
Using Component-oriented Process Models for
Multi-Metamodel Applications
Fahad R. Golra

Université Européenne de Bretagne
Institut Télécom / Télécom Bretagne

Brest, France
Email: fahad.golra@telecom-bretagne.eu

Fabien Dagnat
Université Européenne de Bretagne

Institut Télécom / Télécom Bretagne
Brest, France

Email: fabien.dagnat@telecom-bretagne.eu

Abstract—Recent advancements in Model Driven Engineer-
ing (MDE) call for the corresponding software development
processes. These processes need to be able to assist multi-
metamodel development by extending support for the usage of
models and transformations. Business processes are sequenced
on the basis of their sequential contingencies whereas we argue
that software development processes are meant to be sequenced
along their intrinsic factors. In this paper, we present a process
metamodel from our framework, inspired from the component
based paradigm, to automate the software development processes.
This approach presents the concept of structured artifacts and
exploits the activity sequencing based on events and constraints.

I. INTRODUCTION

The recent progress of Model Driven Engineering (MDE)
has shaped the software industry to be model centric. Devel-
opment through the evolution of one model from requirements
till deployment passing through a series of transformations is
the aim of MDE [1]. The progress towards the achievement
of this goal needs corresponding process modeling support,
which has been quite overlooked [2].

The factors restraining software industry to unleash the full
potential of Model Driven Engineering are quite explored [3].
One of these important factors is the lack of coherence
between software process modeling and software development
paradigm. To achieve coherence amongst the model driven
development paradigm, software development lifecycles and
software development processes, we argue that the software
development process modeling should also be model centric.
Besides this, a process modeling approach should allow the
flexibility for process improvement, not only at organizational
level but also within a project. This can be achieved if the
processes can be replaced or updated without affecting their
context.

Process modeling domain is dominated by business process
models that focus on the workflow and sequence of the
processes [4]. This results in the lack of appropriate mech-
anisms for validation, verification and state maintenance of
the work products. Software process modeling being targeted
for the software industry should match the perspectives of
the domain experts. The software jargon is more familiar
with execution, initiation, implementation, and typing. We
argue that current software process models are more close to

business process modeling which creates a gap between the
process modeling and architecture modeling. In order to reduce
this gap, software process modeling approach is tailored to a
software development paradigm (Component based software
engineering), that is more comprehensible to software domain
experts. The choice of component based paradigm helps
in developing process components with specified interfaces.
This approach favors both the execution mechanisms and the
process improvement.

This paper is structured as follows. Section 2 describes the
recent endeavors in the field of software process modeling.
Section 3 describes the General Process Metamodel. Section
4 presents the complete approach as in a Multi-metamodel
framework. Finally Section 5 outlines the conclusions.

II. SOFTWARE PROCESS MODELING

Various approach have been proposed to model and execute
processes. This section describes the most notable approaches.

SPEM2.0 is presented by OMG as a standard with the
vision of separation between the usage and the content for the
software development processes [5]. Different UML diagrams
are used to model different views of the process model.
The usage of these diagrams adds expressibility to process
model but as a side effect, the model under study faces
semantic limitations. These semantics limitations can vary
from inter-process communications, artifact definitions, event
descriptions to execution. Lack of proper explanation for
exception handling leads to the absence of reactive control
for the processes. In terms of execution, process enactment is
nothing more than a mapping to project plan. This offers no
support even for process simulations. The process components
introduced by SPEM2.0 lack their proper semantics as well.
These process components take WorkProducts as ports of a
component, thus linking process components together on the
basis of these WorkProducts. Keeping SPEM as a standard,
various other techniques tend to extend it in order to overcome
its shortcomings.

OPSS is a workflow management system that is imple-
mented on top of Java Event-based Distributed Infrastructure
(JEDI) to use its event-based approach [6]. OPSS presents
a translator that automatically translates the UML process

models to java code. OPSS then enacts the process by ex-
ecuting this java code. The architecture of OPSS revolves
around two main components as agents and the state server.
The State server is responsible for managing the state of the
processes, which helps in the coordination of agents. An event
notification system defines a standard inter-operation mecha-
nism between agents. Besides the proactive control, the use of
events in state transitions offers a reactive control in activity
sequencing. As events are used to trigger transitions thus it
is also possible to define error states leading to exception
handling. This approach adds up to the semantics of UML
at a lower level by translating it to java code.

Chou’s method is a process modeling language that con-
sists of two layers: high level UML-based diagrams and a
corresponding low level process language [7]. The high level
UML based diagrams use a variation of activity and class
diagrams, whereas the low level process language is object
oriented language and models a process as a set of classes (the
process program). The high level diagrams hide the complexity
of the rich semantics at the lower level. These process classes
exploit exception handling and event signaling to offer reactive
control. An automatic mapping between the two levels is not
provided (with some tool), however their correspondence is
well documented. This approach shares a common drawback
with OPSS, that is to be complex. The software industry
did not welcome the complex modeling approaches (model
programs) presented in past decade.

MODAL is a more recent work, enriching the original
metamodel of SPEM to exploit the potential of Model Driven
Engineering [8]. A concept of intention is introduced in
MODAL to keep track of methodological objectives set by
different stake-holders from an activity. Contrary to SPEM,
it focuses more on execution of the process models, thus
the ports of the process components are not taken up as
work products, rather they act as services i.e. much like the
service ports in component based programming paradigm.
These process components are setup as hierarchical abstraction
levels: Abstract Modeling Level, Execution Modeling Level
and Detailed Modeling Level, which describe the process com-
ponents from coarse grained analysis to fine grained analysis.
SPEM does not provide the reactive control over the process
sequence, thus a flexible constraint application offered by
MODAL can help in developing more stable process models.

UML4SPM is a recent endeavor for achieving executability
for process models [9]. It is presented using two packages: the
Process Structure package which defines the primary process
elements and the Foundation package that extends a subset
of the concepts from UML, specifically tailored for process
modeling. Sequence control is offered at two levels (Activity
sequencing and Action sequencing) through control flows and
object flows. Actions serve as basic building blocks for the
activities. This control is defined in terms of control nodes.
A strong proactive control in the language is ensured by the
use of these control nodes along with action and activity
sequencing. An activity has the ability to invoke an action
that can alter the control sequence of activities, thus offering

Fig. 1. Core Package

reactive control. Though they take full advantage of MDE
for the specification of their own approach, their approach
is not targeted towards the support of model driven software
development.

xSPEM stands out amongst all the process modeling lan-
guages discussed earlier in terms of execution semantics [10].
This approach extends SPEM with project management capa-
bilities, a better process observation and event descriptions.
This gives a concrete basis for the process execution. A
solid tool support is provided by a graphical editor and a
model simulator. xSPEM also offers model validation by
translating the properties on SPEM into LTL properties on the
corresponding Petri Net model. Project monitoring is handled
by a mapping to BPEL.

All these approaches tend to support enactment but they
do not exploit the full potential of MDE through the use
of models. An approach where model is the basis of com-
munication between the processes is still missing. Not much
work has been done on the process modeling approach where
models can serve as the input and output artifacts of a
process. Though many current approaches offer processes
as components, they fail to provide the execution semantics
for these process components. Most of the process modeling
approaches use SPEM as their basis and tend to add up
to its expressibility by translating the model into a process
program or complementing the model with a process program.
A concrete approach for a semantically rich process modeling
language is still missing.

III. GENERAL PROCESS MODEL

General Process metamodel defines all the basic structure
of our framework. It is presented using three packages where
activity implementation package and contract package merge
into the core package. The core package defines the five core
entities of our process framework, as illustrated in Figure 1.
A process is defined as a collection of activities that can be
arranged in a sequence through dependencies based on their
contracts. Instead of focusing on the proactive control for the

process, more focus is given to activity being a basic building
block for the process. A process having both activities and
their associated dependencies represents an architecture using
activities as basic entities and dependencies to define the flow
between them.

An activity is decomposable thus presenting the process
model as a hierarchical structure. Activities can be shared
amongst different processes and super activities. An activity
behaves as a black box component, where the interface to its
context and content (in case of composite activity) is through
its contract. Inspired from the component based paradigm, all
the interactions between two activities is handled through this
contract. Each activity is performed by role(s). No explicit
control flow is defined for the activities. The contracts of
the activities and the dependencies between them together
allow the dynamic sequencing of flow for the processes. This
dynamic sequence of processes gives a reactive control for
process models that have the capability of restructuring the
control flow at runtime.

Another package called the activity implementation package
defines the content of the activity, as shown in Figure 2.
As recently adopted by SPEM2.0, the current approach is
to separate usage from the content. We have also used this
approach for the definition of activity. Each activity is im-
plemented by one or more activity implementations. These
activity implementations present a set of different alternative
usages. One amongst these implementations can be used later
on to decide the process instance. A contract that serves as an
interface to the context or content is associated to each activity
implementation. An activity implementation has to conform to
the contract of its activity (type). This contract is used by the
dependencies that serve for the transition of control flow at
the time of execution.

An activity implementation can either be primitive or com-
posite. In case of a composite activity implementation, it
contains a process. A composite activity containing a process,
encapsulates the activities and dependencies contained by that
process, which serves as its content. In order to interact with
the content, this composite activity implementation uses the
internal contracts. All the interactions of the contents of this
composite activity to its context has to pass through this
activity. In case of a primitive activity, its implementation
defines the procedure for its realization.

A primitive activity can be automatic, semi-automatic or
manual. All activities are performed by roles. If no performer
is amongst the associated roles, then the activity is automatic.
If no tool is amongst the associated roles, then it is a manual
activity. In case of a semi-automatic activity a performer
performs the activity by using a tool. Such a categorization
of activities helps manage different types of activities where
special focus is given to automation of activities in order to
use model transformations.

The third package of the general process metamodel is
the contract package as shown in Figure 3. Activities can
be connected together for the purpose of control flow only
using these contracts. A Contract may be internal or external.

In case of composite activities, for each external contract
there is a corresponding internal contract of the opposite
nature. A nature of a contract is either required or provided.
Thus for a required external contract, there exists a provided
internal contract and vice versa. Each contract defines the
events, properties and artifacts, so that the dependency can link
together two activities. These events, properties and artifacts
can be optional or mandatory, based on the behavior of the
activity.

An event in our framework can be a triggering event, a
consumable event or a producible event. A triggering event
is responsible to trigger an activity. Every required contract
defines the triggering events for the activity, which are re-
sponsible to trigger its initiation. Provided contracts do not
have any triggering event. A consumable event is an event
that may be consumed by an activity for its realization. If
the consumable event is mandatory, the activity can not be
performed without this event, however an optional event can
be neglected. Consumable events are defined in the required
contract of the activities. A producible event is defined in the
provided contract, which may or may not be mandatory. This
event is produced as a target or side effect of the realization
of the current activity. This provided event may be used by
the successor activity as a required event.

An artifact defines the resource needed or produced by an
activity. An artifact in our process framework can either be a
model or any other resource. In case of a model, an artifact
defines the metamodel for the contract. This adds up the
flexibility to use models as a basis of communication between
the activities. Such models can be used for the semi-automatic
transformations in order to carry out model transformations.
A needed resource is a requisite which is defined in the
required contract whereas a produced resource is defined in the
provided contract as a deliverable. An artifact can be optional
or mandatory, depending upon the nature of the activity.

The contracts of an activity also define the properties that
help linking two activities together through the use of de-
pendencies. There are three types of properties i.e. invariants,
pre-conditions and post-conditions. Pre-conditions are defined
in the required contract of an activity. These are used to
evaluate the properties, that need to be met in order to start
the realization of the activity. Invariants are the properties that
need to be met throughout the execution of an activity and
are thus also defined in the required contract. Post conditions
on the other hand are defined in the provided contract of an
activity and record the conditions created by the realization of
an activity. The contracts of the sub-activities conform to the
contracts of the super-activities.

One of the major benefits of using the component based
approaches for process modeling, is to restrict the interac-
tion through the specified contracts. Having defined specified
contracts for the activities and activity implementations, we
have the flexibility to choose any of the alternatives in ac-
tivity implementations at runtime. Besides this, any activity
implementation of an activity (type) can be replaced by any
other alternative to work in the same context. This serves both

Fig. 2. Activity Implementation Package

Fig. 3. Contract Package

for the content and context of an activity. Replacing one of the
sub-activity implementations for an activity, does not affect its
interaction with its context. Same way, some modification in
the context, does not affect the interaction with the content of
an activity.

IV. MULTI-METAMODEL PROCESSES

The hallmark of MDE is the usage of multiple models
along with defined transformations amongst them. Models are
created, modified, merged or split, as the software development
project advances. We argue that a unique process model cannot
capture all the semantics of the processes at different devel-
opment stages. For this reason, our approach presents three
metamodels: the General Process Metamodel, the Application
Process Metamodel and the Instance Process Metamodel. The
General Process Metamodel is used to document the process
best practices. It is not specific to certain organization or
project. When this General Process Metamodel is applied to

a specific project by some organization, it is refined to guide
the development process. This project specific metamodel is
called Application Process Metamodel. The Instance Process
Metamodel is responsible for the execution of the processes
for a project, thus it takes into account the time plan and
status of the project. Model transformations are used between
the models conforming to these metamodels. We are looking
forward to provide the tool support for carrying out these
transformations. This global picture is illustrated in Figure 4.

The development of these three process modeling metamod-
els along with the defined transformation definitions would
allow us to create a complete framework. We have only
presented the first metamodel i.e. General Process Metamodel
in this paper, however the Application Process Metamodel
and Instance Process Metamodel are underdevelopment. The
Application Process Metamodel refines this metamodel with
some additional features so as to make it application specific.

application execution

conforms-to conforms-to conforms-to

transformation transformation

specific specific

Instance Process
 Model

Application Process
 Model

General Process
 Model

General Process
 Metamodel

Application Process
 Metamodel

Instance Process
 Metamodel

Fig. 4. Process metamodels for Multi-metamodel development

A categorization of activities is added to group them in
disciplines. Activities can also be categorized on other aspects
like tool collections and role collections. Guidance is used to
guide each activity. In order to add planning, processes are
then refined to phases and sub-phases, where each of them
has a milestone.

Finally the Instance Process Metamodel is used to guide
one specific process model instance. This metamodel refines
the Application Process Metamodel so as to add up the
capabilities to manage time. Actual project data (time-line, re-
source utilization, etc.) can be compared and analyzed against
the expected data. This gives the ability to use the reactive
control for process sequencing to reschedule the processes
accordingly.

In our approach, we use model transformations between
these metamodels. The vision of this software process model-
ing framework is that an organization can keep its general
software development process models in the form of best
practices acquired from the experience. These models can then
be transformed to application specific models when some spe-
cific application is under development. Finally this application
process model can be transformed to instance process model
that gives the support for the execution of process models.

The tool for this software process modeling framework is vi-
sioned to be developed on top of METADONE, a METACASE
tool providing a graphical environment for metamodeling [11].
The instantiation semantics for these processes is being sought,
which would allow us to have an executable software develop-
ment process modeling approach that can support model driven
engineering. Furthermore we are looking forward for defining
a formal semantics of these processes. Such formal semantics
would allow us to verify the properties of the processes all
way starting from the requirements phase till the deployment.

V. PROCESS EXAMPLE

In order to facilitate the understanding of our approach,
we are modeling a process example that is responsible for
developing a transformation definition and executing it to get
the desired output model. This process is named as Transfor-
mation Development Process. For the purpose of clarity we are
presenting here a graphical notation, which is only intended for
the explanation purposes. It should be noted that our approach
is currently not providing any graphical modeling language,
and it entire scope remains on the semantic representation
of process models. This example depicted in figure 5 shows
the nature of the building blocks for the process model.
Transformation Development process in our example has only
one activity, named as Transformation Activity.

Transformation activity defines its contracts for all the ac-
tivity interactions with its contents and context. Each contract
for Transformation activity shown in the figure is represented
by a black and a white block. The black block is representing
the external contract, whereas the white block is representing
the internal contract. For external contracts, this figure draws
the required contracts at the left hand side of the activity
components, whereas the provided contracts are at the right
hand side. The placement of internal contracts are opposite
of that of external components. Thus Transformation activity
has defined four external contracts (marked as black blocks),
where Input Metamodel, Output Metamodel and Input Model
are the required contracts and Output Model is a provided
contract. Each of these external contracts have corresponding
internal contracts (marked as white blocks) with opposite
nature, thus Transformation activity has four internal contracts,
where Input Metamodel, Output Metamodel and Input Model
are the provided contracts and Output Model is a required
contract.

Transformation activity is composed of Transformation pro-
cess, which in turn has four activities as Pattern Identification,
Technology Decision, Rule Generation and Transformation Ex-
ecution. A dependency can be witnessed between Pattern Iden-
tification and Transformation activities for Input Metamodel
and Output Metamodel. A straight black line between the
internal provided contract Input Metamodel of Transformation
activity and the external required contract Input Metamodel
of Pattern Identification activity, represents the dependency
between them. In the General Process Metamodel, a contract
specifies the artifact that an activity requires or produces, thus
each contract shown in this example has an associated artifact,
which is quite comprehensible from the name encoding of the
contracts. As discussed earlier, figure 5 is a representational
model, so it does not show the assigned roles for each activity.
In case of Transformation activity, a system analyst is the
performer and is assisted by tools like Validation tool and
Transformation tool.

Pattern Identification activity is responsible for identifying
the matching patterns among input metamodel and output
metamodel. This activity produces a pattern list that is made
available to its context through the Matching Pattern List
contract. Technology Decision activity is dependant on Pattern
Identification for the Matching Pattern List and on Transfor-
mation activity for Input Metamodel and Output Metamodel.
Once the technology is chosen for the transformation, the rules
are generated for the transformation through the Rule Gen-
eration activity. Rule Generation activity produces a Trans-
formation Definition for carrying out the transformation on
the input model to generate the output model. Transformation
Execution activity takes the Transformation Definition from
Rule Generation and Input Metamodel, Output Metamodel and
Input Model from Transformation activity through its specified
required contracts. This in turn produces the Output Model for
which Transformation activity is dependent on Transformation
Execution. Finally, Transformation activity specifies the pro-
vided external contract Output Model for its context.

Tranformation Development Process

Transformation Activity

Transformation Process
Technology
 Decision

 Pattern
Identification

Transformation
 Execution

 Rule
Generation

Input Metamodel

Output Metamodel

Output Model

Input Model Matching Pattern List

Transformation Definition

Fig. 5. Contract Package

Out of the activities defined in the Transformation Devel-
opment process, all the activities are semi-automatic activities
except Technology Decision which is a manual activity that
does not need any intervention of tools. Transformation activ-
ity is a composite activity that relies on the Transformation
process for its implementation. All the other activities in the
example are primitive activities, as they do not compose any
process and have a procedural implementation definition. This
representational figure does not specify the pre-conditions on
the artifacts, which are added in the implementation details of
these activities. The dependencies between the activities are
realized by using an event based mechanism in our framework.

VI. CONCLUSION

We have presented a process modeling approach that models
activities as components which have their defined contracts.
The overall hierarchical structure of the process metamodel
allows to model processes at different abstraction levels.
Moreover, the complete framework is aimed to be defined
using three metamodels i.e. General, Application and Instance
metamodels, which helps capture the semantics of processes at
all development stages. By accepting models as required and
provided artifacts and extending support for model transforma-
tions, processes are adapted with the capabilities to support
Model Driven Engineering. Moreover, the inspirations from
component based architecture add to the expressiveness of
software process modeling by using a familiar jargon for the
domain experts.

REFERENCES

[1] D. Ardagna, C. Ghezzi, and R. Mirandola, “Rethinking the use of models
in Software Architecture,” in Proceedings of the 4th International Con-
ference on Quality of Software-Architectures: Models and Architectures,
ser. QoSA ’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 1–27.

[2] R. Van Der Straeten, T. Mens, and S. Van Baelen, “Challenges in Model-
Driven Software Engineering,” in Models in Software Engineering, ser.
Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2009, vol. 5421, pp. 35–47.

[3] A. Forward and T. C. Lethbridge, “Problems and opportunities for
Model-centric versus Code-centric Software Development: A survey
of software professionals,” in Proceedings of the 2008 international
workshop on Models in software engineering, ser. MiSE ’08. New
York, NY, USA: ACM, 2008, pp. 27–32.

[4] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske, “Business
process management: A survey,” in Business Process Management, ser.
Lecture Notes in Computer Science, W. M. P. van der Aalst, A. H. M.
ter Hofstede, and M. Weske, Eds., vol. 2678. Springer, 2003, pp. 1–12.

[5] OMG, “Software and Systems Process Engineering Metamodel
Specification,” Version 2.0, April 2008. [Online]. Available:
http://www.omg.org/spec/SPEM/2.0/

[6] E. D. Nitto, L. Lavazza, M. Schiavoni, E. Tracanella, and M. Trombetta,
“Deriving executable process descriptions from UML,” in ICSE ’02:
Proceedings of the 24th International Conference on Software Engi-
neering. New York, NY, USA: ACM, 2002, pp. 155–165.

[7] S. C. Chou, “A Process Modeling Language consisting of high level
UML-based diagrams and low level Process Language,” Journal of
Object Technology, vol. 1, no. 4, pp. 137–163, Sep. 2002.

[8] A. Koudri and J. Champeau, “MODAL: A SPEM Extension to improve
Co-design Process Models,” in New Modeling Concepts for Today’s
Software Processes, ser. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2010, vol. 6195, pp. 248–259.

[9] R. Bendraou, M.-P. Gervais, and X. Blanc, “UML4SPM: An Executable
Software Process Modeling Language providing high-level abstractions,”
Enterprise Distributed Object Computing Conference, IEEE Interna-
tional, vol. 0, pp. 297–306, 2006.

[10] R. Bendraou, B. Combemale, X. Crégut, and M.-P. Gervais, “Definition
of an eXecutable SPEM2.0,” in 14th Asian-Pacific Software Engineering
Conference (APSEC). Nagoya, Japan: IEEE Computer Society, Dec.
2007, pp. 390–397.

[11] V. Englebert and P. Heymans, “Towards more extensible metacase tools,”
in Advanced Information Systems Engineering, ser. Lecture Notes in
Computer Science, J. Krogstie, A. Opdahl, and G. Sindre, Eds. Springer
Berlin / Heidelberg, 2007, vol. 4495, pp. 454–468.

