured thanks to the Hausdorff distance.

Then the best view parameters are deduced to reduce the

distance. These shots show that three orthogonal views give

results very close to the ones given by twelve views on a

isocahedron. Some other results on the view resolution and

the field of view are discussed.

1 Introduction

A large number of 3D object representation methods

have been introduced in the literature. They can be cate-

gorised based on the data acquisition techniques or the type

of descriptors they extract from this data to represent the 3D

object. It is also to be mentioned that some methods impose

certain restrictions on the classes of geometrical objects that

can be handled.

Weiss [22] works on the use of invariant relations be-

tween 3D objects and 2D images for object recognition.

The method is based on representing the models as points in

an invariant space and representing images features as lines

in the same space. Recognition is achieved when lines de-

rived from the image intersect model points. Winston [23]

uses multiple views inputs to build structural models of bod-

ies in a scene. By identifying classes of simple objects and

their interrelationships in each view to build a model. The

system was, however, tuned to a specific domain and was

never generalized. Freeman and Chakravarty [8] represent

3D objects with a set of topologically distinct character-

istic view sets of quadric-surfaced solids from volumetric

descriptions of the objects. Thus far this work is limited

to particular viewing distances and is not based on the ac-

tual views that would be discovered by an observer. Martin

and Aggarwal [17] use multiple views to build a volumet-

ric model of 3D objects. Their algorithm allows learning

and refinement but requires explicit knowledge about each

viewpoint during learning and recognition. Mokhtarian and

Abbasi [19] as well as Filali Ansary et al. [5] propose a

method for selection of the optimal number of views related

to a 3D model. Their process consists to eliminate similar



views and to select a relatively small number of views us-

ing an optimization algorithm, this number varies from 5 to

25 depending on the complexity of the object and the mea-

sure of expected accuracy. The number of optimal views

depends strongly on the geometry of the object. The ones

which use a static number of views to represent a 3D model:

Chen and Stockman [4] use a simple tesselation of a bound-

ing sphere, in eight triangles. The camera is placed in the

middle of each face, towards the center of the sphere. Mah-

moudi and Daoudi [16] use the PCA to find seven charac-

teristic views.

While most 3D object representations are complicated

and inefficient, conventional multi-view representations are

based on a large number of views and can not be used in

many applications such as retrieval from large databases.

Multi-view representations have not yet successfully dealt

with the following issues: what is the optimal number of

views and how to select the optimal views?

In this article, we propose a method for automatic selec-

tion of optimal views of a 3D object. This method is based

on the use of the visual hulls and the Hausdorff distance.

The rest of the paper is organized as follows. In the next sec-

tion, we give a brief overview on the visual hull domain. In

section 3, visual hull computation and the use of Hausdorff

distance are explained in detail. Finally, the experiments

and results are exposed in section 4 before concluding.

2 Recent works on visual hulls

Let’s suppose that we have several views of the same ob-

ject, corresponding to the viewing points of different cam-

eras. The visual hull is defined by Laurentini [11] as the

biggest form which fits the silhouettes. If we move to each

of these viewing points, the visual hull gives the same view

as the one we used in this point to build it. Visual hulls

are used to make reality applications running off a small

number of video streams [18], or to constitute 3D digital

libraries, especially in archeology [10]. But they have not

been used to find characteristic views of an object yet.

Figure 1. Visual hull of a cow.

2.1 Computation of a visual hull

The first challenge is to compute the visual hull. Two

approaches exist. A visual hull is in three dimensions, so it

was first computed in a 3D space, but its cost remains very

expensive [13][20]. Then Matusik et al. [3] found an al-

gorithm where intersection calcutations are made in planes.

Li, Magnor et al. [14][15] improved the method to render

up to 80 frames per second. Franco and Boyer [6] suggest

a hybrid approach to compute the visual hull of a concave

object.

2.2 Necessary views estimation

Laurentini [12] gives the exact number of views required

to build the visual hull, which is about O
�
n5✁, where n is

the number of faces of the 3D mesh. But we cannot take as

many views.

As far as we know, this is the only publication that deals

with the choice of the views. The use of visual hulls to de-

terminate characteristic views has apparently not been ex-

plored yet.

We are interested in 2D/3D indexation. Visual hulls link

an object with its views: they are their approximations. Our

feeling is that a visual hull is all the more faithful that used

views are characteristic.

3 Visual hulls and Hausdorff distance

In order to estimate the characterisitic views of an object,

we first build its visual hull. Two approaches are commonly

used: the volumic approach operates intersection in space,

while the area approach only works with projections on

planes. Then we compute the Hausdorff distance between

this hull and its original object. It allows us to estimate the

visual hull quality in comparison with its model.

3.1 Visual hulls

3.1.1 Definition

Intuitively, the visual hull of an object is the best approxi-

mation of this object we can have from its silhouettes. The

visual hull of an object depends on the object itself and on

the view point area, which is the set of the space points from

where we view the object.

More formaly, the visual hull of an object S of a view

point area R, denoted by V H
�
S ✂R✁, is a space volume as:

✄ S ☎ VH
�
S ✂R✁;

✄ for every point p ☎ VH
�
S ✂R✁ and every view point v ☎

R, the straight line from v through p has at least one

point of S [11].



3.1.2 Computation

To compute the visual hulls of the models from our collec-

tion, we have been inspired by Franco and Boyer’s method

[7].

The key of the algorithm is that every intersection com-

putation is effected in 2D and not in 3D. Instead of working

with rays and cones in a 3D space, we project the rays on

pictures where we compute the intersections. The 3D ray

becomes on a plane the epipolar line. Figure 2 shows an

epipolar line from a ray.

To get the epipolar line from a view V i
j in relation to a

reference view V i for a view line l of V i, we first compute

the coordinates of the epipole E i
j: it is the intersection be-

tween the straight line δi ✆ j going by the view points of V i
j

and V i, and the view plane of V i
j . Every epipolar line from

V i
j in relation to V i goes by E i

j. Then, because the epipolar

line belongs to the same plane as the view line, we com-

pute the intersection between the straight line, defined by

the view point of V i
j and a point of l, and the plane of V i

j .

We have the second point which defines this epipolar line.

Figure 2. On the left, the reference view, and on the

right, another view, with their related view point. The

epipolar line comes from the epipole of the other view.

From the view, a segment of the epipolar line is kept. As

shown in figure 3, the begining corresponds to the nearest

point A of the silhouette from E i
j and the end to the farthest

point B of the silhouette from E i
j.

Then we compute the two intersections from the view

line of V i and the straight line defined by the view point

and A and then B. We get the reverse projections A✝ and B✝
respectively from A and B in figure 4. The segment ✞A✝B✝ ✟ is

converted to a couple of distances ✠di
j ✆A✡ ☛di

j ✆B✡ ☞ between E i
j

and the two points A✝ and ✝B✝.
To get the deepness intervals, the interval is initialised

to ✞0 ☛∞✟, then for each other interval of a view V i
j , to

keep the intersection of the two deepness lists. It results

✠di
j ✆min ☛di

j ✆max ☞.
For every point of the outline Oi, a unit vector defined

by this point and the view point V i is computed. This vector

Figure 3. The segment from the epipolar line inside

the silhouette is underlined in green.

Figure 4. The resulting segment on the view line is

underlined in red.

is multiplied by the distances di
j ✆min and di

j ✆max. We add the

coordinates of V i to get two points of the visual hull.

Qhull[2] was used to get the mesh of the visual hull. Be-

cause it does not support constrained Delaunay triangula-

tion, a Delaunay tetrahedrisation is performed, and then the

tetrahedrons which barycenters do not project into every sil-

houette are rejected. However, the resulting mesh has to be

improved.

3.2 Hausdorff distance

These last ten years, numerous compression technics

have been developped for 3D models, and many of them

will certainly be developed for the following years.

The growing volume of web data has also involved the

tattoo problem. Compression and tattoo have the same aim,

minimising the distorsions added to the original signal. In

spite of the growing number of technics dedicated to the 3D

models, distorsions measures have not been much studied

yet. One of the easiest approach is to use the Hausdorff

distance[1], which computes the distances between two non

empty sets.

Because a visual hull is nothing else that a 3D distor-

sion, we use the Hausdorff distance to measure the distance



between a visual hull and its original objet.

3.2.1 Definitions

The Hausdorff distance1 between two area sets is the

biggest distance between this set and the nearest point of

the other set.

More formally, the Hausdorff distance beween a set A

and a set B is a max-min fonction, defined by:

H ✌A ✍B✎ ✏ max
a✑A

✒
min
b✑B

✒
d ✌a ✍b✎✓✓ (1)

where a and b are respectively the points of the A set

and the B set, and where d ✌a ✍b✎ is a metrics between these

points. We take the euclidian distance for d.

3.2.2 Computation

In practise, we do not have implicit areas but meshes, so we

have to redefine the Hausdorff distances for meshes.

h✌A ✍B✎ is defined as the biggest distance between a point

a of a mesh A and its nearest triangle tb of a mesh B:

h✌A ✍B✎ ✏ max
a✑A

✒
min
tb✑B

✒
d2 ✌a ✍tb✎✓✓ (2)

where d2 ✌a ✍tb✎ is the distance between a point a and a

triangle tb.

As a consequence, a point cloud of A is compared with

the mesh B (figure 5).

Figure 5. The point cloud on the left is compared

with the meshed cat on the right.

As we consider the point cloud of the first mesh and

the second mesh, this relation is not symetric and is conse-

quently not a distance. This is the reason why the Hausdorff

distance H ✌A ✍B✎ between the triangulated surfaces A and B,

is defined as the minimum of h✌A ✍B✎ and h✌B ✍A✎:
H ✌A ✍B✎ ✏ min

✒
h✌A ✍B✎ ✍h✌B ✍A✎✓ (3)

1Felix Hausdorff (1868-1942), http://www-history.mcs.st-

andrews.ac.uk/References/Hausdorff.html

We do not compute H but h. We are only interested in

the position of the visual hull points, not the mesh, which

does not come from the epipolar geometry.

h is also called the Hausdorff distance and is used to de-

termine the characteristic views of a 3D object, varying the

shot parameters.

3.2.3 The distance gain matrix

To evaluate every parameter, a gain matrix is built. For ev-

ery parameter vector, the visual hulls of every collection

object is first computed, then the Hausdorff distance be-

tween every visual hull and every 3D object, to get a dis-

tance board. Then, for every visual hull, the nearest found

distance is divided by the distance from the visual hull for

every object. This is now a gain board with values between

0 and 1. A value of 1 shows that the object is the nearest

from the visual hull, while the lowest is the value, the far-

thest is the object. Ideally, the visual hull has a gain of 1 for

its original. The gain matrix is all the better as the diagonal

is visible.

Figure 6 gives a first matrix with an arbitrary field of

view. We can clearly see the diagonal that shows visual

hulls are close to their model, except the chess and cars

classes where models are very similar. Some humans vi-

sual hulls are also closer to chess models than their original

models: chess pieces are naive representations of human

bodies.

Figure 6. Gain matrix in spherical mode (12 views)

with a field of view of 20 ˚ and 10% of outline points.



4 Experiments and results

4.1 The 3D model collection

The collection contains about fifty 3D models, catego-

rized in seven classes, presented in figure 7.

(a)

Planes

(b)

Cars

(c)

Fishes

(d)

Quadripeds

(e) Hu-

mans

(f)

Chess

(g)

Misc.

Figure 7. One 3D object per class of our collection.

These models are VRML meshes made of 500 to 25000

faces without any hierarchical structure. The classes have

no impact on the evaluations, they are only to make the re-

sults plain. The miscellaneous class goal is to add noise in

order to evaluate the descriptors.

4.2 Evaluation of the calculated visual hulls

For the tests, some functions have been implemented to

automatically generate a shot of an object from a given ori-

entation: some modes have been defined. Figures 8, 9, 10

and 11 show the point clouds of a visual hull of a banana

for the four modes we use:

1. the revolution mode (figure 8): n views all around the

orientation axis of the object.

2. the spherical mode (figure 9): 12 views on a bounding

sphere that incorporates the object.

3. the octant mode (figure 10): 3 orthogonal views.

4. the manual mode (figure 11): the user enters the view

point coordinates. This gives the possibility to try in-

tuitives methods.

Figure 8. Revolu-

tion mode with 6

views.

Figure 9. Spherical

mode with 12 views.

Figure 10. Octant

mode with 3 orthog-

onal views.

Figure 11. Manual

mode with 2 views.

4.3 Improvements

4.3.1 Relative positions

If the view cones do not cover all the space behind or

through the object, artifacts correponding to the dead places

become visible, as shown in figure 12.

Figure 12. The plane has a third wing and the cow

gains two legs.

How can we get rid of these artifacts? The infinite must

be scanned in every direction. Dead spaces give infinite

points, in fact corresponding to the farthest deepness de-

fined by the implementation.

The object has to fill the picture, without getting out of

any view. The field of view fov is directly linked to the

distance of the shot:

dob jet ✔ lminmax

2 ✕cotan✖ f ov

2

✗
(4)



where l is the norm of the min-max vector, and d is the

distance from the view point to the object origin.

The smallest the field of view is, the biggest the space

covered by the view point is and the smallest the dead space.

The orange area in figure 13 corresponds to the dead

space, α is the field of view on the left, β on the right. The

right shark hides more space than the left one.

Figure 13. Two different fields of view for the shark.

Let us now consider a 2D object. This time, the quality

of the visual hull is studied with the same number of views,

and the same orientation, but the field of view varies (figure

14).

Figure 14. 2D visual hulls. On the left, the field of

view is smaller, the dead space in red (which belongs

to the visual hull) is smaller than the one on the right.

As a conclusion, the visual hull is all the closer to the

object as the field of view is far.

Two gain matrices have been computed (figures 16 and

15) with different fov. The improvement from a fov of

40 ˚ to 20 ˚ is real.

As a consequence, the farther the object is, the better the

visual hull is, especially when the number of views is small

(less than 10).

4.3.2 Number of views

Visual hulls usually need a great amount of views. It is sure

that a lot of views improve the result, but it is better to have

judicious views than a lot of plain views. In fact, the visual

hull can even be better with three orthogonal views than one

with twelve views all around an axis.

The bishop (from the chess class) is quite a good exam-

ple (figure 17). We have computed its visual hull in every

Figure 15. The gain matrix in octant mode for a fov

of 20 ˚ .

Figure 16. The gain matrix in octant mode for a fov

of 40 ˚ .

mode, then the Hausdorff distance in relation to the origi-

nal model (figure 21). For the revolution mode, a very bad

axis is taken, which is orthogonal to the principal axis of the

piece. Visually, the revolution mode is much poorer than the

octant one (figure 19), which only uses three views.

Gain matrices have been computed for a given field of

view in spherical mode and octant mode (figures 20 and 15).

As a conclusion, three orthogonal views give a closer

result than the one obtained by twelve views from a sphere



Figure 17. The orig-

inal chess piece.

Figure 18. Vi-

sual hull in

revolution

mode.

Figure 19. Vi-

sual hull

in octant

mode.

Figure 20. The gain matrix in spherical mode for a

fov of 20 ˚ .

(spherical mode).

4.3.3 View resolution

The number of points of an outline does not affect the dis-

tance much: as shown in figure 21, the quality of the points

along the outline is homogeneous: picking at random some

outline points does not affect much the calculated Hausdorff

distance between a visual hull and its original, whatever

view mode used.

Increasing the view resolution increases the position ac-

curacy in space, because pixels are on a smaller area. If the

resolution of the view is doubled, the number of points of

the silhouette is doubled, so is the number of points of the

resulting visual hull. As shown in figure 22, the resolution

has a linear impact on the number of points that form the vi-

sual hull. The impact on the calculation is quadratic. Figure

23 shows the effects of the resolution on the mesh quality.

Figure 21. Hausdorff distances remain the same as

the percentage of outline points decreases.

Figure 22. The resolution has a linear impact on the

number of points that form the visual hull.

Figure 23. Some cows in spherical mode with differ-

ent resolutions. From 200x200, the gain is not signi-

ficative any more.

5 Conclusion and future works

As a conclusion, visual hulls are used to build a 3D ap-

proximation of an object for reality applications or 3D dig-

ital libraries, while the Hausdorff distance is generally used

to evaluate the compression of a 3D object or to find any

tattoo.

We introduced the Hausdorff gain matrix, which allows

to rate the selected views in a 3D object collection.

We found that three orthogonal views give as valuable



results as twelve spherical views. Most of the time, they

are even discriminatory enough. Also, relatives positions

weight more than their number and the field of view should

be the smallest while the resolution should be the biggest.

Improvements may be numerous. Octant mode already

gives very good results, but axes are not normalized. It

would be interesting to use PCA even if they are weak to

local deformations.

Hausdorff distance is particulary adapted to the study of

object deformations. Measuring on visual hulls, the effect

of an interval between the given position of an object and

the real one could easily be evaluated.

By now, 2D/3D indexation uses characteristics from 2D

views and tries to find similitaries with indexed views. We

suggest a new approach: instead of taking one or more

views and comparing them with characteristic views by 2D

descriptors, we build the visual hull that we want to com-

pare with our 3D objects by 3D descriptors.

In the future, we will try to use visual hulls to match

objects in our collection thanks to 3D descriptors like cur-

vature or distance indices [21] or Reeb graphes analysis [9].
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