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1Institut Néel, CNRS-UJF, BP166, 38042 Grenoble, France

2Max-Planck-Institut für Festkörperforschung,

Heisenbergstrasse 1, D-70569 Stuttgart, Germany

3Departamentao de F́ısica de la Materia Condensada,

Universidad Autonoma de Madrid, E-28049 Madrid, Spain

4Center for Excellence in Basic Sciences, University of Mumbai,

Vidhyanagari Campus, Mumbai-400098, India

5Institut de Physique des Nanostructures,

Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

(Dated: August 27, 2012)

1



Abstract

Pseudospin, an additional degree of freedom emerging in graphene as a direct consequence of its

honeycomb atomic structure, is responsible of many of the exceptional electronic properties found

in this material. This article is devoted to provide a clear understanding of how such graphene’s

pseudospin impacts the quasiparticle interferences of monolayer (ML) and bilayer (BL) graphene

measured by low temperature scanning tunneling microscopy and spectroscopy. We have used

this technique to map, with very high energy and space resolution, the spatial modulations of

the local density of states of ML and BL graphene epitaxialy grown on SiC(0001), in presence of

native disorder. For the first time, we perform a Fourier transform analysis of such modulations

including wavevectors up to unit-vectors of the reciprocal lattice. Our data demonstrate that

the quasiparticle interferences associated to some particular scattering processes are suppressed

in ML graphene, but not in BL graphene. Most importantly, interferences with 2qF wavevector

associated to intravalley backscattering are not measured in ML graphene, even on the images

with highest resolution where the graphene honeycomb pattern is clearly resolved. In order to

clarify the role of the pseudospin on the quasiparticle interferences, we use a simple model which

nicely captures the main features observed on our data. The model unambiguously shows that

graphene’s pseudospin is responsible for such suppression of quasiparticle interferences features in

ML graphene, in particular for those with 2qF wavevector. It also confirms scanning tunneling

microscopy as a unique technique to probe the pseudospin in graphene samples in real space with

nanometer precision. Finally, we show that such observations are robust with energy and obtain

with great accuracy the dispersion of the π bands for both ML and BL graphene in the vicinity of

the Fermi level, extracting their main tight binding parameters.

PACS numbers:
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I. INTRODUCTION

Graphene is a very unique two-dimensional system, hosting quasiparticles which behave

as massless Dirac fermions1,2. Indeed, at low energy, they show a linear and isotropic

dispersion relation, at the two opposite points (valleys) K and K ′ of the first Brillouin

zone1,2. This behavior is a consequence of the honeycomb structure of the graphene lattice:

The quasiparticle wavefunctions are built on two unequivalent A and B triangular sublattices

of carbon atoms, which introduces a new degree of freedom, the pseudospin. The pseudospin

is defined by the phase relation existing between the two sublattice components of the

wavefunctions. Such phase relation is intimately tied to the direction of the quasiparticle

momentum: In monolayer (ML) graphene, the pseudospin is either parallel or antiparallel

to the momentum, which leads to chiral Dirac fermions2,3.

The pseudospin and the related electronic chirality have a key impact on the low energy

band structure, and eventually on the electronic transport properties in graphene. The most

striking one is the chiral half-integer quantum Hall effect measured at high magnetic field

reported in 20054,5. At zero or low magnetic field, the pseudospin also impacts the electronic

transport properties. Indeed, as predicted in the pioneering theoretical work of Ando et al.,

the pseudospin prevents backscattering processes in ML graphene in presence of long range

disorder6,7. This has measurable consequences such as weak antilocalisation phenomena8–11

and Klein tunneling3,12,13. However, such zero or low field transport properties do not show

up readily in graphene samples which contain a certain amount of atomic size impurities

(substitional defects, vacancies), which generate additional intervalley scattering processes

)7–9. Such localized defects dramatically affect the electronic mobility14 and prevent the

observation of weak antilocalisation15.

In close relation with transport measurements, the impact of point defect scatterers upon

the local density of states (LDOS) of graphene is a central issue. From a theoretical point of

view, both the intravalley and intervalley scattering processes are likely to reflect in LDOS

modulations associated to Friedel charge density oscillations generated by the defects16.

Recently, theoretical works were reported by several groups. They use the Green’s function

formalism, in order to compute the LDOS modulations due to a single atomically-sharp

impurity17–22. Such publications are triggered by the possible direct comparison of the

theoretical results with experimental data obtained by scanning tunneling microscopy and
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spectroscopy, a technique well suited for probing the surface LDOS modulations at the

atomic scale23,24.

A critical issue pointed out in the above theoretical papers is the possible existence of

long-range LDOS modulations of wavevector 2qF associated to intravalley backscattering

off atomically-sharp defects (which break the AB sublattice symmetry). A consensus seems

to be achieved: Such LDOS modulations are present on each sublattice, but with opposite

phase between them. Thus the two contributions cancel each other when averaged on the

lattice unit cell. As a result, the amplitude of the 2qF coarse-grained LDOS modulations

around point defects in graphene is strongly reduced, with a 1/r2 decay instead of the

standard 1/r decay found in conventional two-dimensional (2D) systems17–22,25. Recently,

it was theoretically shown that such LDOS modulations can be enhanced using confined

geometries, such as elliptic quantum corrals, which favor multiple scattering processes and

restores backscattering26.

To our knowledge, only a few experimental STM studies devoted to quasiparticle interfer-

ences in graphene has been reported so far. Most of the work is related to epitaxial graphene

on SiC, and focuses on the (
√

3×
√

3)R30◦ superstructure surrounding the surface impuri-

ties or close to armchair edges, which is associated to intervalley scattering processes27–33.

This (
√

3×
√

3)R30◦ pattern is also routinely measured in highly oriented pyrolitic graphite

(HOPG)34–40 and has been recently observed in weakly coupled graphene on metals41,42.

It has been used to derive the dispersion relation on bilayer (BL) graphene28,30, and more

temptatively on ML graphene on SiC(0001)28. In Ref. [29], some of us have shown that the

(
√

3×
√

3)R30◦ pattern measured on ML presents dissimilarities with respect to BL, which

are ascribed to graphene’s pseudospin.

More difficult to capture are the long range LDOS modulations associated to intravalley

scattering processes in graphene. In 2007, J. Stroscio’s group reported such long range

modulations with wavevector 2qF in BL graphene on SiC(0001)28. In 2008, we have shown

that such 2qF modulations are indeed present in BL graphene, but that they are lacking in

ML graphene29, in agreement with the above theoretical predictions. To our surprise, very

well pronounced long range LDOS modulations were reported in exfoliated ML graphene on

SiO2 by M. Crommie’s group43. This is a puzzling result, which hardly matches with the

strongly attenuated 2qF LDOS modulations predicted by theory, as stated by the authors

themselves. Very recently, interesting results have been found on ML graphene deposited
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on boron nitride: Long range LDOS modulations have been detected close to a smooth

graphene step edge, with a strong decay with respect to the one expected for systems

without pseudospin44. Quantitative analysis is made possible thanks to a lateral averaging

of the LDOS modulation in the direction parallel to the step. The results have been found

consistent with the electronic chirality of graphene.

To shed light on such possible observation in the case of atomic sharp impurities, we

present in this paper new STM data obtained on terraces of ML and BL graphene on

SiC(0001), with terrace dimensions larger than 100 nm. The spectroscopic LDOS maps

of these systems are measured by STM at 5K, and are analysed by 2D Fourier transform

(FT). Our main motivation is to perform a complete analysis of the features present in the

FT-LDOS maps of ML and BL graphene, and to highlight how the pseudospin impacts the

quasiparticle interferences in ML graphene. Importantly, this study confirms, with a higher

accuracy than in Ref. [29], that the 2qF modulations are not detected in ML graphene on

SiC(0001), despite the presence of atomically-sharp impurities, and offers a very intuitive

explanation based on the role of the pseudospin. In addition, we performed the analysis of

FT-LDOS maps as a function of energy in the vicinity of the Fermi level, which allows us to

extract the detailed low-energy dispersion relation both for ML and BL graphene terraces

grown on the same SiC(0001) substrate.

The structure of the paper is the following: we give in section II the experimental methods,

and in particular we explain the caution needed to get highly-resolved STM data in k space.

In section III, we discuss the general features that should show up in the FT-LDOS maps of

graphene in the absence of pseudospin, based on standard Fermi surface and joint density

of states (JDOS) considerations. Section IV is devoted to the STM measurements achieved

on ML graphene. We demonstrate that the FT-LDOS maps lack the central ring of radius

2qF associated to intravalley backscattering, and show that replica of this ring are found

around the first-order graphene lattice spots. We also show the split-ring features related to

intervalley scattering, with unprecedented k resolution. We extract from these features the

quasiparticle dispersion relation of ML graphene on SiC(0001). In section V, we introduce

a simple model to understand why the FT-LDOS map measured on ML differs from the

one expected in section III. We use single particle scattering considerations within the tight

binding and the low energy (Dirac cone) approximations. Although only qualitative, this

model nicely captures the main features observed on the STM data, and unambiguously
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shows that graphene’s pseudospin is responsible for the suppression of the some quasiparticle

interferences in monolayer graphene. The model is in agreement with much more refined

theory found in the literature, and a discussion is made on that point. Finally, we present

in section VI the experimental results obtained on BL graphene. The FT-LDOS map is not

significantly affected by pseudospin effects, and qualitatively fits with the map discussed in

section III. Once again, the quasiparticle dispersion relation for bilayer graphene is extracted

from our data.

II. EXPERIMENTAL METHODS

The epitaxial graphene samples were grown in ultra high vacuum (UHV) at NEEL Insti-

tute (France), using standard thermal decomposition of commercial SiC(0001) wafers (with

1018 cm−3 n-type doping), after a cleaning procedure at 900◦C under Si flux27,45,46. The syn-

thesis was optimized in order to get terraces of ML and BL graphene on the same surface,

with typical width ranging between 50 to 250 nm. Both ML and BL terraces contain a sig-

nificant amount of native atomic-sharp impurities (see sections III and V). The underlying

C buffer layer was identified using low electron energy diffraction, showing a diagram with

typical SiC-(6
√

3× 6
√

3)R30◦ spots superimposed to the graphene 1×1 spots27,45,47.

The data presented here have been obtained on similar samples, using two different home

made UHV microscopes working at 4-5K, one located at Max Planck Institute of Stuttgart

(Germany), the other one at Universidad Autonoma de Madrid (Spain). After transport in

atmosphere and transfer into the UHV systems, the samples were outgassed at 300-400◦C

before cooling down. This procedure is sufficient for recovering high quality surfaces as

checked by STM, with a defect density as low as the one found on the as-grown samples,

thanks to the chemical inertness of the graphene layers. According to Tersoff and Hamman

theory48, the surface LDOS of our graphene samples was probed either in the constant

current mode at low sample bias (a few mV), or at higher bias by performing dI/dV maps

in open feedback-loop, using a lock-in technique, with frequency 2.3 kHz and ac modulation

of 2 mV applied to the sample. 2D fast Fourier transform (FFT) images, with square root

normalization, were calculated from raw data STM images using the WSXM software49.

Particular care was taken on the data acquisition in order to achieve high resolution both

in real and reciprocal space. One mandatory issue was to capture in the same STM image
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modulations with wavelength of few nanometers together with the atomic resolution. This

is achievable by recording images of large areas (meaning terraces of width larger than 50

nm) with a high number of pixels, which is detrimental to the acquisition time (roughly 3

hours for a single dI/dV map). We found that images of 100×100 nm2 with 4 megapixels

were merely sufficient to evidence the fine structures on the 2D FFT maps discussed below.

On such images, the k resolution is intrinsically limited to 2π/100 ' 0.063 nm−1. For our

low temperatures (4-5K), we use a 2 mV ac voltage modulation, which provides an energy

resolution of the STM of ∼ 5 meV, reflected in an instrumental k broadening similar to

our size limitation, i.e. 0.06 nm−1 (estimated from the dispersion relation of ML and BL

graphene on SiC(0001) discussed in sections IV and VI). This value is 20 times smaller

than the diameter of the ring-like pockets of the Fermi surface of ML and BL graphene on

SiC(0001) (see section III). Another critical issue is the possible low frequency noise (from

mechanical or electronics sources) introduced by the experimental setup, which in most of

reported works hinders the analysis of the center of the FFT images. As shown in section

III, the instruments we used in the present study allow this kind of studies.

III. QUASIPARTICLE SCATTERING IN GRAPHENE: INTRA- AND INTER-

VALLEY PROCESSES NEGLECTING THE IMPACT OF PSEUDOSPIN

We start this section by recalling briefly different properties of ideal ML graphene relevant

for our study. The honeycomb structure of graphene is depicted on Fig. 1a, resulting from

the superposition of two unequivalent triangular sublattices of A and B carbon atoms. Each

type B atom has 3 type A nearest neighbors separated by vectors ~τ1, ~τ2 and ~τ3. Figure 1b is

a schematic view of the first Brillouin zone and of the Fermi surface (FS) for slightly doped

graphene. At energies close to the Dirac point, the band structure of graphene consists of

two Dirac cones at opposite Kand K ′ points of the Brillouin zone2, with linear and isotropic

dispersion E(qE) (qE is the modulus of the quasiparticle wavevector ~q of energy E measured

from K or K ′ point, see inset of Fig. 1b). The FS is thus made of two points for neutral

graphene, or two rings centered at K and K ′ points in the case of light doping (K and K ′

points are labeled K1 and K ′1 on Fig. 1b, and the other points K2 , K ′2, K3, K
′
3 are deduced

from the symmetry of the reciprocal lattice).

As already discussed in Ref. [29], ML and also BL graphene on SiC(0001) exhibit roughly
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the FS depicted on Fig. 1b, because of a n-type charge transfer from the buffer layer interface

to the graphene layers. The band structure and the FS of ML and BL has been extensively

studied by angle resolved photoemission (ARPES) groups50–53: The radius qF of the FS

pockets is close to 0.6 nm−1, with a Dirac point at ∼ 0.4 eV (∼ 0.3 eV) below the Fermi

energy EF for ML (BL) graphene. In the following, we will focus on the LDOS of ML and BL

graphene on SiC(0001) close to EF in presence of a random distribution of impurities, and

we shall concentrate on the corresponding FT-LDOS maps. As stated in the introduction,

this problem has been addressed theoretically (in the case of a single impurity) by different

groups18–22 and we shall refer to these works in section V.

As a first step, we restrict ourselves to a qualitative picture which is successfully used

for standard two dimensional electron gas (2DEG) such as noble metal and Be surfaces54,55

or high critical temperature superconductors56. It is derived from a simple analysis of

the topology of the FS or of constant-energy contours for E 6= EF . Static disorder in

the 2DEG induces spatial modulations of the LDOS with wavevectors corresponding to

vectors connecting different portions of the FS (or of the constant-energy contour). From

JDOS arguments, the scattering processes which have the largest weight in the LDOS are

associated to good nesting vectors of the FS. In the simple case of the Shockley surface state

of Cu(111), with a ring-like Fermi surface centered at Γ point, backscattering processes

(ie coupling between states ~kF and −~kF ) are the most significant: They contribute to an

intensity ring of radius 2kF (2kF ring in the following) at the center of the FT-LDOS map55,57.

This JDOS argument has been generalized to more complex FS56,58,59, for which the FS is

no longer a simple contour centered on the Γ point. However, it has been shown that this

approach is insufficient in systems with large spin-orbit coupling, for which the wavefunction

symmetry (in that case the electronic spin) hinders some scattering processes60,61.

Regarding graphene, if we neglect the possible impact of the wavefunction symmetries

which shall be considered later, two different classes of elastic scattering processes are ex-

pected in ML and BL graphene, as depicted in Figs. 1c and 1d. On the one hand, long and

short range scatterers generate intravalley scattering (coupling of states of a same FS pocket

at Kp or K ′p), with enhanced weight for backscattering processes (ie coupling between ~qF

and −~qF for all angles θ) due to the circular shape of the pocket (Fig. 1c). Thus a 2qF ring

is likely to show up at the center of the FT-LDOS map (Fig. 1e). Also, replica of this ring

are expected, centered at the first order spots of the reciprocal lattice, as shown on Fig. 1e.
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These rings result on the Bloch nature of the wavefunctions, as demonstrated in Refs. [55,62].

On the other hand, atomic sharp impurities also generate intervalley scattering processes

(i.e. coupling between states of two different valleys at Kp and K ′p points). The latter

processes yield the well documented (
√

3 ×
√

3)R30◦ superstructure on graphite/graphene

STM images, as emphasized in the introduction27–32,34–42. Because of the topology of the

FS pockets, coupling between states with opposite ~qF in each pocket (Fig. 1d) is highly

favoured. For this example involving the pockets at K1 and K ′2, the LDOS modulation shall

have a wavevector
−→
ΓK2 − 2~qF . Including all the orientations θ of ~qF , a 2qF ring centered at

−→
ΓK2 is thus expected on the FT- LDOS map if the pseudospin is neglected, and 2qF rings

should show up at other Kp, K
′
p points if we include the processes between all states of the

FS (Fig. 1e).

IV. HIGH RESOLUTION STM RESULTS ON MONOLAYER GRAPHENE ON

SIC(0001)

We want now to convince the reader that the FT-LDOS maps obtained by STM on

ML graphene is markedly different from the schematic map sketched on Fig. 1e. We

emphasize that a few publications have tried so far to give a description of the different

features in the experimental FT-LDOS images of epitaxial graphene27,28,30,31. However, a

poor resolution in k space was partly limiting such analysis. In a report published in 2008,

some of us have shown that it was possible to evidence fine structures in FT-LDOS data

with improved quality29. The data shown in the following have been obtained with an even

better k resolution (see method sections), which allows us to get one step further in our

understanding of the quasiparticle scattering framework in graphene.

We first focus on the LDOS at E ≈ EF of a 100×100 nm2 area of monolayer graphene.

Following Tersoff and Hamann48, this quantity can be obtained from a constant current STM

image of the area at small sample bias, as shown in Fig. 2a. A clear triangular pattern with

an almost SiC-6×6 periodicity (∼ 1.9 nm) can be appreciated in the image. However such

pattern is not relevant for the present study, since it results from the interface contribution

to the image46,63–65. Note that this image contains 2048×2048 pixels, which is sufficient to

resolve the graphene honeycomb atomic structure: Indeed, it shows up (together with the

6×6 modulation) in numerical zooms taken at random spots on Fig. 2a, as shown on Fig.
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2b.

Figure 2c is the central part (40×40 nm−2) of the FT-LDOS calculated from Fig. 2a.

For clarity, the dashed box drawn on the schematic FT map (obtained in section III, Fig.

1e) indicates the region of the reciprocal space which is probed. Apart from the spots

associated to the different orders of the 6×6 superstructure, not relevant for the present

study as explained above, two main features are evidenced on Fig. 2c: (i) There is no

central ring of radius 2qF (associated to intravalley backscattering) at the center of the

diagram (see Fig. 2d, a magnified view of the boxed region in Fig. 2c) (ii) Rings of radius

2qF ≈ 1.1 nm−1 , associated to intervalley scattering, are found centered at Kp, K
′
p points,

but with suppressed intensity along directions perpendicular to
−→
ΓKp,

−−→
ΓK′p vectors (Fig. 2e-

g). These two features (i) and (ii) have been already reported in our previous letter29 , but

the data shown here have an improved resolution in k space, in particular close to the Kp,

K ′p points. The noise signal at the center of the FFT is also very weak, which allows us to

rule out any possible central 2qF ring. The features (i) and (ii) are in disagreement with

the FT-LDOS map of Fig. 1e derived only from considerations on the shape of the FS,

neglecting thus the role of the pseudospin.

One additional feature, not discussed in our previous report, shows up also on the FT-

LDOS images: 2qF rings are present around the reciprocal lattice first-order spots. This

is not shown on Fig. 2c since the size in k space is too small, but such rings show up on

Fig. 3a, obtained from measurements on a different ML terrace. Here, thanks to a terrace

dimension close to 200 nm (which is among the largest terrace size reported so far for samples

grown in UHV), we performed a 150×150nm2 constant current STM image (not shown) with

4096×4096 pixels, at sample bias -10mV. The tip lateral resolution is excellent (see Fig. 3b,

a 5×5 nm2 numerical zoom on the original 150×150nm2 STM image), and this allows us to

analyse for the first time the intensity of the FT-LDOS at such high k value. The area in

k space shown on Fig. 3a is indicated by the dashed square drawn on the schematic FT.

The center (0,0) of the FFT map is at the bottom of Fig. 3a. As on Fig. 2, we check the

absence of any 2qF ring at (0,0), together with the presence of anisotropic 2qF rings at Kp,

K ′p points. In addition, two of the first-order spots of the reciprocal lattice, labeled (1,0) and

(0,1), show up on the figure. The two arrows point toward faint 2qF rings centered at these

points. These rings are expected on the FT map (Fig. 1e) derived in section II, as replica

of the central ring associated to intravalley backscattering. As we will show in section V.C,
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the pseudospins cancels out the central ring, but not the replica rings at first-order spots of

the reciprocal lattice.

From the different features found on the FT-LDOS maps shown on Figs. 2 and 3, we

have exploited the 2qF rings at Kp, K
′
p points to derive the low energy dispersion of the

quasiparticles close to the Fermi energy. For that purpose, we made a series of dI/dV maps

of a ML terrace for voltages ranging between -125 to +125 mV, and processed them by

FFT. Fig 4a shows the evolution of one of such anisotropic ring (indicated on the schematic

FT map) with respect to the sample bias. We see that the anisotropy is robust, and that

the radius 2qE of the ring increases linearly with the voltage, and thus with energy E. The

complete dispersion E(qE), obtained from the rings around the 3 inequivalent Kp points, is

sketched on Fig. 4b. For voltages below -125 mV, we are not able to extract any reasonable

qE value, because the associated wavelength is too large with respect to the image size.

However, a linear fit gives a Dirac point located at -0.39 ± 0.01 eV, and a Fermi velocity

vF = (1.18 ± 0.04) × 106 m/s. The Fermi wavevector is qF = 0.53 ± 0.06 nm−1. These

values, obtained here with high accuracy, are very close to those derived from ARPES

measurements50,51 . In Ref. [28] , a similar dispersion was obtained from STM measurements,

but with a much larger k uncertainty with respect to the present study. Note that in the

dI/dV (V ) spectra measured at fixed tip position (Fig. 4c), a shallow minimum shows up at

sample bias close −0.4V , i.e. at the Dirac energy derived in Fig. 4b. For ML graphene on

SiC(0001), it is however difficult to extract properly the value of ED from such spectra, due

to the strong contribution of the interface states28,65,77 to the conductance signal at voltages

V <-0.2 eV.

In the next section of this manuscript, we will focus on the two major hallmarks found

on the FT-LDOS maps in ML graphene: The absence of central 2qF ring and the intensity

anisotropy of the 2qF rings at Kp, K
′
p points. As shown in section VI, these features are not

observed for BL graphene, although the FS is roughly the same as for ML graphene. They

are thus characteristic of the specific electronic properties of ML graphene. As we already

stated in Ref. [29] thanks to T matrix calculations18,20, the quasiparticle wavefunction sym-

metry (in other words the pseudospin), is the key ingredient for understanding such unique

features in the FT-LDOS map. In the following, we introduce a simple model based on

interferences between eigenstates of graphene obtained in the tight binding approximation,

which gives a simple demonstration of the impact of pseudospin on the quasiparticle inter-
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ference framework. Our results will be discussed in the light of full theoretical predictions

performed by other groups18–22.

V. DISCUSSION: ROLE OF PSEUDOSPIN ON QUANTUM INTERFERENCES

IN MONOLAYER GRAPHENE

We present in this section a simple and intuitive model to address the problem of single

particle scattering off static impurities, and our purpose is to highlight the dramatic effect

of the pseudospin in pristine graphene on the scattering mechanisms. In presence of defects,

elastic scattering mixes eigenstates of the pristine system with the same energy, i.e. states

that have different ~k wavevector located on the quasiparticle constant-energy contour66–68.

Thus, when computing the LDOS (which is proportional to the square modulus of the

eigenstates of the disordered system) in the vicinity of the impurities, one shall include terms

of interference nature ψ∗~k (~r)ψ~k′ (~r) (and its complex conjugated). Such terms correspond to

scattering between arbitrary initial ψ~k (~r) and final states ψ~k′ (~r). A complete calculation of

the LDOS should take into account the matrix elements which characterize the coupling for

states (~k, ~k′) as well as the boundary conditions at the defect sites, both being intimately

linked to the nature, the symmetry, the strength of the impurities.

For the sake of simplicity, and because the nature of the scatterers is usually unknown

in real graphene systems, we shall focus in the following on the evaluation of the quantity

ψ∗~k (~r)ψ~k′ (~r) only. In that way, we are able to address the effect of the wavefunction sym-

metry on the interferences, without taking into account the specificity of the scatterer. Note

that the details of the model are given in the supplemental material69, and we give here only

the main results. We refer to the basis and axis depicted on Figs. 1a and 1b.

A. Wavefunctions in pristine graphene in the tight binding and the Dirac cone

approximations

The wavefunction in pristine graphene is written as a sum of two Bloch waves constructed

on the two sublattices A and B70:

ψ~k (~r) = fA
∑
i

ei
⇀
k . ~RiAϕ

(
~r − ~Ri

A

)
+ fB

∑
i

ei
⇀
k . ~RiBϕ

(
~r − ~Ri

B

)
(1)
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ϕ (~r) is the wavefunction of the pz orbital of each carbon atom. ~Ri
A (~Ri

B) is the position of

atom A (B) in the unit cell i. The complex quantities fA and fB coefficients are ~k dependent,

which has been omitted here for simplicity. We use the simple notation ψ~k (~r) = (fA, fB) in

the following.

As in Ref. [70], we solve the Schrödinger equation in the tight binding approximation (with

hopping between nearest neighbors only, and with on-site energies set to zero corresponding

to the neutral graphene case). We also use the Dirac cone approximation2,70 , by performing

a low energy expansion to the first order in |~q| for a state in the pocket centered at Kp (or

K ′p). We obtain the isotropic and linear dispersion relation of graphene:

E(
⇀
q) = ± |h| = ±t3

2
a
∣∣⇀q ∣∣ (2)

with ± for electrons/holes (a=0.142 nm and t=2.7 eV are respectively the distance and

the hopping parameter between adjacent C atoms in graphene).

We also have a simple phase relation between fB and fA :

fB = ± h
∗

|h|
fA (3)

with ± for electrons/holes.

The phase of h is defined by (with p=1,2,3):

h = ∓ |h| e±iθe−i
2π
3
(p−1) (4)

with -/+ for states of a pocket at Kp/K
′
p point70.

Equation (3) implies that fB and fA are equal in modulus, and thus that the LDOS is

the same on A and B sublattices. Moreover, equations (3-4) show that the phase relation

between fB and fA depends in a peculiar way on the orientation of wavevector ~q (i.e. on

the quasiparticle momentum), due to the e±iθ term in equation (4). This phase relation is

depicted in the literature as a pseudospin, whose orientation is either parallel or antiparallel

to the momentum, defining an electronic chirality2,3. The pseudospin texture in ML graphene

is depicted on Fig. 5a. For a given state of theK valley at energy above ED, the pseudospin is

aligned to the wavevector ~q. Importantly, the pseudospin associated to opposite wavevector

−~q in the same valley is reversed (Fig. 5b): The phase shift between fB and fA changes

its sign when θ is changed into θ + π in expressions (3) and (4). This implies that in
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presence of long range disorder (conserving the pseudospin), intravalley backscattering is

not possible3,6. Equations (3) and (4) also show that the orientation of the pseudospin

is reversed for energies below the Dirac point, as schematized in Fig. 5b. Moreover, the

pseudospin texture is reversed between the two valleys (Fig. 5a). In the following, we

will use the pseudospin term to refer to this peculiar symmetry property of quasiparticles

wavefunctions in graphene, which is directly associated to the honeycomb structure.

B. Expression of the interference term ψ∗~k
(~r)ψ~k′ (~r)

We consider scattering processes between wavefunctions ψ~k (~r) = (fA, fB) and ψ~k′ (~r) =

(f ′A, f
′
B), defined in section V.A, and we calculate the interference term ψ∗~k (~r)ψ~k′ (~r) (the

wavevectors ~k and ~k′ lie on a constant-energy contour of energy E). We obtain the following

expression (see Supplemental Material69):

ψ∗~k (~r)ψ~k′ (~r) =
1

2N
eiϕei(

~k′−~k).~r
∑
~G

F̃
~k′−~k
~G

ei
~G.~r

(
1 +

hh′∗

E2
ei
~G.~τ1

)
(5)

where the sum runs over all wavevectors ~G of the reciprocal lattice. F̃
~k′−~k
~G

is the ~Gth

Fourier component of a function FA(~r) defined on sublatticeA (see Supplemental Material69).

The angle ϕ is defined by f ∗Af
′
A = |f ∗A| |f ′A| eiϕ. 2N is the total number of atoms in the system.

Interestingly, equation (5) shows that the interference term ψ∗~k (~r)ψ~k′ (~r) can be written

as a sum of plane waves ei(
~k′−~k+ ~G).~r. Consequently its Fourier transform (and hence the FT

of the LDOS) should be peaked at wavevectors ~k′ − ~k + ~G, with an intensity modulated by

the prefactor terms in (5). The most relevant is the term in bracket in equation (5), deemed

intensity factor in the following. In table 1, we evaluate this quantity for different initial

and final states (~k ,~k′), and different ~G vectors. Since we want to refer to real experiments,

which are limited in k space, we retain ~G = ~0 and ~G vectors with modulus
∣∣∣~G∣∣∣ = |~a∗|. In

the following, we discuss these results separating intravalley and intervalley processes.

C. Intravalley backscattering contribution

We choose initial and final states in a same valley at Kp (the results are identical for

the valley at K ′p), and we consider the most relevant processes, i.e. backscattering processes
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(θ′ = θ + π). Hence ~k′ − ~k = ~q′ − ~q = −2~q. We first evaluate the low frequency component

in (5) at ~G = ~0, which should give intensity in the FT-LDOS map at −2~q, at the vicinity

of the center Γ. From table 1, we see that the intensity factor is strictly zero, whatever the

direction of ~q. Consequently, there will be no circle of radius 2qE at the center of the FT-

LDOS map. This is a consequence of the pseudospin, i.e. the symmetry of the quasiparticle

wavefunctions given in equations (3-4), which leads to the cancellation of the intensity factor

in equation (5) for ~G = ~0 (see Supplemental Material69). The quasiparticle interferences

at wavector 2qE associated to the intravalley backscattering processes are thus annihilated

by this intrinsic property of graphene, independently of the nature of the scatterer. This is

what we observe experimentally on Figs. 2 and 3.

Because of the phase term ei
~G.~τ1 in equation (5), the replica of the intravalley backscat-

tering term at ~G 6= ~0 do not vanish. As sketched in Table 1, we find for the first-order

components ~G = ± ~a∗, ~G = ± ~b∗, ~G = ±
(
~a∗ −~b∗

)
that the intensity factor is a non zero

constant for backscattering at any angle θ. Consequently a replica signal in the FT- LDOS

map is expected, showing up as 2qE rings around each first order spots of the reciprocal

lattice. This is precisely what we obtain in our highly-resolved experimental data (Fig. 3).

At that point, it is necessary to make a connection with the recent theoretical calculations

mentioned in the introduction (section I). Based on more elaborated models using Greens

function formalism, FT-LDOS maps of graphene in presence of a single impurity have been

calculated by several groups18–21. The presence of 2qE rings at lattice spots and the lack of

central 2qE ring, which we experimentally observe, are also predicted in these calculations.

Importantly, the suppression of the central 2qE ring (and hence of the interferences with

wavector 2qE) related to intravalley backscattering, exist only if both the A and B sublattices

are taken into account in the calculation of the FT-LDOS maps18–21. As highlighted by

the authors, the interferences with 2qE wavevectors due to a delta impurity exist on each

sublattice but are shifted by π from one to the other, and thus the two contributions cancel

each other when the two lattices are taken into account71. It is straightforward to check

that we get the same result with our model: If we evaluate separately the zeroth ~G order

component of ψ∗~k (~r)ψ~k′ (~r) on A and B sublattices, we find that the two quantities are

opposite, and thus cancel each other once they are summed.

Although oversimplified, our model nicely explains why the pseudospin induces the can-

cellation of the 2qE oscillations when both sublattices are considered, and this irrespective
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of the nature of the scatterer. We agree with the authors of Refs.18–22 that in STM measure-

ments, the 2qE oscillations are possibly present with opposite phase on A and B sublattices,

although it appears very difficult to measure. As explained below, this is not due to any

experimental limitation, since we performed the measurements with sharp tips enabling

to clearly evidence the graphene honeycomb lattice, combined with excellent energy and

wavevector resolution.

In order to understand what is possibly measurable by STM, it is worth to illustrate

the cancellation of the 2qE oscillations on the basis of artificially generated LDOS images

obtained by simple combination of cosine functions. Such functions are used to mimic the

two sublattices and the possible LDOS oscillations due to one single impurity located at the

center of the images (we are obviously not considering here the
√

3×
√

3R30◦ oscillations).

On Fig. 6a, we focus on the situation where sublattice A only is involved72: The triangular

lattice (obtained by a product of 3 cosines) is multiplied by a radial cosine function with

wavevector 2qF = 1.2 nm−1. The 2qF radial oscillation shows up on the 100×100 nm2

image (Fig. 6a), and a numerical zoom performed on the 8×8 nm2 boxed area reveals the

A sublattice (Fig. 6b). A profile performed along a row of A atoms is shown on Fig. 6c,

highlighting the 2qF modulation. The 2D-FFT of Fig. 6a is shown on Fig. 6d. It contains

the features discussed in section II: a central 2qF ring, and 2qF rings around first order

lattice spots73.

We focus now on Fig. 6e, where both sublattices are included. Radial oscillations with

wavectors 2qF are introduced on each sublattice, but with opposite phase72. As a result, the

2qF oscillation is completely smeared out on the real space image, and no central 2qF ring is

found on the 2D FFT (Fig. 6h). This implies that for perfect ML graphene, STM will never

observe any signal coming from intravalley scattering processes in the central region of the

2D FFT, independently of the microscope resolution. Fig. 6f is a zoom on the dashed square

region of Fig. 6e. Although no 2qF oscillation shows up on the image, such oscillations are

revealed on the profiles taken along rows of A or B atoms (Fig. 6g), with the introduced π

phase shift between them.

Interestingly, Fig. 6f shows that the graphene honeycomb pattern is not perfectly uniform:

Indeed, as we can also deduce from the work of Peres et al.21, patches with almost honeycomb

contrast alternate with areas showing a faint AB asymmetry, with a period which is twice

the wavelength of the 2qE oscillations. In principle, STM should be able to detect such
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regions with AB asymmetry, providing that the asymmetry is significantly large. From Ref.

[21], this asymmetry is in fact very weak away from the impurity, compared to the asymmetry

found on bilayer graphene with Bernal stacking74. In our STM data on ML graphene (Figs

2 and 3), we have no indication of such an atomic contrast. In principle, another way to

extract the 2qF oscillations of one sublattice would be to do profile measurements along one

single A (or B) atomic row as on Fig. 6g. However, in the present case, even on our best

images, we get no significant result from such profiles, the measurement being complicated

by the SiC-6×6 modulation due to the interface.

D. Intervalley scattering contribution

We now consider the intervalley scattering processes, which couple states of two neigh-

boring pockets, for instance K1 and K ′2. As stated in section II, the most relevant processes

imply states with opposite ~q vectors, hence ~k′ − ~k =
−→
ΓK2 − 2~q. From equation (5), such

processes will give signal intensity in the FT-LDOS map close to
−→
ΓK2 + ~G for all ~G values of

the reciprocal lattice. We restrict ourselves to the three terms ~G = ~0, ~G = −~b∗, ~G = ~a∗−~b∗,

which give signal intensity in the first Brillouin zone, around
−→
ΓK2,

−→
ΓK3 and

−→
ΓK1 respectively.

From table 1, we see that the intensity factor is generally non-zero and depends on the ori-

entation θ of ~q vector. It follows that in the FT-LDOS map, 2qE rings with anisotropic

intensity are expected around points K1, K2, K3. Most importantly, the intensity factor has

zeroes at specific angles θ0 and θ0 + π (for instance at θ0 = π/6 and θ0 + π = −5π/6 for

~G = ~0), which implies that the 2qE rings are split in two parts. As detailed in the Supple-

mental Material69, the intensity the 2qE ring centered at Kp is suppressed in the direction

perpendicular to (
−→
ΓKp).

More generally, equation (5) demonstrates that intervalley scattering processes between

states with opposite ~q vectors contribute to 2qE rings around the Kp and K ′p points in the

FT-LDOS map. The intensity of such rings is suppressed in the directions perpendicular

to (
−→
ΓKp) or (

−→
ΓK′p). This suppression is once again due to the wavefunction symmetry

(pseudospin), which gives the prefactor term in equation (5). The ring anisotropy around

the Kp and K ′p points is clearly revealed in our STM measurements (section III and Ref.

[29]). It is also predicted in Refs.18–21,29, although the link with the pseudospin is not as

straigthforward as in the present work.
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E. Concluding remarks about the model

With our calculations, we demonstrate the impact of the graphene′s pseudospin on the

quasiparticle interferences, and show how it affects the FT-LDOS maps. The main results

of the model are summarized on Fig. 5c, which is the schematic FFT map derived from

JDOS consideration in section II, corrected by the pseudospin effects described here. The

agreement between Fig. 5c and the experimental FT-LDOS maps shown in Fig. 2 and 3 is

only qualitative, but the model nicely captures all the main features observed on our data.

The theoretical predictions are valid for all kind of scatterers, which is satisfying since the

real nature of the impurities is usually unknown as in the present study. It is also interesting

to do the calculation in the case of an asymmetric monolayer graphene (see Supplemental

Material69): we find that the vanishing intensities (the central 2qE ring and the nodes of 2qE

rings at K,K ′ points) are restored with increasing the difference between onsite energies of

A and B sites.

VI. STM RESULTS AND DISCUSSION FOR BILAYER GRAPHENE

This section is devoted to a brief description of quasiparticle interferences in BL graphene

(in the case of Bernal stacking). As for ML graphene, low-energy quasiparticles in BL

graphene also present a pseudospin degree of freedom, associated with the complex wave-

function amplitudes on the two layers. The pseudospin is linked to the momentum in a

different way than in ML graphene75,76. This is illustrated on Fig.7, where the pseudospin

textures for ML (Fig. 7a) and BL graphene (Fig. 7b) are shown (the case of standard 2D

electron gas, without pseudospin, is also shown on Fig. 7c). As depicted on Fig. 7b, the

pseudospins of states of opposite ~q vectors are parallel, and thus the intravalley backscatter-

ing processes are promoted76, as in standard 2D electron gas where no pseudospin is present.

This should be reflected in the QIs pattern probed by STM, as discussed in section III.

Hence, we focus now on the experimental data obtained on BL graphene terraces on

SiC(0001). To obtain the images shown on Fig. 8, a 50×50 nm2 constant current image (not

shown) was recorded at sample bias -25 mV. A mathematical 5×5 nm2 zoom of such image

is shown on Fig. 8a, displaying a triangular pattern characteristic of bilayer graphene with

Bernal stacking27,28,65,77,78. Fig. 8b is a 50×50 nm2 dI/dV image, recorded simultaneously
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with the topography, corresponding to a LDOS map at -25 meV below EF . The image is

clearly dominated by long range oscillations with period of few nm, associated to intravalley

backscattering processes28,29.

This is confirmed by the 2D FFT of Fig. 8b shown on Fig. 8c. Contrary to the mono-

layer case (see the 2D FFT map displayed on Fig. 2c for comparison), a 2qE ring associ-

ated to intravalley backscattering is found at the center of the image, and complete 2qE

rings associated to intervalley scattering are present at K,K ′ points. These results confirm

the measurements already reported in Ref.29, and are in good agreements with T matrix

calculations18,29. As mentioned at the beginning of this section, the pseudospin in bilayer

graphene does not hinder the backscattering processes76, and thus the central 2qE ring is

expected on the FT-LDOS map. Using similar calculations as those in section IV, it is

possible to check that the pseudospin in BL graphene restores the central 2qE ring on the

FT-LDOS map, and also the intensity isotropy of the 2qE rings at K,K ′ points.

On Fig. 9a, we present on the top row a series of dI/dV images of the same terrace taken

at different sample biases ranging from -250 to +50 mV. 2D FFT maps of these images have

been calculated, and we have extracted for each image two zoom-in pictures: One is a 2qE

ring at K point (Fig. 9a, middle row) and the other is the central 2qE ring (Fig. 9a, bottom

row), as indicated by the left side schematics. We find a concomitant increase of the rings

radius with the voltage (energy), and we can extract the dispersion relation for BL graphene

on SiC(0001) shown in Fig. 9b. Our data are consistent with the theoretical low-energy

dispersion of bilayer graphene74,75, taking into account a n-type doping from the interface

(ED =-0.3 eV), and a 0.1 eV bandgap at ED due to a different doping of the two layers52,79.

The best fit to E(qE) data of Fig. 9b (plain curve) is obtained with a Fermi velocity vF =

1.21 106 m/s and an interlayer hopping parameter γ1 = 0.38 eV, close to the values derived

from ARPES measurements79. The energy bandgap of ∼ 0.1 eV shows up in dI/dV spectra

as a dip around -0.3eV, as shown on Fig. 9c. Note that our spectrum is very similar to the

spectra reported for BL graphene on SiC(0001) in Refs.65,77, including the conductance dip

around zero bias whose origin is still debated. The shift of the Dirac point with respect to

ML graphene (see Fig. 4b and 4c) is consistent with ARPES data and results from charge

transfer and screening effects as discussed in Ref. [79].
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VII. CONCLUSION

We have performed a complete study of the quasiparticle interferences (QIs) in epitaxial

graphene on SiC(0001), by using low temperature scanning tunneling microscopy and spec-

troscopy. This technique is carried out to map the spatial modulations of the local density

of states (LDOS) of monolayer (ML) and bilayer (BL) graphene in presence of native disor-

der. The high resolution achieved here allows a thorough analysis of the different ring-like

features found in the two-dimensional Fourier transform of the data. We introduce a simple

model which nicely captures the main features observed on the FT LDOS map, and which

unambiguously demonstrate the impact of the pseudospin degree of freedom on the QIs

pattern. We also derive with a great accuracy the quasiparticle dispersion relation for both

ML and BL graphene on SiC(0001) in the vicinity of the Fermi level.

Our main results are summarized on Fig. 10, which reproduces some of the figures

described in the manuscript, in a fashion which favours a quick comparison between the ML

and BL graphene systems.
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IX. TABLE

Spot location in the FT-LDOS map Intensity factor

~k′ − ~k + ~G 1 + hh′∗

E2 e
i ~G.~τ1

Intravalley backscattering (pocket at Kp): ~k=
−→
ΓKp + ~q, ~k′=

−→
ΓKp − ~q

~G = ~0 −2~q 0

~G = ±~a∗ ±~a∗ − 2~q 1− e±i 2π3
~G = ±~b∗ ±~b∗ − 2~q 1− e±i 4π3

~G = ±
(
~a∗ −~b∗

)
±
(
~a∗ −~b∗

)
− 2~q 1− e∓i 2π3

Intervalley backscattering between states of pockets K1 and K ′2:
~k=
−→
ΓK1 + ~q, ~k′=

−−→
ΓK′2 − ~q

~G = ~0
−→
ΓK2 − 2~q ∼ sin

(
θ − π

6

)
~G = −~b∗

−→
ΓK3 − 2~q ∼ sin

(
θ − 5π

6

)
~G = ~a∗ −~b∗

−→
ΓK1 − 2~q ∼ sin

(
θ − π

2

)
Table1: Summary of the results obtained with our model. We calculate the ~Gth com-

ponent of the interference term ψ∗~k (~r)ψ~k′ (~r), for different ~k, ~k′ states. This quantity corre-

sponds to a spot intensity in the FT-LDOS map at ~k′−~k+ ~G (spot location colomn). This

intensity is modulated by the so-called ’intensity factor’ (last column) defined in the main

text.

X. FIGURE CAPTIONS

Figure 1 (Color online): (a) The honeycomb structure of monolayer (ML) graphene. The

unit cell includes one carbon atom on each A and B sublattice (two C atoms per unit cell).

(b) The first Brillouin zone and the Fermi surface of n-doped ML graphene. Inset: The low

energy band structure of ML graphene (Dirac cone), with a linear and isotropic dispersion

at K or K ′ points. ED and EF are respectively the Dirac and Fermi energies. (c) and (d)

Schematic of the elastic scattering events in doped ML/BL graphene, divided into intravalley

(c) and intervalley (d) processes. The arrows correspond to the wavevectors of the associated

LDOS modulations. (e) Schematic of the expected two dimensional Fourier transform map of

the LDOS, including all the processes depicted in (c) and (d), and neglecting the pseudospin

(see the main text).

Figure 2 (Color online) (a) A 100×100 nm2 constant current STM image on ML graphene
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on SiC(0001). Sample bias: -4 mV. Number of pixels: 2048×2048 (b) A 5×5 nm2 numerical

zoom of (a), showing a hexagonal atomic pattern of period 0.24 nm characteristics of the

graphene’s honeycomb structure. A long range periodic superstructure (period 1.9 nm) is

also present, inferred to the interface with the buffer layer (see text). (c) Two-dimensional

fast Fourier transform (2D FFT) of (a). Image size: 40 × 40 nm−2. (d) Central area of (c)

showing the absence of intensity ring with radius 2qF . (e-g) Zoom-in on the three 2qF outer

rings in (c) indicated by arrows. Image sizes are 5 × 5 nm−2 for (d-g).

Figure 3. (Color online) (a) Detail of the 2D FFT of a 150 × 150 nm2 constant current

STM image obtained at sample bias -10mV on ML graphene on SiC(0001). Image size

40 × 40 nm−2. The center k=0 of the FFT is labeled (0,0), and first order spots of the

reciprocal lattice are labeled (1,0) and (0,1). The arrows point towards faint rings of radius

2qF centered at these two points. (b) a 5×5 nm2 numerical zoom of the 150 × 150 nm2

image.

Figure 4. (Color online) (a) Sample-bias dependence of a 2qE ring at K point in the

FT-LDOS maps, obtained from a series of 50×50 nm2 dI/dV images (not shown). Each

image of (a) has a size 5 × 5 nm−2. (b) Dispersion relation E(qE) extracted from the radial

average of the rings shown in (a). A linear fit is displayed in plain lines, yielding to an

estimation of the Fermi velocity vF and of the Dirac energy ED. (c) A typical dI/dV (V )

spectrum obtained at fixed tip position, with open feedback loop. The arrow points towards

a shallow minimum of the conductance curve at sample bias corresponding to the Dirac

energy ED derived in (b). Stabilisation parameters: Sample bias: + 350 mV, Tunneling

current: 0.15 nA.

Figure 5. (Color online) (a) Schematic Fermi surface of n-doped ML graphene, featuring

the pseudospin orientations (red arrows) in the two unequivalent valleys at K and K ′ points.

(b) Schematic of the Dirac cone at K point showing the pseudospin orientations (red arrows)

for states at energies above and below the Dirac point. (c) Expected FT-LDOS map taking

into account the FS topology and the pseudospin (see text).

Figure 6. (Color online) Illustration of the QIs associated to intravalley scattering off a

single atomically-sharp impurity. (a) Simulation of the 2qF LDOS oscillation generated on

one sublattice only (sublattice A), with the impurity located at the center of the image on a

site A. Image size 100×100 nm2, 2048×2048 pixels. (b) Numerical zoom of the area limited

by the dashed box on (a). (c) Lateral profile along a row of A atoms performed on (b). (d)
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2D FFT of (a). (e) same representation as (a), considering both A and B sublattices, with

2qF oscillations shifted by π between the two sublattices. No long range oscillation show up

on this image, in contrast with (a). (f) Numerical zoom of the area limited by the dashed

box on (e). (g) Lateral profiles performed on (f) along a row of A atoms and along a row of

B atoms. (h) 2D-FFT of (e). See Ref. [72] for the exact quantity mapped on (a) and (e).

Figure 7. (Color online) (a-b) Schematic representations of the low energy band structure

and of the pseudospin texture (red arrows) in (a) Monolayer graphene (b) Bilayer graphene.

(c) Band structure of a standard 2D electron gas. Note that in this latter case, the band is

centered on the Γ point of the Brillouin zone.

Figure 8. (Color online) (a) A 5 × 5 nm2 numerical zoom of a 50 × 50 nm2 constant

current STM image (not shown) recorded on a BL terrace, at sample bias -25 mV. The

atomic triangular pattern on (a) is the hallmark for bilayer graphene with Bernal stacking.

(b) A 50×50 nm2 dI/dV map of the BL terrace at sample bias -25mV. (c) 40×40 nm−2

2D FFT image calculated from (b). Both intravalley and intervalley 2qE rings show up,

respectively at the center and at K (K ′) points of the diagram.

Figure 9. (Color online) (a) Top row: Series of 50×50 nm2 dI/dV maps of a BL terrace at

different sample biases. Middle and bottom rows: corresponding 2D FFT maps, magnified

respectively on a 2qE ring at K point and on the central 2qE ring . Images size: 5 × 5 nm−2.

(b) Dispersion relation extracted from the average radius of the rings displayed on (a). The

plain curve is a fit of the data for a n-doped asymmetric bilayer, with parameters given in

the table, close to the parameters derived from ARPES measurements79 (c) A dI/dV (V )

spectrum obtained at fixed tip position, with open feedback loop. A dip of width 0.1eV

centered at -0.3 eV reflects the energy bandgap induced by the doping asymmetry between

the two graphene layers. Stabilisation parameters: sample bias: + 350 mV, Tunneling

current: 0.15 nA.

Figure 10. (Color online) Summary table of the main results obtained in this study. (a)

Schematic pseudospin texture of ML. (b) Schematic FT LDOS map taking into account the

Fermi surface topology and the pseudospin of ML, derived from our model. (c) FT LDOS

map obtained from STM measurements on ML graphene on SiC(0001) at 5K. Note the good

agreement between (b) and (c). (d) Dispersion relation derived from the STM data on ML.

(e-h) same as (a-d) but for BL graphene. Note the correspondance between (f) and (g): the
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pseudospin has no significant impact for the BL, contrary to the ML case.

∗ electronic address: pierre.mallet@grenoble.cnrs.fr; The two first authors contributed
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