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(a) Feature points. (b) Invariant quotient function. (c) Skeletal representation of

the high level Reeb graph.

(d) Application to mesh

deformation.

Figure 1. Overview of presented method on an arbitrary mesh.

Abstract

Many applications in computer graphics need high level

shape descriptions, in order to benefit from a global under-

standing of shapes.

Topological approaches enable pertinent surface decom-

positions, providing structural descriptions of 3D polygonal

meshes; but in practice, their use raises several difficulties.

In this paper, we present a novel method for the con-

struction of invariant high level Reeb graphs, topological

entities that give a good overview of the shape structure.

With this aim, we propose an accurate and straightforward

feature point extraction algorithm for the computation of an

invariant and meaningful quotient function. Moreover, we

propose a new graph construction algorithm, based on an

analysis of the connectivity evolutions of discrete level lines.

This algorithm brings a practical solution for the suppres-

sion of non-significant critical points over piecewise contin-

uous functions, providing meaningful Reeb graphs.

Presented method gives accurate results, with satisfac-

tory execution times and without input parameter. The geo-

metrical invariance of resulting graphs and their robustness

to variation in model pose and mesh sampling make them

good candidates for several applications, like shape defor-

mation (experimented in this paper), recognition, compres-

sion, indexing, etc.

1 Introduction

Polygonal mesh is a widely used representation of 3D

shapes. However, many applications in computer graphics

need a higher level shape description as an input, like its

structure for example.

To solve this problem, several approaches have been de-

veloped, like mesh segmentation [14] or skeleton extraction

[5]. Topological methods, based on Reeb graphs, present

the advantage to preserve the topological properties of the

surface. Unfortunately, in practice, the construction of Reeb

graphs raises several issues, like invariance constraint non-

respect or non-significant critical point identification. This

may come to results of restricted usability and of low se-

mantic interest, as underlined in [12], that we refer as low-

level Reeb graphs.

In this paper, we present a novel method for the construc-

tion of invariant high level Reeb graphs. First, we present

theoretical backgrounds and related works. Secondly, we

introduce a new feature point extraction algorithm (cf. fig-

ure 1(a)), which is used for the computation of a mean-

ingful and invariant quotient function (figure 1(b)), and a

new graph construction algorithm (figure 1(c)) that excludes

non-significant critical points. Finally, we present and com-

ment on experimental results and evoke possible applica-

tions, like mesh deformation (figure 1(d)).



Figure 2. Evolution of the level lines of the

height function on a bitorus, its critical

points and its Reeb graph.

2 Theoretical background

A Reeb graph [13] is a structure that depicts the evolu-

tions of the level lines of a given scalar function, usually a

Morse function [10], defined over objects of any dimension

(k-manifolds). In this section, we introduce several notions,

restricted to 2−manifolds, used in our approach.

Definition 1 (Level line) Let f be a scalar function defined

on a 2−manifold M , f : M → R. Let L be the set of

points pi, such as ∀pi ∈ L, f(pi) = fL. L is the level line

corresponding to the value fL, noted f−1(fL).

Definition 2 (Reeb graph) Let f : M → R be a scalar

function defined on a 2−manifold M . The Reeb Graph of

f is the quotient space of f in M × R by the equivalence

relation (p1, f(p1)) ∼ (p2, f(p2)), verified if and only if:






f(p1) = f(p2)
p1 and p2 belong to the same connected

component of f−1(f(p1))

Concretely speaking, a Reeb graph is composed of

nodes, which represent f critical points (see illustrations 2

and 3), and of edges, which represent the connected compo-

nents linking f critical points. Most of the Reeb graph con-

struction algorithms first identify the set of f critical points

and secondly build the graph from the connectivity relations

of these points.

Definition 3 (Critical point) Let f be a scalar function de-

fined on a 2−manifold M , f : M → R. A point p ∈ M is a

critical point of f is the gradient of f vanished in p.

Definition 4 (Non-degenerate critical point) A critical

point p of a scalar function f defined on a 2−manifold

is called a non-degenerate critical point if the matrix of

second partials is non-singular in p.

(a) L+=1, L
−

=0 (b) L+=0, L
−

=1 (c) L+=2,

L
−

=2

Figure 3. Nondegenerate critical point clas

sification.

In the discrete case, given a vertex v of a triangulated sur-

face T , let L+ and L− be respectively the number of con-

nected sets of vertices vi and vj on Lk(v) (v direct neigh-

bors, its link) such as f(vi) > f(v) and f(vj) < f(v).
Vertices corresponding to non-degenerate critical points

can be classified into three categories, according to L+ and

L−, as shown in figure 3: local minima (3(a)), local maxima

(3(b)) and simple saddles (3(c)). We will use figure 3 color

convention in the rest of the paper.

As mentioned by Biasotti et al. [1], continuous func-

tions, and particularly Morse functions [10] (when all the

critical points are non-degenerate), are pertinent choices for

functions f . For clarity puprose, we will refer to candidate

functions as quotient functions in the rest of the paper, to

underline their use in graph construction.

Figure 2 illustrates previous definitions, presenting re-

spectively a scalar function (the height function) computed

on a 2−manifold, its non-degenerate critical points, level

lines of arbitrary range and the corresponding Reeb graph.

3 Related work

Several approaches have been explored by the computer

graphics community in polygonal mesh decomposition.

Topological methods aim to produce structural descrip-

tions of shapes where identified sub-components form con-

nected sets. Morse and Reeb graph theories are two pow-

erful mathematical tools that respectively enable to identify

topological points of interest over the mesh and to capture

their connectivity relations into a graph structure (see fig-

ure 2). Several algorithms [16, 3] have been proposed to

construct Reeb-like graphs in O(n × log(n)) steps (where

n is the number of vertices) from piecewise linear functions

computed over the mesh. Tarasov and Vyalyi [16] propose

local mesh redefinition in order to purge multiple saddles

and to benefit from Morse functions properties [10]. How-

ever, those papers do not address the problem of the quotient

function definition. Lazarus and Verroust [9] introduces a

novel notion of topological structure called Level Set Di-



agram, whose construction is somewhat similar to that of

a Reeb graph. An interesting point of this method is the

use of a quotient function, exploited for the diagram con-

struction, based on the geodesic distance to a source vertex.

Unfortunately, this scalar function suffers from a high insta-

bility [6], due to the non-determinist election of the source

vertex, which excludes its use in applications where sta-

bility is fundamental, like shape retrieval for example. To

overcome this problem, within the framework of shape re-

trieval, Hilaga et al. [6] propose to integrate this function

over the whole mesh. More precisely, they define an ap-

proximation function that introduces geodesic distances to

a set of base vertices, homogeneously spread over the mesh.

Moreover, they propose a new topological structure scheme

called Multiresolutional Reeb Graph. Basically, they pro-

ceed in a succession of mesh partitionings, according to

different value-ranges of their quotient function. This ini-

tiative is of a major interest for 3D shape retrieval but does

not fit other applicative contexts mainly because it will be

difficult to automatically define a proper value-range for an

application or another. For an interesting survey on compu-

tational topology approaches for shape modeling, we defer

the reader to [1].

In short, the first key issue of topological approaches re-

sides in the definition of the quotient function. A non per-

tinent function will present an important number of criti-

cal points, as underlined in [12]. Consequently the result-

ing Reeb graph will present many nodes and edges and will

not afford a global and meaningful description of the shape

(low-level Reeb graphs). Moreover, depending on applica-

tion needs, the quotient function should present stability and

invariance properties [9, 6] but those functions often gener-

ate many critical points from our experience.

The second key issue of topological approaches resides

in the graph construction strategy, which should only use

significant critical points and should not be conditioned by

a user-parameter. In this paper, we present a novel method,

whose objective is to produce high-level, stable, invari-

ant and generically-exploitable Reeb graphs, solving pre-

viously mentioned issues.

4 Invariant high level Reeb graphs

Reeb graphs give a good overview of the structure of

polygonal meshes. Unfortunately, constructing a Reeb

graph from a non pertinent quotient function often leads to

results of low semantic interest – low-level Reeb graphs –

because of the number of identified critical points.

In this paper, we propose to challenge this key issue by

proposing an invariant quotient function combined with a

pertinent critical point selection algorithm, that enables the

construction of high-level Reeb graphs over piecewise con-

tinuous functions.

4.1 Invariant quotient function

Several scalar functions have been proposed by the com-

puter graphics community to construct topological struc-

tures. The choice of this function will directly condition the

stability properties of the topological structure and therefore

its usability in application fields. In this section, we detail

our strategy to compute an invariant and meaningful quo-

tient function: first, we extract mesh feature points and sec-

ondly, for each vertex in the mesh, we compute its geodesic

distance to the closest feature point.

4.1.1 Metric space

Before defining the scalar function itself, a metric space

needs to be defined. We will distinguish two kinds of metric

spaces: on the first hand euclidean ones and on the other

hand Riemannian ones.

Rotation and translation invariance properties can be ob-

tained in both, as long as origins are taken relatively to the

mesh. As an example, with an euclidean metric space, the

euclidean barycenter of the mesh can be chosen.

Scaling invariance property can be obtained in both met-

ric spaces as well, normalizing values in a regard to mesh

global extrema.

In shape modeling, geodesic distances are interesting

Riemannian metrics, because their evaluations are tolerant

to variations in model pose. In metric geometry, a geodesic

is a curve which is everywhere locally a distance minimizer.

More concretely, the geodesic distance between two ver-

tices is the length of the shortest path between them along

the mesh, according to a given metric. As an example, a

geodesic distance from a hand of a humanoid model to its

head will be the same whether its arms are folded or not.

For a formal description of Riemannian geometry, we defer

the reader to [4].

In our approach, to guarantee invariance to rotation,

translation, scaling and model pose, we decide to choose

Riemannian metrics, and particularly geodesic distances.

From an algorithmic point of view, geodesic distances can

be approximated by the Moore-Dijkstra algorithm (distance

minimizing in weighted graphs). In the rest of this paper,

we will refer to δ(v1, v2) as the normalized approximation

of the geodesic distance from vertex v1 to vertex v2.

4.1.2 Feature point extraction

Feature points are mesh vertices located on extremities

of prominent components. From a perceptive point of view,

the set of feature points describes in a meaningful way the

global structure of a shape. From this observation, in a com-

parable way to [2], we propose in our method to use the

set of feature points as origins for geodesic distance evalu-

ations.



Several algorithms have been proposed for feature point

extraction. They find applications in various fields, like

shape metamorphosis, deformation transfer, texture map-

ping, etc. For example, Mortara and Pantanè [11] propose to

select as features points the vertices where gaussian curva-

ture exceeds a given threshold. Unfortunately, this method

can miss feature points because of the threshold parame-

ter and cannot resolve extraction on constant curvature ar-

eas. Katz et al. [7] developed an algorithm based on multi-

dimensional scaling, in quadratic execution complexity.

Here, we propose a quite straightforward algorithm,

based on topological tools. Most of the geodesic based

scalar function local extrema appear at extremities of promi-

nent components (see illustrations 4(a) and 4(b)), mainly

because gradients vanish in those configurations (cf. defini-

tion 3). Therefore, we propose to realize a crossed analysis,

using two geodesic based scalar functions – whose origins

are the mesh most distant vertices – and to intersect the sets

of their local extrema.

Definition 5 (Feature points) Let f1 and f2 be two scalar

functions defined on a connected triangulated surface T as

follows:

f1(v) = δ(v, vs1
) (1)

with:

vs1
∈ T / δ(vs1

, vr) = maxv∈T δ(v, vr) (2)

with vr ∈ T a randomly chosen vertex, and:

f2(v) = δ(v, vs2
) (3)

with:

vs2
∈ T / f1(vs2

) = maxv∈T f1(v) (4)

Let E1 and E2 be the sets of local extrema of f1 and f2.

We define the set of feature points F of T as the intersection

of E1 and E2 :

F = E1 ∩ E2 (5)

Concretely, we perform a crossed analysis in order to

purge non-isolated extrema, as illustrated in figure 4: f1

local extrema are displayed in yellow (figure 4(a)) and f2

extrema in cyan (figure 4(b)). Equation 5 is well illustrated

in figure 4.

In practice, f1 and f2 isolated local extrema do not ap-

pear exactly on the same vertices but in the same geodesic

neighborhood. Therefore, we relax the intersection con-

straint as follows:

v ∈ F ⇐⇒















∃ve1
∈ E1 / δ(v, ve1

) < ǫ
∃ve2

∈ E2 / δ(v, ve2
) < ǫ

δ(v, vfi
) > ǫ ∀vfi

∈ F
ǫ ∈ [0, 1]

(6)

(a) E1. (b) E2. (c)

E1 ∩ E2.

Figure 4. Feature point extraction overview.

(a) 25 000

vertices.

(b) 5 000

vertices.

(c) 1 000

vertices.

Figure 5. Feature point extraction robustness

against mesh sampling variations.

Local extrema identification is realized according to the

classification presented in figure 3. Moore-Dijkstra’s al-

gorithm is an execution complexity bottleneck. f1 and f2

are computed each in O(n × log(n)) steps, where n is

the number of vertices in the mesh. E1 and E2 relaxed

intersection is performed in O(k × m × log(m)), where

k = mini∈{1,2} |Ei| and m is the number of vertices in

the geodesic neighborhoods.

In our experiments, setting ǫ = 0.05 gives accurate re-

sults. With this configuration, m never exceeds two percent

of n and k rarely exceeds 30 (depending on the model’s

topological complexity). Therefore E1 and E2 relaxed in-

tersection algorithm’s execution complexity is negligible

compared to f1 and f2 computations.

In this section, we presented a straightforward algorithm

for mesh feature point extraction. This algorithm is based

on geodesic distance evaluations and therefore is stable and

invariant to geometrical transformations and to model pose.

Moreover, in order to select feature points, we observe

geodesic gradient behaviors. Consequently, we can state

that our method is robust against mesh sampling variations,

as illustrated in figure 5.

4.1.3 Quotient function definition

The quotient function definition depends on what is ex-

pected to be revealed. As an example, for terrain modeling,

the height function will present critical points over hills and



(a) 25 000 vertices,

6 features points.

(b) 50 000 vertices, 7 features points.

Figure 6. Evolution of the level lines of fq and
its critical points on arbitrary shapes.

valleys and will afford consequently an appropriate topolog-

ical description. In our approach, we would like to identify

meaningful mesh sub-components.

As underlined in paragraph 4.1.2, the set of feature

points describes in a meaningful way the global structure

of a shape. This set is invariant to geometrical transfor-

mations and variations in model pose and mesh sampling.

From these observations, we propose to compute a mean-

ingful quotient function from geodesic distances to the set

of feature points.

In particular, an interesting objective would be to make

f function level lines cut as precisely as possible the basis

of prominent components, to afford a meaningful decom-

position. With this aim, we use the set of feature points as

origins for distance evaluations and propose the following

quotient function, computed for each vertex v of an input

connected triangulation T , noted fq in the rest of the paper:

fq(v) = 1 − δ̂(v, vc) (7)

with vc the closest feature point from v:

vc ∈ F / δ̂(v, vc) = minvfi
∈F δ(v, vfi

) (8)

Figure 6 presents some computations of fq over arbitrary

shapes, as well as the number of extracted feature points.

In our experiments, we compute the set of geodesic dis-

tances towards feature points within the feature point ex-

traction algorithm. Therefore, the number of iterations of

the Moore-Dijkstra algorithm over the whole mesh is equal

to the number of feature points. The execution complex-

ity of fq computation can be consequently approximated by

O(|F | × n × log(n)), with n the number of vertices in the

mesh.

(a) t = 600. (b) t = 10 000. (c) t = 20 000.

Figure 7. Geodesic propagation overview on

a 25 000 vertex mesh (fq function).

4.2 High level Reeb graph construction

As we can see in figure 6, fq is a piecewise continu-

ous function only. More precisely, discontinuity appears

on areas where geodesic origins change. In figure 6, those

areas can be identified with the rings of local minima and

local saddles (in red and black). From a theoretical point of

view, resulting Reeb graph should present as many nodes as

function critical points and consequently would not afford a

global, or high level, description of the shape.

In this section, we propose to challenge this issue with

a novel critical point election algorithm. With this aim, we

propose to focus on an intuitive description of Reeb graphs:

Reeb graphs are topological structures that depict the con-

nectivity evolution of the level lines of a given scalar func-

tion defined on a 2−manifold.

Consequently, we present a method that does not propose

to construct a Reeb graph from the connectivity relations of

f critical points. Instead, we propose to construct discrete

level lines around f global minimum and to observe their

connectivity relations while f evolves.

Discrete level lines evolution can be modeled as a

geodesic propagation within a metric space based on the

quotient function values. Such a propagation can be ob-

tained with the Moore-Dijkstra algorithm, considering for

each vertex its f value as weight.

Let t be a parametric variable that denotes an iteration of

the geodesic propagation algorithm. Now, we can introduce

the notion of discrete level line:

Definition 6 (Discrete level line) Let f be a scalar func-

tion defined on a connected triangulated surface T , f :
T → R.

Let C(t) be the set of candidate vertices for absorption

at the iteration t of the geodesic propagation algorithm.

Let l1(t), l2(t), ..., lk(t) be the connected subsets of ver-

tices belonging to C(t). We define each connected subset

li(t) as a discrete level line.



(a) (b) (c)

(d) (e) (f)

Figure 8. Bifurcation and junction contexts on
a torus shape (height function).

Figure 7 gives an overview of the geodesic propagation

in the metric space defined by fq. The area depicted in

white denotes the vertices visited by the Moore-Dijkstra al-

gorithm, whereas the red areas correspond to the vertices

belonging to C(t). Moreover, each connected subset of

C(t) (red thin lines) is referred as a discrete level line.

This notion of discrete level line can be compared to the

one of topological ring, presented by Mortara and Pantanè

[11]. However, their graph construction strategy is highly

dependent on their quotient function definition. Moreover,

to benefit from the properties of geodesic distances, their

quotient function computation needs a regular mesh refine-

ment, which increases the overall time complexity of the

approach and decreases its tolerance to mesh sampling vari-

ations.

In our algorithms, we analyze the connectivity evolu-

tions of the discrete level lines at each iteration t of the

geodesic propagation. Moreover, we construct simulta-

neously a dual Reeb graph (where connected components

are represented with nodes and connectivity relations with

edges), according to the following notions of topological

variations: bifurcations, junctions and terminations.

Definition 7 (Bifurcation) Let f be a scalar function de-

fined on a connected triangulated surface T . Let L(t) =
{l1(t), l2(t), ..., lk(t)} be the set of discrete level lines li(t)
at iteration t of f propagation and vt ∈ T the last visited

vertex. A bifurcation happens in vt iff:

|L(t)| > |L(t − 1)| (9)

Figure 8 presents the bifurcation and junction contexts

on a torus with the height function. In 8(a), L(t) is com-

posed of only one discrete level line, which splits in two

in 8(b): a bifurcation is created on the graph (figure 8(e)).

Similarly, we introduce the notion of junction as follows:

Definition 8 (Junction) Let f be a scalar function de-

fined on a connected triangulated surface T . Let L(t) =
{l1(t), l2(t), ..., lk(t)} be the set of discrete level lines li(t)
at iteration t of f propagation and vt ∈ T the last visited

vertex. A junction happens in vt iff:

{

|L(t)| < |L(t − 1)|
∃vn ∈ Lk(vt) / vn ∈ C(t)

(10)

In 8(b), L(t) is composed of two discrete level lines,

which merge in one in 8(c): a junction is created on the

graph (figure 8(f)). Finally, we introduce the notion of ter-

mination:

Definition 9 (Termination) Let f be a scalar function de-

fined on a connected triangulated surface T . Let L(t) =
{l1(t), l2(t), ..., lk(t)} be the set of discrete level lines li(t)
at iteration t of f propagation and vt ∈ T the last visited

vertex. A termination happens in vt iff:

{

|L(t)| < |L(t − 1)|
vn /∈ C(t), ∀vn ∈ Lk(vt)

(11)

At each step t of the geodesic propagation, we recon-

struct L(t) and apply needed topological variations on the

graph (figures 8(e) and 8(f)), according to |L(t)| evolutions

(equations 9, 10 and 11), as illustrated in the next section.

5 Experimental results and comments

In this section, we present and comment on experimen-

tal results obtained with our method and discuss about its

applications. Presented models are connected triangulated

surfaces extracted from the Princeton Shape Benchmark

database [15].

5.1 Time complexity

Let n be the number of vertices in the input mesh. As

mentioned section 4.1.2, the feature point extraction is re-

alized in O(n × log(n)) steps. Moreover, fq is computed

within the feature point extraction. Consequently, the in-

variant quotient function computation time complexity is

bounded by the Moore-Dijkstra algorithm and is realized

in O(|F | × n × log(n)).
As for the graph construction algorithm, we model C(t)

with a binary priority heap, which means that addition and

deletion of vertices are performed in O(log(n)). At a given

iteration t of the geodesic propagation, in order to observe

topological variations defined in 4.2, we re-construct each

discrete level line with a recursive algorithm, in O(n) steps.

Consequently, an iteration t of the geodesic propagation is

realized in O(n+ log(n)) steps. Therefore, as the complete

geodesic propagation takes n iterations, the overall com-

plexity of the graph construction takes O(n2) steps.



(a) (b) (c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 9. High level Reeb graphs of primitive

and complex shapes.

Presented algorithms have been implemented in C lan-

guage under GNU/Linux and experimented on a desktop PC

with a 3GHz P4-CPU and 2 gigabytes of RAM. With this

configuration, the computation of a high level Reeb graph

takes 0.23 seconds for a 2 000 face model, 2 seconds for a

10 000 face model, 17 seconds for a 40 000 face model and

86 seconds for a 100 000 face model.

5.2 Immersion strategies

By definition, a Reeb graph is a graph representation

only. Therefore, for many applications, it is mandatory to

define an R
3 immersion strategy.

In this paper, for illustration purpose, we use the follow-

ing strategy: each node of the high level Reeb graph, cor-

responding to a whole connected component, is placed at

the euclidean barycenter of its related component, as shown

in figure 9. Notice that the root component, with bigger

radius, represents the neighborhood of f global minimum.

This area is isolated when the geodesic wavefront first col-

lapses on itself, at the beginning of the algorithm.

Topological skeletons are a Reeb graph variant that can

be obtained by placing a point at the euclidean barycenter

of each discrete level line, as shown in figure 10(a). Such a

skeleton is a particularly pertinent shape descriptor for au-

tomatic mesh animation. With this aim, since a point of

(a) (b)

Figure 10. Skeletal representation of a high

level Reeb graph (a) and an application to
mesh deformation (b).

the topological skeleton references a discrete level line, it is

possible to move each vertex of the related level line with

a parameterized displacement, so as to get a smooth move-

ment of the whole connected component. In our experi-

ments, we deformed models by applying recursively simple

rotations to components, as shown in figure 10(b), but more

sophisticated strategies can be used, like in [8].

5.3 High level Reeb graph properties

Stability of the high level description First, as illus-

trated in figure 9, both complex and primitive shapes are

well managed by our algorithm. Moreover, it can handle

non-null genus surfaces correctly: in figure 9(b), the hair

of the humanoid model merges with its back which forms

consequently a cycle in the graph. Secondly, we can say

that the high level Reeb graphs of models belonging to the

same class (figure 9(b), 9(c), 9(d) and 9(e)) are quite similar,

which denotes the stability of our algorithm.

Finally, our geodesic propagation within the metric

space defined by the quotient function, combined with our

critical point election strategy, leads to accurate results:

none of the presented graphs reflects the presence of critical

points on discontinuity areas. With traditional Reeb graph

construction algorithms, the graph of the model 9(f) would

have counted about ninety critical points (see critical points

in figure 6(b) for comparison). With our approach, only

meaningful topological variations are encoded.

Affine invariance Thanks to our choice of metric

space (geodesic distances, with origins taken relatively to

the mesh), it is quite obvious that our approach is invari-

ant against geometrical transformations: translation, rota-

tion and uniform scaling.



(a) 25 000

vertices.

(b) 5 000

vertices.

(c) 1 000

vertices.

Figure 11. High level Reeb graph construction

algorithm robustness against mesh sampling
variations.

Robustness to model pose Robustness to model pose

can be observed in figures 9(c) and 9(d): the graphs are

similar wether the arms of the humanoid are folded or not.

Robustness to mesh sampling Thanks to our notion

of discrete level line, no hypothesis about mesh sampling

is required. Therefore, we can state that our Reeb graph

construction algorithm is tolerant against variations in mesh

sampling, as shown in figure 11.

Thanks to those properties, high level Reeb graphs can

be used in applications where invariance is fundamental. In

shape retrieval for example, those graphs can be extended

with geometrical attributes and shape comparison can be

achieved with graph matching algorithms [6].

6 Conclusion and future works

In this paper, we introduced a novel method for the con-

struction of invariant high level Reeb graphs, topological

entities that afford a global understanding of shapes, with

satisfactory execution times and without input parameters.

This method is composed of three main steps. First, we ex-

tract feature points thanks to a robust and straightforward al-

gorithm. Then, we use feature points as geodesic origins for

the computation of an invariant quotient function fq, used

for topological analysis. Finally, we developed a new graph

construction algorithm, based on a geodesic propagation in

the metric space defined by fq. It observes the connectiv-

ity evolutions of discrete level lines and provides meaning-

ful Reeb graphs, which only encode significant topological

variations. We illustrated the utility and the accuracy of our

approach with an application to mesh deformation.

The invariance properties of presented graphs (geometri-

cal transformations, model pose and mesh sampling) make

them good candidates for various applications in computer

graphics, like shape animation, retrieval, compression, etc.

In the future, we would like to refine our mesh decompo-

sition scheme in order to propose high level shape descrip-

tions of higher semantic interest.
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