
HAL Id: hal-00725543
https://hal.science/hal-00725543v1

Submitted on 28 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the extensibility of plug-ins
Vanea Chiprianov, Yvon Kermarrec, Siegfried Rouvrais

To cite this version:
Vanea Chiprianov, Yvon Kermarrec, Siegfried Rouvrais. On the extensibility of plug-ins. ICSEA: 6th
International Conference on Software Engineering Advances, Oct 2011, Barcelona, Spain. pp.557 -
562. �hal-00725543�

https://hal.science/hal-00725543v1
https://hal.archives-ouvertes.fr


On the Extensibility of Plug-ins

Vanea Chiprianov, Yvon Kermarrec
Institut Telecom, Telecom Bretagne
Universit́e euroṕeenne de Bretagne

Technopole Brest Iroise, CS 83818 29238
Brest Cedex 3, France

UMR CNRS 3192 Lab-STICC
Vanea.Chiprianov@telecom-bretagne.eu

Siegfried Rouvrais
Institut Telecom, Telecom Bretagne
Universit́e euroṕeenne de Bretagne

Technopole Brest Iroise, CS 83818 29238
Brest Cedex 3, France

Siegfried.Rouvrais@telecom-bretagne.eu

Abstract—There are software engineering tooling problems
for which the solution benefits from being encapsulated as
a plug-in. Among these problems, to ensure higher leverage,
there are categories for which is important that their solution is
extensible. However, extending a plug-in in practice oftentakes
a long time, requires expertise, involves hacks and produces low
quality code. In this paper, we advocate that assuring early
in the design that a plug-in is extensible, by providing the
necessary extension points, increases its re-usability, improves
its evolution, and ultimately reduces the development time
of the extender plug-in. We identify categories of software
engineering problems whose solutions benefit from being ex-
tensible plug-ins, and review existing approaches to extending
plug-ins. Finally, we report on our experience, with some of
these approaches, in extending an Eclipse plug-in for a domain
specific modeling language graphical editor.

Keywords-Plug-in; extensibility; framework; software ar-
chitecture; software design; design pattern; Domain Specific
Language; modeling; experience report.

I. I NTRODUCTION

Our knowledge for solving software engineering problems
is increasingly being encapsulated in tools. These tools
provide the maximum of benefits when they operate in
an environment that can provide integration with existing
elements such as editors, compilers, debuggers, profilers and
visualizers. A major challenge is to develop tools that can
span different, heterogeneous and future environments.

A software plug-in is a set of software components that
adds specific capabilities to a larger software application[1].
As an auxiliary ”client” module or expansion, it permits to
add specific capabilities to a larger ”host” software appli-
cation. For example, external capabilities may be functions,
services, features, or support for handling a file format. The
plug-in pattern, Figure 1, from [2], presents how to design
an application in order to allow its extension at runtime by
dynamically loaded modules or classes. The plug-in loader
is part of what is called the framework.

Well-known examples of systems based on plug-ins in-
clude web-browsers (e.g., the add-ons [3] for Firefox),
graphics editing programs [4], games (plug-ins are called

Figure 1. UML class diagram for the plug-in pattern, from [2].

mods [5]), integrated development environments (IDE) (e.g.,
Eclipse), tools for formal analysis and verification.

Plug-in systems are developed in order to benefit from the
following advantages [6]:

• Stability of system design. New features are added
through plug-ins, independent of the core functional-
ities of the application.

• Reduced frequency of context switches. The user re-
mains in the same integrated environment, experiencing
a feeling of continuity.

• Increased usability. The user does not need to learn to
use a new environment for the system functionality.

• Re-usability of framework functionality. Basic shared
functionality is provided by the framework, so liberat-
ing the plug-ins from assuring it, reducing complexity
and increasing modularity and understandability [2].

• High flexibility in tool customization. The user can
select exactly the plug-ins tailored to her needs.

• Interoperability. In many research communities, all
tools are developed using the same framework.

• Easy extensibility [7]. New tools can be added without
the need to understand the framework code. Extendibil-
ity [8] is defined as the degree of usability and safety in
contexts beyond those initially intended. Extendibility
includes, but is not restricted to, extensibility.

Plug-in extension may be considered as a subproblem of
the customizing libraries issue. Library customization con-



sists in adding new or modifying existing pieces of code. A
recent comparative study [9] surveyed most of the techniques
for library customization. Despite their differences, alltech-
niques require some sort of hole/hook point/expansion in
the ”host” code. The extensions have to ”hook” into a main
application or framework environment [10]. For this, ”client”
extensions must declare how they interact with the ”host”
and the ”host” must provide interaction points. Because of
this shared need of all extension approaches, we advocate
that designers of the ”host” extended plug-in appear as good
candidates to identify and provide these extension points,for
the expansion approach of their choice.

However, plug-ins present drawbacks also:
• Difficult installation of new plug-ins. Compatibility

issues with already present plug-ins, versioning prob-
lems, impede users and may even provoke reliability
problems if the existing application stops.

• Restriction to the chosen framework. The framework
may not support adequately all the necessary func-
tionality and/or technologies (e.g., limitation to only
a certain operating system).

To improve plug-in extensibility, and based on our ex-
perience report (Section IV), we defend in this paper that
extension points should be included in the very initial design
of certain plug-ins (Section II) software architecture in some
manner (Section III). As such, developing plug-ins from
scratch or refactoring them with those extension points in
mind, opens the way towards easier plug-in interoperability,
extensibility, integration, installation, increases openness to
several frameworks, leading to more potential uses.

II. CATEGORIES OFEXTENSIBLE PLUG-INS

It is quite safe to assume that plug-in providers would
like to easily make their plug-in available in multiple
frameworks. But experiments [11] on porting plug-ins to
other frameworks suggest that only limited reuse is possible.
Conceiving a plug-in as an extension of an adapter plug-in
that takes care of framework particularities greatly increases
reuse. So extension may be a great benefit or even a
requirement for certain categories of plug-ins. In this section,
we identify such categories of plug-ins.

One such category are tools for domain specific languages
(DSLs). A DSL [12] is a language restricted to and focused
on a particular domain. Implementing a DSL and its asso-
ciated tools usually have as starting point an existing, more
general purpose, base language and its tools. For example,
SysML [13] (a modeling language for systems engineering
applications) is defined as an extension of UML. Developing
tools (e.g., editors, code generators) for such DSLs benefits
from reusing base language tools. The base language tools
are often part of a tool-set, an IDE, and implemented as
plug-ins. Therefore, developing tools for DSLs based on
another language often consists in extending plug-ins. The
case study presented in Section IV is an example of an

editor plug-in for such a DSL. Another example of plug-
in extension for domain specificity is Ginga-NCL (Nested
Context Language) [14], a declarative environment for IPTV
services. An NCL application itself acts as a plug-in of
another parent NCL application.

Tools for coverage, profiling and the collection of different
kinds of runtime information are also particularly suitable
for plug-in extension. Many of them are implemented as part
of an IDE, as plug-ins, to assist the developer. Also, they
may present several variants that share nonetheless common
functionality, and so be suitable for extension. An exampleis
InsECTJ [15], a framework which is also a plug-in. It is a set
of Eclipse plug-ins for the collection of runtime information
(coverage, profiling, and data values from specific points
in a program execution). It defines a core plug-in, which
implements the general framework and uses an extension
point to expose its functionality to specific probe inserters. A
probe inserter is an instrumentation module that implements
the extension point in the core plug-in. Probe inserters are
bundled in a second Eclipse plug-in.

In the Web development community, there are numerous
web browser plug-ins that are extended at their turn. For
example, Firebug [16] is a Firefox add-on for editing, de-
bugging, and monitoring HTML, JavaScript and other Web
languages. It has a number of extensions [17] that typically
come in the form of Firefox add-ons. For example, Firebug
Code Coverage is a Firefox add-on and Firebug extension
that adds entry function code coverage for JavaScript code.

Another category consists of tools that implement differ-
ent strategies (cf. the Strategy pattern [18]) as part of a tool-
chain. For example, the RDB2RDF Plugin [19] is an Eclipse
plug-in that supports the standard relational database schema
(RDB) to Resource Description Framework (RDF) Mapping
Language (R2RML). R2RML mappings provide the ability
to view existing relational data in the RDF data model,
expressed in a structure and target vocabulary of the mapping
author’s choice. New mapping algorithms can be added by
the user through the implementation of an interface.

Plug-ins that are ported to other frameworks constitute
another category for which plug-in extension is beneficial.
To achieve more reuse when porting plug-ins to another
platform, [11] propose to construct an adapter layer, written
in a language supported by the framework, and conforming
to the frameworks plug-in interface. The adapter in turn
communicates with the plug-in through, for example, mes-
sages or remote procedure calls. We propose to construct
the adapter as an extensible plug-in, so greatly simplifying
the communication between the adapter and the plug-in. An
adapter extensible plug-in will also reduce theRestriction to
the chosen frameworkdrawback of plug-ins (cf. Section I).

The need for extensible plug-ins is a real one, as shown
by the numerous examples in different categories we have
identified here. And even more categories should be identi-
fied. They can then be used by designers to decide if their



plug-in belongs to one of them. If it is the case, designers
know there are high chances extensibility will be needed for
their plug-in. So they can create an architecture accordingly.

III. PLUG-IN EXTENSION METHODS

To implement plug-in extension, common approaches,
inspired from code generation techniques, are:

• Hacks. Though undesirable, many programmers use
them. Hacks add code in many places, which reduces
readability, maintenance, re-usability;

• C-style preprocessor directives. Simple #ifdef’s can be
used to include or exclude code, but readability is low
and errors can be introduced easily;

• Object-Oriented Programming (OOP). Interfaces and
(multiple)-inheritance provide variation/expansion
points. They can be used at design time of the ”host”
plug-in to provide expansion points for the ”client”
code. Once the expansion points in the ”host” are
in place, the expansions consist of only adding new
classes. This provides clear separation, facilitating
readability, maintenance, extensibility. However,
supplementary levels in inheritance hierarchies may
result in loss of performance at run time;

• Feature-Oriented Programming [20]. A feature is an
increment in program functionality. Feature interaction
with core functionality and other features is defined in
”lifters”. At its essence, extending code this way is the
same as OOP method overriding;

• Aspect-Oriented Programming [21]. An aspect is a
supporting function, separated from the main logic.
Aspects are added to main logic at various joint points.
It allows adding functionality to an existing class
transparently, which implies clean structuring of code.
However, specifying point-cuts uniquely can be hard;

• Fragment-Oriented Program Generation. Pieces of code
are combined to form a complete program. Pieces
can be used by functions as regular input or output
parameters. Composition of pieces is performed by
plugging fragments into the holes declared in other
fragments. Declaration of holes is needed.

Despite their differences, all these techniques require
some sort of hole/hook point/expansion in the ”host” code.
Because of this shared need of all extension approaches,
we advocate that designers of the ”host” extended plug-
in appear as good candidates to identify and provide these
extension points, for the expansion approach of their choice.
In this way, non-functional properties (e.g., re-usability,
flexibility, extensibility) of the ”host” plug-in are improved.

IV. EXPERIENCEREPORT

In this section we report on our experience with extending
a plug-in for Eclipse. Eclipse is an open source, extensible
IDE, but also an extensible application framework upon
which software, usually as plug-ins, can be built [10]. Using

the OSGI framework to install, update or remove plug-ins
on the fly, Eclipse can be easily customized. Moreover, it
provides a mechanism to add features to a plug-in. In fact,
there are numerous dependencies between plug-ins, some
of them extending others. Eclipse allows building tools that
integrate seamlessly with the environment and other tools.

A. Telecommunications Service Creation

As our research context is in the telecommunications area,
we investigate domain specific models, meta-models and
model transformations for service creation. We rely on a
multi-layer, multi-view approach, as largely recognized in
the Enterprise Architecture community. Recent efforts [22]
[23] [24] of telecom operators (service providers) on defin-
ing meta-models for modeling services are indicative of the
need for specific, dedicated modeling telecom languages and
tools. Moreover, one of the service providers’ requirements
identified by [25] is to have an overall representation of
service creation taking in all business, management, and
technical activities. To meet these needs, we propose defin-
ing a graphical telecom DSL (with semantics implemented
through code generation) as an extension of an Enterprise
Architecture modeling language [26].

ArchiMate [27] is an Enterprise Architecture modeling
language, a standard developed by the Open Group, with a
large and growing user community. We propose defining our
DSL as an ArchiMate extension. Archi [28] is a free, open
source, cross-platform editor to create ArchiMate models.
Archi is developed as a plug-in for Eclipse3.6.1. To reuse
existing tools for ArchiMate, we define a telecom DSL editor
(Figure 2) as an extension of Archi. The editor presents the
classical divisions of an Eclipse-based editor. At the left,
there is the model navigator and an outline of the graphical
model. The central window presents views (defined as tabs)
of the graphical model. At the right, the palette offers the
telecom specific concepts and relations, from which the
designer can select, drag and drop the desired ones.

Our investigations and results for telecommunications [29]
are out of the scope of this paper. Here we focus on tool
design and development concerns [30] and especially report
on our experience regarding the benefits of using extension
points through three approaches presented hereafter.

B. Hacks

In the first phase, while still getting familiar with Archi’s
inner structure, we extended the editor by adding code
in several methods from different classes. Adding a new
concept in Archi means adding one class for the concept
logic and two other classes for graphical purposes. Five
other classes need editing. Three of these hacks are of the
same type: adding acasestatement in aswitch instruction.
Knowing all these distributed editing places requires in depth
knowledge, which takes a significant time to acquire.



Figure 2. The Archi editor with the Telecom extension (showed in red boxes) in the palette.

After acquiring sufficient knowledge, we were able to
propose a refactoring. Theswitch instruction may be re-
placed with an interface that is implemented by a class for
eachcasestatement (e.g., Strategy Design Pattern [18]). The
advantage of this pattern is that code is added only in new
classes, which impacts far less the existing code. However,
refactoring takes a lot of time. An alternative solution would
have been, for a good extensible plug-in, to have provided
extension points from the original design.

C. Factory Design Pattern

Valid relations in Archi are listed in a hash-map. Adding
a new relation implies updating this hash-map and the code
that verifies if a particular relation has valid source and
target entities. These verifications use conventions that are
personal to the original developer (e.g., the pairs of valid
source-target entities are coded as strings of letters). While

the resulting code is small, its readability is very low.
However, an alternative way of adding new relations consists
in adding a new class that verifies the type of a relation:
ArchimateModelTelecomExtensionUtils.

This new class implements an interface, also added by
us: IArchimateModelExtensionUtils. The advantage is that
when a new extension is desired, the relations introduced
by this new extension are grouped in a new class which
implements the interfaceIArchimateModelExtensionUtils.
The instantiation of the class that implements this interface
is chosen in another class, implementing in this way the
Factory Design Pattern [18]. The disadvantage is that at any
given time, only one extension can be activated.

D. Eclipse Extension Points

We may want to separate the newly added classes into
a new plug-in. Eclipse offers the possibility, through ex-



tensions points, to define an ”extender” plug-in that adds
functionality to a ”host” plug-in. However, it still requires
the ”host” plug-in to call the extensions.

E. Lessons Learned and Insights

In all three methods presented for this case study, we had
to provide expansion points in the ”host” extended plug-
in. This implies detailed knowledge of the extended plug-
in code, which takes a long time to acquire. That is why
we advocate that the original designer of the ”host” plug-
in should be the one that provides extension points. In this
way, non-functional properties of the ”host” plug-in (e.g.,
re-usability, extensibility) are improved and the development
time of the extender plug-in is reduced.

We also emphasize the iterative manner in which the
extensions were written. In the discovery phase of the ”host”
plug-in code, hacks were easier to use. When a more global
understanding of the design was achieved, restructuring the
design was envisaged and design patterns were employed.
Finally, the added code could be separated in a new plug-
in. We appreciate that a good extensible design for a ”host”
plug-in should enable the ”client” plug-in developer to skip
directly to what was, in our case, the third phase.

V. RELATED WORK

ObjectTeams/Java [31] is an Aspect-Oriented Program-
ming language which introduces the concepts of roles and
decapsulation. A role class can declare a base class by
which this role is played (using the keyword ”playedBy”). To
visualize it, in Figure 1, consider ”Plugin” as the base class,
”ConcretePlugin” as the role class and replace the ”realize”
relation between them with the ”playedBy” relation. A role
class can adapt the behavior of its base class much like a
sub-class, with the difference that roles are kept as separate
entities at runtime. This results in base instances being kept
intact, while roles can be added independently from each
other. Of course, to have access to private data as sub-
classes do, roles need decapsulation. Decapsulation means
that a role class may access features of its base class even if
the normal rules of encapsulation would prohibit it. Support
for ObjectTeams has been added in the Eclipse OSGI
framework. This generalizes the Eclipse plug-in extension
mechanism with the introduction of joint points which can
bee seen as unanticipated extension points. This makes it
possible not only to add new behavior, but also to replace
functionality of a plug-in. However, the introduction of
decapsulation breaks one of the most important principle
and advantage of the Object Oriented Paradigm. Program-
mers of the extending plug-in become encumbered with
the responsibility of correctly using the decapsulated data,
which goes back to the need of knowing in great detail the
implementation of the extended plug-in. To counter negative
effects like this, we propose that the original architect ofthe
plug-in provides the necessary extension points.

Other proposals that enable reuse of plug-ins, although not
through extensibility, include, for example, [32]. The authors
propose the concepts of Task Based plug-in and work-flow
of Task Based plug-ins. A Task Based plug-in is a plug-
in that declares the functionalities that can be executed as
tasks. Using tasks, IDE users can create work-flows that
execute multiple tools and integrate tool results. In this way,
Task Based plug-ins can be integrated and composed through
pre-defined and user-defined task flows. However, this reuse
approach does not allow specialization of the behavior of a
tool, which extensibility does.

Another framework for service development, developed
as an Eclipse plug-in, is jABC [33]. It also contains an
extensible set of plug-ins, so that the jABC models can
be analyzed, simulated, verified, executed and compiled.
However, it deals with services in general, while the plug-in
we developed is focused on Telecommunications services.

VI. D ISCUSSION ANDCONCLUSIONS

The importance of plug-in extensibility is intrinsically
part of the bigger discussion on software architecture (good
properties). It may be argued that extensibility, and even
the existence of a software architecture, plans too much in
advance, pushes too much on the anticipation side. This may
lead to BUFD [34] (Big Up-Front Design), massive docu-
mentation, smell of waterfall, implementing features YAGNI
[35] (You Ain’t Gonna Need It), huge future re-factorings
because of architecture erosion. An alternative is that a
metaphor should suffice, the architecture should emerge
gradually sprint after sprint, as a result of a succession of
small re-factorings, through an adaptive process. However,
certain classes of systems, ignoring architectural issuestoo
long, ”hit a wall” and collapse by lack of an architectural
focus [36]. So, there are categories of systems for which
an adaptive approach may prove more appropriate (e.g.,
small web-based socio-technical systems) or, conversely,
categories of systems for which an anticipative approach
may prove more beneficial.

In this paper we addressed problems related to plug-in
extension. To reduce the development time of the extender
plug-in and increase quality properties (e.g., extensibility,
re-usability, flexibility) of the ”host” plug-in, we advocated
including extension points from the start, in the original
design of the ”host” plug-in. We have illustrated issues
and investigated solutions for the case of extending an
Eclipse plug-in for a domain specific modeling language
graphical editor. Through this, we hope to raise awareness
among plug-in designers for domains which are highly
probable to make use of plug-in extension (e.g., domain
specific languages). In the future, a full comparative studyof
extension methods will be useful in pinpointing limitations
from which current plug-in development systems may suffer
and help correct them.



VII. A CKNOWLEDGMENTS

The authors would like to thank Sébastien Bigaret, Tele-
com Bretagne, for his helpful reviews and Phil Beauvoir,
JISC CETIS, University of Bolton, for his helpful explana-
tions, examples and suggestions.

REFERENCES

[1] Wikipedia. (2011) Plug-in (computing). Accessed on
25.07.2011. [Online]. Available: http://en.wikipedia.org/wiki/
Plug-in %28computing%29

[2] J. Mayer, I. Melzer, and F. Schweiggert, “Lightweight plug-
in-based application development,” inIntl Conf. NetObject-
Days on Objects, Components, Architectures, Services, and
Applications for a Networked World, London, UK, 2003, pp.
87–102.

[3] Firefox. (2011) Add-ons. Accessed on 25.07.2011. [Online].
Available: https://addons.mozilla.org/en-US/firefox/

[4] Photoshop. (2011) The plugin site. Accessed on
25.07.2011. [Online]. Available: http://thepluginsite.com/
knowhow/tutorials/introduction/introduction.htm

[5] Civfanatics. (2011) Customizing Civilization IV. Accessed
on 25.07.2011. [Online]. Available: http://www.civfanatics.
com/civ4/downloads

[6] S. Wagner, S. Winkler, E. Pitzer, G. Kronberger, A. Beham,
R. Braune, and M. Affenzeller, “Benefits of plugin-based
heuristic optimization software systems,” inProc. of the 11th
intl conf. on Computer aided systems theory, Las Palmas de
Gran Canaria, Spain, 2007, pp. 747–754.

[7] F. N. Paulisch,The Design of an Extendible Graph Editor.
Secaucus, NJ, USA: Springer-Verlag, 1993.

[8] JTC1/SC7/WG6,ISO/IEC CD 25010.3: Systems and software
engineering – Software product Quality Requirements and
Evaluation (SQuaRE) – Quality models for software product
quality and system quality in use. Version 1.46, Std., 2009.

[9] B. Aktemur and S. Kamin, “A comparative study of tech-
niques to write customizable libraries,” inACM Symposium
on Applied Computing, Hawaii, USA, 2009, pp. 522–529.

[10] D. Rubel, “The Heart of Eclipse,”Queue, vol. 4, pp. 36–44,
2006.

[11] N. Sawadsky and G. C. Murphy, “Fishtail: From Task Context
to Source Code Examples,” in[37] , 2011.

[12] A. V. Deursen, P. Klint, and J. Visser, “Domain-specificlan-
guages: an annotated bibliography,”SIGPLAN Not., vol. 35,
no. 6, pp. 26–36, 2000.

[13] OMG, Systems Modeling Language, Version 1.2, Std., 2010.
[14] M. F. Moreno, R. S. Marinho, and L. F. Gomes Soares,

“Ginga-NCL Architecture for Plug-ins,” in[37] , 2011.
[15] A. Seesing and A. Orso, “InsECTJ: a generic instrumenta-

tion framework for collecting dynamic information within
Eclipse,” in Proc. of the eclipse Technology eXchange (eTX)
Ws at OOPSLA, San Diego, CA, USA, 2005, pp. 49–53.

[16] Firefox. (2011) Firebug. Accessed on 25.07.2011.
[Online]. Available: https://addons.mozilla.org/en-US/firefox/
addon/firebug/

[17] Getfirebug. (2011) Firebug/Extensions. Accessed on
25.07.2011. [Online]. Available: http://getfirebug.com/wiki/
index.php/FirebugExtensions

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,De-
sign patterns: elements of reusable object-oriented software.
Addison-Wesley Professional, 1995.

[19] P. E. Salas, E. Marx, A. Mera, and J. Viterbo, “RDB2RDF
Plugin: Relational Databases to RDF Plugin for Eclipse,” in
[37] , 2011.

[20] C. Prehofer, “Feature-oriented programming: A fresh look at
objects,”ECOOP, vol. 1241, pp. 419–443, 1997.

[21] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J. Loingtier, and J. Irwin, “Aspect-oriented programming,”
ECOOP, vol. 1241, pp. 220–242, 1997.

[22] E. Bertin, S. Bécot, and R. Nedelec, “Applying Enterprise
Architecture Principles to Telco Services,” in14th Intl Conf.
on Intelligence in Next Generation Networks, 2010, pp. 1–6.

[23] A. Ahuja, J. Simonin, and R. Nedelec, “MDA tool for telecom
service functional design,” inProc. of the 4th Euro conf. on
Software architecture, Copenhagen, Dk, 2010, pp. 519–522.

[24] J. Simonin, E. Bertin, Y. L. Traon, J.-M. Jezequel, and
N. Crespi, “Business and information system alignment: A
formal solution for telecom services,”Intl Conf. on Software
Engineering Advances (ICSEA), pp. 278–283, 2010.

[25] J. Hållstrand and D. Martin, “Industrial requirements on a
service creation environment,” inProc. of the 2nd Intl Conf.
on Intelligence in Broadband Services and Networks: Towards
a Pan-European Telecommunication Service Infrastructure,
Aachen, Germany, 1994, pp. 17–25.

[26] V. Chiprianov, I. Alloush, Y. Kermarrec, and S. Rouvrais,
“Telecommunications Service Creation: Towards Extensions
for Enterprise Architecture Modeling Languages,” in6th Intl
Conf. on Software and Data Technologies (ICSOFT), Seville,
Spain, 2011, pp. 23–28.

[27] Open Group,Archimate 1.0 specification, Std., 2009.
[28] Cetis. (2011) Archi. Accessed on 25.07.2011. [Online].

Available: http://archi.cetis.ac.uk/
[29] V. Chiprianov, Y. Kermarrec, and P. D. Alff, “A Model-

Driven Approach for Telecommunications Network Services
Definition,” in Eunice’09: Proc. of the 15th Open European
Summer School and IFIP TC6. 6 Ws on The Internet of the
Future, vol. 5733, Barcelona, Spain, 2009, pp. 199–207.

[30] V. Chiprianov, Y. Kermarrec, and S. Rouvrais, “Meta-tools
for Software Language Engineering: A Flexible Collaborative
Modeling Language for Efficient Telecommunications Ser-
vice Design,” inFlexiTools Ws at the 32nd ACM/IEEE Intl
Conf. on Software Engineering (ICSE), Cape Town, South
Africa, 2010.

[31] S. Herrmann, C. Hundt, and C. Pfeiffer, “Eclipse plugin
adaptation with Equinox and ObjectTeams/Java,” inEclipse
Technology eXchange Ws at ECOOP, Nantes, France, 2006.

[32] L. Mariani and F. Pastore, “Supporting Plug-in Mashes to
Ease Tool Integration,” in[37] , 2011.

[33] B. Steffen, T. Margaria, R. Nagel, S. Jörges, and C. Kubczak,
“Model-driven development with the jABC,” inProc. of the
2nd intl Haifa verification conf. on hardware and software,
verification and testing, Haifa, Israel, 2007, pp. 92–108.

[34] Wikipedia. (2011) Big Design Up Front. Accessed on
25.07.2011. [Online]. Available: http://en.wikipedia.org/wiki/
Big Design Up Front

[35] R. E. Jeffries. (2011) Youre NOT gonna need it! Accessedon
25.07.2011. [Online]. Available: http://www.xprogramming.
com/Practices/PracNotNeed.html

[36] P. Abrahamsson, M. A. Babar, and P. Kruchten, “Agility and
Architecture: Can They Coexist?”IEEE Softw., vol. 27, pp.
16–22, 2010.

[37] J. Bishop, K. Breitman, and D. Notkin, in1st Ws on De-
veloping Tools as Plug-ins (TOPI) at the 33rd Intl Conf. on
Software Engineering (ICSE), vol. (in press), Hawaii, USA,
2011.

http://en.wikipedia.org/wiki/Plug-in_%28computing%29
http://en.wikipedia.org/wiki/Plug-in_%28computing%29
https://addons.mozilla.org/en-US/firefox/
http://thepluginsite.com/knowhow/tutorials/introduction/introduction.htm
http://thepluginsite.com/knowhow/tutorials/introduction/introduction.htm
http://www.civfanatics.com/civ4/downloads
http://www.civfanatics.com/civ4/downloads
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
http://getfirebug.com/wiki/index.php/Firebug_Extensions
http://getfirebug.com/wiki/index.php/Firebug_Extensions
http://archi.cetis.ac.uk/
http://en.wikipedia.org/wiki/Big_Design_Up_Front
http://en.wikipedia.org/wiki/Big_Design_Up_Front
http://www.xprogramming.com/Practices/PracNotNeed.html
http://www.xprogramming.com/Practices/PracNotNeed.html

	Introduction
	Categories of Extensible Plug-ins
	Plug-in Extension Methods
	Experience Report
	Telecommunications Service Creation
	Hacks
	Factory Design Pattern
	Eclipse Extension Points
	Lessons Learned and Insights

	Related Work
	Discussion and Conclusions
	Acknowledgments
	References

