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Figure 1. Main steps of presented method on a standard model.

Abstract

This paper describes a novel and unified approach for

Reeb graph construction and simplification as well as con-

striction approximation on 3D polygonal meshes. The key

idea of our algorithm is that discrete contours – curves car-

ried by the edges of the mesh and approximating the con-

tinuous contours of a mapping function – encode both topo-

logical and geometrical shape characteristics.

Firstly, mesh feature points are computed. Then they are

used as geodesic origins for the computation of an invari-

ant mapping function that reveals the shape most significant

features. Secondly, for each vertex in the mesh, its discrete

contour is computed. As the set of discrete contours recov-

ers the whole surface, each of them can be analyzed, both

to detect topological changes or constrictions. Constriction

approximations enable Reeb graphs refinement into more

visually meaningful skeletons, that we refer as enhanced

topological skeletons.

Without pre-processing stages and without input pa-

rameters, our method provides nice-looking and affine-

invariant skeletons, with satisfactory execution times. This

makes enhanced topological skeletons good candidates for

applications needing high level shape representations, such

as mesh deformation (experimented in this paper), retrieval,

compression, metamorphosis, etc.

1. Introduction

Polygonal mesh is a widely used representation of 3D

shapes, mainly for exchange and display purposes. How-

ever, many applications in computer graphics need higher

level shape descriptions as an input. Topological skeletons

have shown to be interesting shape descriptions [2]. They

benefit diverse fields like shape metamorphosis, deforma-

tion [13], retrieval [10], texture mapping, etc.

Many topological approaches study the properties of real

valued functions computed over triangulated surfaces. Most

of the time, those functions are provided by the application

context, such as scientific data analysis [4]. When deal-

ing with topological skeletons, it is necessary to define an

invariant and visually interesting mapping function, which

remains an open issue [2].

Moreover, traditional topological graph construction al-

gorithms assume that all the information brought by the

mapping function is pertinent, while in practice, this can

lead to large graphs [18, 5], encoding noisy details.

Finally, topological approaches cannot discriminate vi-

sually interesting sub-parts of identified connected compo-

nents, like the phalanxes of a finger. This is detrimental to

certain applications, such as mesh deformation.

In this paper, we propose a novel and unified method

which addresses the above issues. Given a connected tri-

angulated surface T , feature points are firstly extracted (fig.
1(a)) in order to compute an invariant mapping function,

noted fm (fig. 1(b)), which reveals the shape most signifi-



cant parts. Secondly, for each vertex in the mesh, we com-

pute its discrete contour, a connected curve traversing it and

locally minimizing fm gradient. We show that a topological

analysis of those discrete contours enables a pertinent Reeb

graph construction and simplification (fig. 1(c)), without

any input parameter. Finally, we show that a geometrical

analysis of discrete contours can approximate constrictions

on prominent components (fig. 1(d)), enabling the refine-

ment of Reeb graphs into enhanced topological skeletons

(fig. 1(e)).

This paper is structured as follows. Firstly, we introduce

topological skeleton related work. Secondly, we define our

mapping function fm. Thirdly, we present our algorithm for

discrete contour computation, which is used both for the

Reeb graph construction and simplification as well as the

constriction approximation. Finally, we comment on exper-

imental results and discuss about possible applications, like

mesh deformation (fig. 1(f)).

2. Related work

Several approaches have been explored for the de-

composition of polygonal meshes into meaningful sub-

components, to extract skeletal representations of shapes.

In comparison to mesh segmentation [20] and traditional

skeleton extraction [3, 24], topological approaches, based

on Morse and Reeb graph theories [16, 19, 15], present

the advantage to preserve the topological properties of the

shape [2] (number of loops, number and relations between

components, etc.). However, with regard to shape skele-

tons, we identify three main drawbacks in topological ap-

proaches, successively addressed in this paper.

Firstly, it is difficult to define an invariant and visually

interesting mapping function. Secondly, constructing and

transforming a topological graph into a manageable skele-

ton is not a trivial problem. Finally, topological approaches

decompose a surface into connected sub-components only.

This means that visually interesting sub-parts of identified

connected components will not be discriminated: for exam-

ple, a finger of a hand model will not be decomposed into

phalanxes.

2.1. Mapping functions

Differential topology based approaches study the proper-

ties of real valued functions, that we refer as mapping func-

tions, defined on input surfaces, either to construct Reeb

graphs [22, 6], contour trees [5], level set diagrams [12] or

Morse complexes [18, 4]. Those functions are often brought

by the application context: terrain modeling [22], MRI anal-

ysis [5], molecular analysis [4], etc.

When dealing with topological skeletons, it is necessary

to define a scalar function which satisfies invariance and

stability constraints, and which also affords a topological

description that highlights visually significant surface sub-

components.

Lazarus and Verroust [12] introduced such a function,

defined by the geodesic distance (the length of the short-

est path between vertices) from a source vertex to any other

vertex in the mesh. It leads to visually interesting results for

natural objects because it is invariant to geometrical trans-

formations and it is robust against variations in model pose

[11]. Due to a lack of stability, within the framework of

shape retrieval, Hilaga et al. [10] proposed to integrate this

function all over the mesh. Unfortunately, from our experi-

ence, that function generates an important amount of criti-

cal points, configurations where the gradient of the function

vanishes, which makes the construction of visually mean-

ingful graphs more complex.

In our method, to reveal the shape most significant fea-

tures, we focus on feature points. Feature points are mesh

vertices located on extremities of prominent components

[11]. Mortara and Patanè [17] proposed to select as fea-

ture points the vertices where Gaussian curvature exceeds a

given threshold, but this cannot resolve extraction on con-

stant curvature areas. Katz et al. [11] developed an algo-

rithm based on multi-dimensional scaling in quadratic exe-

cution complexity. In this paper, we propose a robust and

straightforward algorithm for feature point extraction (fig.

1(a)). Moreover, we use them as geodesic origins for the

definition of our mapping function (fig. 1(b)). Such a func-

tion well reveals the most visually significant parts of the

mesh, generating manageable critical point sets.

2.2. Graph construction and simplification

A Reeb graph [19] is a topological structure that encodes

the connectivity relations of the critical points of a scalar

function defined on an input surface. More formally, Reeb

graphs are defined as follows:

Definition 1 (Reeb graph) Let f : M → R be a scalar

function defined on a compact manifoldM . The Reeb graph

of f is the quotient space of f inM ×R by the equivalence

relation (p1, f(p1)) ∼ (p2, f(p2)), if and only if:





f(p1) = f(p2)
p1 and p2 belong to the same connected

component of f−1(f(p1))

Figure 2 gives an example of a Reeb graph computed

on a bi-torus with regard to the height function and well

illustrates the fact that Reeb graphs can be used as skeletons.

Constructing a Reeb graph from a scalar function f com-
puted on a triangulated surface first requires to identify

the set of vertices corresponding to critical points. With

this aim, several formulations have been proposed [7, 23]

to identify local maxima, minima and saddles, observ-

ing for each vertex the evolution of f at its direct neigh-
bors. Several algorithms have been developed to construct



Figure 2. Evolution of the level lines of the

height function on a bi-torus, its critical

points and its Reeb graph.

Reeb graphs from the connectivity relations of these critical

points [6, 5], most of them in O(n × log(n)) steps, with
n the number of vertices in the mesh. However, they as-
sume that all the information brought by the scalar function

f is relevant [18, 5]. Consequently, they assume that all
the identified critical points are meaningful, while in prac-

tice, this hypothesis can lead to unmanageably large Reeb

graphs. To overcome this issue, Ni et al. [18] developed a

user-controlled simplification algorithm. Bremer et al. [4]

proposed an interesting critical point cancellation technique

based on a persistence threshold. Attene et al. [1] proposed

a seducing approach, unifying the graph construction and

simplification, but it is conditioned by a slicing parameter.

In this paper, we propose a discrete formulation of con-

tours, connected subsets of level lines, which enables, with-

out any input parameter, the construction of visually mean-

ingful Reeb graphs (fig. 1(c)).

2.3. Constriction computation

Hétroy and Attali [9] define constrictions as simple

closed curves, whose length is locally minimal. Con-

strictions are located on the narrowest parts of a surface.

This notion is of major interest for segmenting individ-

ual subcomponents identified with standard topological ap-

proaches into more significant parts, for deformation pur-

pose for example. Recently, Hétroy [8] showed that con-

striction detection could be achieved by analyzing surface

curvature.

In this paper, we propose to analyze the geometrical

characteristics of discrete contours, and particularly their

concavity, to approximate constrictions (fig. 1(d)), in order

to decompose previously identified components into more

visually interesting parts (fig. 1(e)).

3. Method overview

Given a connected triangulated surface T , we propose
in this paper a unified method to decompose T into visu-

ally meaningful sub-parts, considering the topological and

geometrical characteristics of discrete contours.

The algorithm proceeds in three stages. Firstly, mesh

feature points are extracted (fig. 1(a)) in order to compute

an invariant and visually interesting mapping function (fig.

1(b)), denoted fm in the rest of the paper. Secondly, for

each vertex in the mesh, we compute its discrete contour, a

curve traversing it and approximating fm continuous con-

tour. Finally, as the set of discrete contours recovers the

entire mesh, it is possible to analyze each contour charac-

teristics, either to detect topological changes (fig. 1(c)) or

to detect curvature transitions (fig. 1(d)).

Our scientific contribution resides in three points. (i)

We propose an original and straightforward algorithm for

feature point extraction. It can resolve extraction on con-

stant curvature areas – such as spheres – and it is robust

against variations in mesh sampling and model pose. (ii)

We show that a discrete contour formulation enables, with-

out re-meshing and without any input parameter, a perti-

nent Reeb graph construction, providing visually meaning-

ful graphs, affine-invariant and robust to variations in mesh

sampling. (iii) We show that the geometrical information

brought by discrete contours enables the approximation of

constrictions on prominent components and consequently

Reeb graph refinement.

4. Mapping function

To compute visually meaningful topological skeletons,

we first have to define a mapping function that will high-

light the most significant parts of the mesh. In order to fit

application constraints, this function has to present stability

and invariance properties. Geodesic distances are affine-

invariant and robust to variations in model pose. From

an algorithmic point of view, they can be approximated

by the Moore-Dijkstra algorithm (distance minimizing in

weighted graphs). In the rest of this paper, we will refer to

δ(v1, v2) as the normalized approximation of the geodesic
distance from vertex v1 to vertex v2, normalized with regard

to mesh global extrema.

4.1. Feature point extraction

Feature points are mesh vertices located on extremities

of prominent components. As they highlight the most sig-

nificant features of the shape, they are used in our mapping

function computation as origins for geodesic distance eval-

uation. To extract them, we propose a quite straightforward

algorithm, based on topological tools. Most of the geodesic

based mapping function local extrema appear at extremities

of prominent components (figs. 3(a) and 3(b)), mainly be-

cause gradient vanishes in those configurations. Therefore,

we propose to realize a crossed analysis, using two geodesic

based mapping functions – whose origins are the mesh most

distant vertices – and to intersect the sets of their local ex-

trema.



(a) E1. (b) E2. (c) E1 ∩E2.

Figure 3. Feature point extraction overview.

Let vs1
and vs2

be the most geodesic distant vertices of

a connected triangulated surface T , computed with the Tree
Diameter algorithm [12]. In figure 3, vs1

is located at the

extremity of the wrist (fig. 3(a)) while vs2
is located at the

extremity of the middle finger (fig. 3(b)).

Let fg1
and fg2

be two scalar functions defined on each

vertex v of T , as follows:
fg1

(v) = δ(v, vs1
) (1)

fg2
(v) = δ(v, vs2

) (2)

Basing on the critical point classification proposed in [6],

a local minimum is defined as a vertex such that all its direct

neighbors have an upper function value. Reciprocally, we

define a local maximum as a vertex such that all its direct

neighbors have a lower function value. Let E1 be the set

of local extrema (minima and maxima) of fg1
(in yellow

in fig. 3(a)) and E2 be the set of local extrema of fg2
(in

cyan in fig. 3(b)). Extremities of prominent components

are configurations where fg1
and fg2

tend to an extremum

(figs. 3(a) and 3(b)). Consequently, the set of feature points

is both included in E1 and E2. Therefore, we define the set

of feature points F of T (fig. 3(c)) as follows:

F = E1 ∩ E2 (3)

In practice, fg1
and fg2

local extrema which correspond

to feature points do not appear exactly on the same vertices

but in the same geodesic neighborhood. Therefore, the in-

tersection constraint is relaxed as follows, with ε ∈ [0, 1]
the radius of the geodesic neighborhood (geodesic distance

are normalized):

v ∈ F ⇐⇒






∃ve1
∈ E1 / δ(v, ve1

) < ε

∃ve2
∈ E2 / δ(v, ve2

) < ε

δ(v, vfi
) > ε ∀vfi

∈ F
ε ∈ [0, 1]

(4)

From our experience, using only two geodesic mapping

functions (fg1
and fg2

) and setting ε = 0.05 give accurate
results. Moore-Dijkstra’s algorithm is a time complexity

bottleneck. fg1
and fg2

are computed each inO(n×log(n))
steps, with n the number of vertices in T .
In this paragraph, we presented a straightforward algo-

rithm for mesh feature point extraction, in O(n × log(n))
steps, with n the number of vertices in T . This algorithm is
based on geodesic distance evaluations. Therefore it is sta-

ble and invariant to geometrical transformations and robust

(a) 25 000

vertices.

(b) 5 000

vertices.

(c) 1 000

vertices.

Figure 4. Feature point extraction robustness

against mesh sampling variations.

to variations in model pose. Furthermore, in order to select

feature points, the mapping function gradient is analyzed.

No hypothesis is required about mesh sampling. Conse-

quently, this algorithm is robust against variations in mesh

sampling, as illustrated in figure 4: feature points are similar

when the resolution decreases. Moreover, it achieves cor-

rect extraction on constant curvature areas, such as spheres,

as shown in fig. 5(a).

4.2. Mapping function computation

When dealing with topological skeletons, it is necessary

to define an invariant and visually interesting mapping func-

tion, which reveals the most significant parts of the mesh.

Moreover, the mapping function should not generate an un-

manageable set of critical points, in order to make the graph

simplification easier. From our experience, this is not the

case of the function presented in [10].

Firstly, to guarantee invariance to geometrical transfor-

mations and robustness against variations in model pose,

geodesic distances are used. Secondly, to define a visu-

ally interesting mapping function, feature points are taken

as origins for geodesic distance evaluations. Therefore, we

propose the following mapping function, noted fm in the

rest of the paper, which computes in each vertex v of T the

geodesic distance to the closest feature point:

fm(v) =
fc(v) − minv∈T fc(v)

maxv∈T fc(v) − minv∈T fc(v)
(5)

fm is a normalized version of the function fc, defined as

follows (fc(v) ≥ 0, ∀v ∈ T ):

fc(v) = 1 − δ′(v, vc) (6)

with vc the closest feature point from v:

vc ∈ F / δ′(v, vc) = minvfi
∈F δ(v, vfi

) (7)

Notice that fm is invariant to uniform scaling (thanks to

the normalization), rotation and translation (thanks to the

use of geodesic distances). Figure 5 presents some compu-

tations of fm over arbitrary shapes, the number of extracted

feature points (|F |) and the number of critical points (|C|,
identified according to the classification proposed in [6]).

fm has been defined so as it tends to maxima (in green) at



(a) |F | = 2,
|C| = 326.

(b) |F | = 6,
|C| = 94.

(c) |F | = 7, |C| = 92.

Figure 5. fm mapping function computed on

arbitrary shapes.

(a) Γ(va). (b) Γ(vb).

Figure 6. Example of continuous (red) and

discrete (green) level lines (height function).

feature points and it tends to minima (in red) at the center

of the object.

As shown in figure 5, fm generates an important num-

ber of critical points. Consequently, standard Reeb graph

construction algorithms would create large graphs, count-

ing as many nodes as critical points, which is a major issue

for topological skeleton extraction. In the next section, we

present a formulation of discrete contours, which enables a

unified graph construction and simplification process.

5. Discrete contours of a mapping function

In this section, we propose to construct discrete con-

tours. In the next sections, those discrete contours will be

used either to detect topological changes or to detect curva-

ture transitions, providing enhanced topological skeletons,

without re-meshing and without any input parameter.

Defining contours of a real function f computed on a

triangulated surface T is not a simple problem. In the con-

tinuous case, two points p1 and p2 belong to the same level

line f−1(f(p1)) if f(p2) − f(p1) = 0. Moreover, p1 and

p2 belong to the same contour if they belong to the same

connected component of f−1(f(p1)).

In the discrete case, for a given vertex v ∈ T , depending
on T sampling, f−1(f(v)) is often reduced to the vertex
v itself. With regard to definition 1, a correct Reeb graph
could not be constructed from this formulation of discrete

contours, because the conditions of the equivalence relation

would rarely be satisfied.

To preserve contour topological properties in the dis-

(a) Γ(v600),
2 contours.

(b) Γ(v10 000),
4 contours.

(c) Γ(v20 000),
6 contours.

Figure 7. Example of discrete level lines on a

25 000 vertex mesh (fm function).

crete case, we define the discrete level line Γ(v) associ-
ated to the vertex v as a curve computed along the edges of
T which approximates by upper value the continuous level

line f−1(f(v)). Figure 6 shows discrete level lines travers-
ing an arbitrary triangulation, with regard to the height func-

tion. Moreover, each connected subset of a discrete level

line is referred as a discrete contour. In particular, we de-

fine the discrete contour γ(v) associated to the vertex v as
the connected subset of Γ(v) containing v. Notice that the
more T will be dense, the more discrete contours will tend

to continuous contours.

Discrete contours can be computed for the whole mesh

using a step by step gradient ascent process, described in

algorithm 1. It handles two heaps, respectively the set of

visited vertices V t and the set of candidate vertices for visit
Cd. At each step, Cd surrounds V t by upper value.

Algorithm 1 Discrete contour computation.

V t = ∅
Cd ← {argminv′∈T f(v′)}
while Cd .= ∅ do

v ← argminv′∈Cdf(v′)
5: Γ(v) ← Cd

γ(v) ← connected subset of Cd, containing v
Remove v from Cd
Cd ← Cd ∪ {v neighbors, which are not in V t}
Add v to V t

10: end while

A discrete level line locally minimizes its differencewith

the continuous level line it approximates. This difference

can be expressed as follows:
∑

vi∈Γ(v)

(f(vi) − f(v)) / f(vi) ≥ f(v), ∀vi ∈ Γ(v) (8)

In expression 8, f(v) is a constant term. Consequently,
minimizing this expression is equivalent to minimizing

f(vi) which is actually performed at each iteration of al-
gorithm 1. Cd always surrounds V t by upper value and
minimizes expression 8, thus it is equivalent to Γ(v).
In figure 7, examples of discrete level lines Γ(vi) are



(a) 1

contour.

(b) 2

contours.

(c) 1 contour.

Figure 8. Bifurcation and junction contexts

on a torus shape (height function).

(a) (b) (c)

Figure 9. Dual Reeb graphs of primitive and

complex shapes (fm function).

shown, at different iterations i of the algorithm. V t ver-
tex set is displayed in white and Γ(v) is displayed in red.
Visiting in a recursive fashion each vertex of Γ(v) enables
the identification of each of its connected subsets, and par-

ticularly γ(v).

6. Topological analysis of discrete contours

Standard Reeb graph construction algorithms need sim-

plification in order to remove noisy details. In this section,

we propose a unified algorithm for graph construction and

simplification, based on the topological analysis of discrete

contours. Following the definition 1 of a Reeb graph in the

continuous case, we can state an analog equivalence rela-

tion in the discrete case between two vertices v1, v2 ∈ T ,
based on our notion of discrete contour:

(v1, f(v1)) ∼ (v2, f(v2)) ⇐⇒

{
v2 ∈ Γ(v1)
v2 ∈ γ(v1)

(9)

v1 and v2 belong to the same connected component if

they satisfy the above conditions. Therefore, at each itera-

tion of the contour computation algorithm, each individual

connected component of T , traversed by Γ(v), can be iden-
tified. Thus, topological changes can be detected observing

the numberNΓ(v) of connected subset ofΓ(v), as f evolves.
We define three types of topological changes:

1. bifurcations: when NΓ(v) increases from iteration t to
iteration t+1 (Γ(v) splits in two contours from 8(a) to
8(b)),

2. junctions: when NΓ(v) decreases from t to t + 1 and
when several discrete contours merge (two contours

merge in one from 8(b) to 8(c)),

(a) 25 000

vertices.

(b) 5 000

vertices.

(c) 1 000

vertices.

Figure 10. Algorithm robustness against

mesh sampling variations.

3. terminations: when NΓ(v) decreases from t to t + 1,
without discrete contour merge.

Figure 9 shows several dual Reeb graphs obtained with

this strategy, with regard to fm. Connected components are

represented by the nodes located at their barycenter.

The main contribution of our algorithm is that graph con-

struction and simplification are performed at the same time.

If we compare figures 9 and 5, we notice that the dual Reeb

graphs do not reflect the presence of noisy critical points

(points in red in figure 5), because discrete level lines do not

disconnect in those configurations. Standard Reeb graph al-

gorithms would have generated graphs counting as many

nodes as critical points – 94 nodes for the hand model and

92 nodes for the horse model – while in our approach only

meaningful topological variations are encoded in the graph.

In comparison to [1, 10], no re-meshing and no input

parameter, such as a slicing parameter, are required. Con-

sequently, as no assumption is made about T sampling,

this algorithm is robust against variations in mesh sam-

pling, as shown in fig. 10. Furthermore, as fm is based on

normalized geodesic distance evaluations, presented graphs

are also invariant to geometrical transformations (rotation,

translation and uniform scaling).

In this section, we presented a unified graph construction

and simplification algorithm, based on the topological anal-

ysis of discrete contours. As contours do not disconnect in

fm noisy parts, resulting graphs reveal the shape most sig-

nificant features. However, a strict topological analysis can-

not discriminate visually meaningful sub-parts of a given

connected component. To overcome this issue, we propose

in the next section to analyze the geometrical characteristics

of discrete contours to detect constrictions.

7. Geometrical analysis of discrete contours

Constriction approximations enable the subdivision of

the branches of topological skeletons into more visually in-

teresting parts. In this section, we propose an algorithm

for constriction approximation, based on the analysis of the

curvature of discrete contours. For each discrete contour

identified in the previous stage, we compute its Gaussian

curvature and we identify local minima as constrictions.



Model fτ = 3 fτ = 5 fτ = 10 fτ = 15

Humanoid 4 8 9 12

Horse 1 11 11 11 12

Hand 1 5 8 11 12

Hand 2 6 9 11 11

Horse 2 9 14 19 19

Table 1. Number of constrictions with differ-

ent concavity curve cutoff frequencies (fτ ).

7.1. Topological constraint

Since constrictions are defined as closed curves, the anal-

ysis has to be restricted on closed discrete contours only.

Considering each contour γ(v) as a connected and non-
directed planar graph G, γ(v) is a cycle, and consequently
a closed curve, if the degree of all its vertices equals two.

Therefore for each discrete contour of T reduced to a pla-

nar graph G, the degree of each of its vertex is computed
and we only consider in the rest of our algorithms contours

that satisfy the above property.

7.2. Concavity curves

In our experiments, the average curvature ζ(γ(v)) of
each discrete contour γ(v) is estimated by computing the
Discrete Gaussian Curvature [14] in each of its vertex. If

ζ(γ(v)) is positive, γ(v) neighborhood is globally convex,
otherwise it is concave. Constrictions appear on the narrow-

est, or the most concave, parts of a surface. Consequently, in

order to only consider concave discrete contours, we com-

pute ζ′(γ(v)) as follows:

ζ′(γ(v)) =

{
ζ(γ(v)) if ζ(γ(v)) ≤ 0
0 if ζ(γ(v)) > 0

(10)

During the discrete contour computation, each contour is

stored in the related node of the dual Reeb graph. As this

algorithm visits T from the lowest to the highest fm values,

for a given node of the graph, contours are automatically

sorted by fm values. Computing ζ′(γ(v)) sequentially for
each of these sorted contours gives, for a given node, a con-

cavity curve, an overview of the concavity evolution as fm

evolves.

Curves shown in figure 11 give examples of such evolu-

tions, computed on the neck of the horse model (fig. 12(j)).

The left values of these concavity curves correspond to the

concavity estimations of the discrete contours located at the

basis of the neck. The right values correspond to the con-

cavity estimations of the discrete contours located at the end

of the neck (basis of the head sub-part).

7.3. Constriction approximation

Curvature is a well-known noise sensitive entity. Con-

sequently, to compute nice-looking approximations of con-

strictions, we have to reduce high frequency noise in con-

cavity curves. Reducing noise on a one-dimensional data

(a) Unfiltered curve.

(b) Filtered curve (fτ = 10).

Figure 11. Concavity curves for the neck of

the horse model (unfiltered and filtered).

set is a trivial signal-processing problem. This can be

achieved by applying an ideal low-pass filter of cutoff fre-

quency fτ , defined by the following transfer function:

H(fγ(v)) =

{
1 if fγ(v) ≤ fτ

0 if fγ(v) > fτ

(11)

A filtered version of ζ′(γ(v)) is given by the following
expression, where FT stands for the Fourier Transform:

ζ̂′(γ(v)) = FT−1(H(fγ(v)) × FT (ζ′(γ(v)))) (12)

As shown in figure 11(b), low-pass filtering enables

the discrimination of strongly concave contours. Conse-

quently, for each node of the topological skeleton, we iden-

tify as constriction approximations the discrete contours

that strongly minimize ζ̂′(γ(v)). Then, the dual Reeb graph
is refined, subdividing each node using its constrictions as

boundaries between sub-parts.

8. Experiments and results

In this section, we present and comment on experimen-

tal results obtained with our method and we discuss about

its applications, particularly mesh deformation. Presented

models are connected triangulated surfaces extracted from

the Princeton Shape Benchmark database [21].



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 12. Feature points, constriction approximations and enhanced topological skeletons of stan-

dard models.

Model Faces Feature pts. Constrict. Time

Humanoid 1 900 19 9 0.5 s.

Horse 1 20 000 10 11 12 s.

Hand 1 50 000 6 11 75 s.

Hand 2 50 000 6 11 100 s.

Horse 2 40 000 7 19 35 s.

Table 2. Computation times.

8.1. Discussion

Figure 12 presents intermediary results and enhanced

topological skeletons of standard models.

Firstly, we can notice that our feature point extraction

algorithm achieves correct extractions, even on complex ar-

eas, such as the hair of the humanoid model.

Secondly, our constriction approximation algorithm

computes nice-looking constrictions (in red in fig. 12) even

for coarsely designed objects (figs. 12(f) and 12(g)). It au-

tomatically adjusts its detection criterion to the connected

component it is processing, enabling the identification of

constrictions even on strongly tubular mesh sub-parts (like

the legs of the horse models).

Table 1 shows that the number of identified constrictions

is quite stable when fτ varies. The most visually interesting



(a) Input mesh. (b) Enhanced topological skeleton. (c) Deformed skeleton. (d) Deformed mesh.

Figure 13. Application to mesh deformation.

results have been obtained setting fτ = 10. This setting has
been chosen for each model in fig. 12.

However, constrictions are approximated assuming they

appear along identified discrete contours only. This is a

strong hypothesis. As shown in figure 12, thanks to our

mapping function definition, this limitation is not detrimen-

tal when dealing with natural objects because some con-

tours are actually identified on the articulations of promi-

nent components.

Constriction approximation leads to the subdivision of

the branches of the topological skeleton into more visually

interesting parts: such as the decomposition of fingers into

phalanxes (figs. 12(m) and 12(n)) or the decomposition

of legs into thighs, calves and feet (figs. 12(k), 12(l) and

12(o)).

Thanks to fm invariance properties, those skeletons are

invariant to geometrical transformations: translation, rota-

tion and uniform scaling. Furthermore, as shown section 6,

thanks to our graph construction strategy, no noisy details

are encoded in the skeletons.

8.2. Time complexity

Given an input connected triangulated surface T , let
n be the number of vertices in T . Feature point extrac-
tion is performed in O(n × log(n)) steps. fm is com-

puted in O(|F | × n × log(n)) steps with |F | the number
of identified feature points. Notice that fm has a lower

computational cost than the function proposed in [10] (|F |
rarely exceeds 20). Each discrete contour computation takes

O(log(n) + n). Therefore, as contours are computed for
each vertex in T , the overall discrete contour computa-
tion takes O(n2) steps. Topological and geometrical anal-
yses are more straightforward. Topological analysis is per-

formed in O(n) steps. Concavity curves are computed in

O(n) steps. Their smoothing is realized in O(n × log(n)),
using the Fast Fourier Transform algorithm. Consequently,

we can state that the overall complexity of our method is

bounded by the discrete contour computation, which takes

O(n2) steps.
Presented algorithms have been implemented in C lan-

guage under GNU/Linux and experimented on a desktop

PC with a 3 GHz P4-CPU and 2 gigabytes of RAM. Table

2 shows the computation times corresponding to the mod-

els presented in fig. 12. Notice that our overall method

has a significantly lower running time than latest constric-

tion detection [8] or skeleton extraction [24] methods, for

equivalently sampled meshes.

8.3. Example of application: mesh deformation

Topological skeletons have shown to benefit various ap-

plications in computer graphics [2]. For example, within

the framework of shape retrieval, thanks to their invariance

properties, enhanced topological skeletons can be used for

shape similarity estimation. They are also good supports for

shape compression, metamorphosis, texture mapping, etc.

In this paper, to show the usability of our approach, we

focus on mesh deformation. Each node of the enhanced

topological skeletons references each vertex of the related

mesh sub-component. Thus, a novice user can easily apply

deformations on selected parts of the object.

Since mesh deformation is not in the scope of this paper,

in our experiments, models are deformed by applying sim-

ple rotations to components, but more sophisticated strate-

gies can be used [13]. Given an angle and an axis of ro-

tation, a rotation matrix is computed. Then it is applied to

each vertex of the selected node, providing nice-looking de-

formations, as shown in figures 1(f) and 13.



9. Conclusion and future works

In this paper, we presented a fully automatic algorithm

for the extraction of affine-invariant enhanced topological

skeletons. It first computes a dual Reeb graph. Then it re-

fines it using constrictions as boundaries betweenmesh sub-

parts. To our knowledge, this is the first approach which

unifies Reeb graph and constriction computations.

Our scientific contribution resides in three points. Firstly,

we proposed a robust and straightforward feature point ex-

traction algorithm. It enables the computation of an invari-

ant mapping function which reveals well the shape most

significant features. Secondly, we presented an algorithm

for discrete contours computation. We showed that a topo-

logical analysis of these discrete contours enables a unified

Reeb graph construction and simplification process. Result-

ing graphs do not encode noisy details and they are robust

against variations in mesh sampling and invariant to geo-

metrical transformations. Finally, we showed that a geomet-

rical analysis of the discrete contours provides nice-looking

constriction approximations on prominent components, en-

abling the refinement of dual Reeb graphs into more visu-

ally meaningful skeletons.

Our algorithm computes skeletons with satisfactory exe-

cution times, without any input parameter or pre-processing

stage. Consequently, it is a good candidate for various ap-

plications in computer graphics, like shape deformation (ex-

perimented in this paper), retrieval, metamorphosis, com-

pression, texture mapping, etc.

In the future, we would like to experiment more robust

geometrical analyses and constriction sliding algorithms, in

order to provide more visually interesting skeletons. More-

over, forcing the position of the skeleton inside the object

and preserving shape symmetry are enhancements which

benefit certain applications and which are currently under

investigation.
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