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Abstract

This paper addresses the problem of low transfordaed
variance, or "over-smoothing," in spectral transfation for
Voice Conversion. In examining a classic GMM-based
transformation with cepstral coefficients, we shtwat this
problem lies, not only in the transformation modgis
commonly assumed), but also in the choice of spkctr
parameterization. Consequently, we propose an atieen
method for spectral transformation using spectealks and an
HMM with Gaussian state distributions. The speqbedks are
shown to offer higher inter-speaker feature cofi@taand
yield higher transformed data variance than thepstral
coefficient counterparts. Additionally, the accwyraof the
transformed envelopes is examined.

Index Terms. voice conversion, spectral transformation,
spectral peaks

1. Introduction

Spectral transformation plays a crucial role in ceoi
conversion (VC), both in identifying speakers' veicand
ensuring high quality synthesis. The goal of spéctr
transformation is to transform the spectral envelad a
(source) speaker into that of a different (targgt@aker. The
transformation methodology can be described inetlstages:
first, analysis of the speech signal in order tbraet spectral
envelope parameters; second, training through ilegra
mapping between the source and target parametars, t
transformation of the source parameters to estirtiaise of
the target. Based on this methodology, the perfocmaf a
VC system depends on two key factors: i) the chate
spectral parameters and ii) the choice of modelldarning
and transformation.

Traditional approaches to spectral transformatyquically
use Gaussian Mixture Models (GMM) [1] on cepstral
coefficients or Line Spectral Frequencies (LSF).eSéh
approaches generally succeed in capturing and dapitag
certain characteristic traits of the target speakemwever, the
transformed data in these cases exhibits littldanae, a
problem often called "over-smoothing," [2], [3]. Ghet al.
showed in [2] that this lack of variance in thensBormed data
results from a weak correlation between the soarmktarget
parameters. In addressing this problem, Chen easslume
that the target variance is the same as that ofdliece and
suggest a MAP adaptation algorithm to adjust
transformation function. Alternatively, in [3], Tadet al
address this problem by also modifying the tramsfdion
function, but with the introduction of a "global nance"
parameter to ensure that the transformed datancarienimics
the target variance. In both of these cases, theer‘o
smoothing" problem is attributed to the transfoipratmodel
and heuristics are introduced in order to incredlse
transformed data variance.

the

Fundamentally, the small transformed data variaecae
result of low correlation between the source amgetaspectral
features, as captured in the transformation modetre exist
two possible explanations for this low inter-speake
correlation. First, this problem could be attrimiteo the
transformation model, as in the previously menttbmerks.
Explicitly, the "mixing" of the data may destroyhierent inter-
speaker correlation. This erroneous mixing traesldhto a
source-to-target mapping problem, commonly refertieecds
the "one-to-many" problem, [4]. The second possible
explanation for the low inter-speaker correlati@uld be that
the chosen spectral parameters are not captunmegaaingful
link between the source and target speech. Whie fitist
hypothesis has often been assumed in related wibikspaper
seeks to address the second. Specifically, we ibawviade the
"one-to-many" mapping problem by following the wonk[4]
and introducing context-dependent parameters imtoGMM
modeling, creating a "Phonetic GMM." In using a Réiic-
GMM, we then effectively reduce the problems résglfrom
the transformation model choice and can consequémtis
our problem analysis on the transformation paranutteice.

In this paper, we will show that, even when engurin
correct mappings between the source and targetrésaton a
phoneme-level), there still remains a low interade feature
correlation in a classic transformation approacRpli€itly,
these results indicate that the problem of low-aation
between the source and target features is duestparameter
choice (in this particular case, the cepstral c¢oiefits) rather
than the choice of transformation model. Consequemik
seek an alternative spectral parameterization ¢hat better
capture a meaningful link between the source amdeta
speech. Specifically, we examine the use of spegtaks as
an alternate parameterization for voice conversion.

The structure of this paper is as follows. Secfobegins
by defining some general notation and metrics for
transformation evaluation. These metrics are thpplied to a
classic approach to voice conversion using disccefestral
coefficients (DCC) in a Phonetic GMM, "DCC-GMMP." This
evaluation shows that the chosen parameters, assseu in
the model, exhibit low inter-speaker correlatiord are thus
inadequate for conversion. In section 3, an alterea
parameterization for the spectral envelope, alorith van
adapted model for transformation, is presentedciSpally,
we consider spectral peaks and their transformatiging a
Hidden Markov Model (HMM) with Gaussian-state
distributions, the "Peak-HMM." In section 4, theotdifferent
approaches, DCC-GMMP and Peak-HMM, are compared
using a common reference for the spectral envelBpally,
in section 5, we conclude our evaluation and ds@wenues
for future work.

2. Spectral Transformation Evaluation

Before considering the metrics for evaluating spéctr
transformation, we begin by introducing some gednera



notation. Let's consideN aligned source and target frames

parameterized respectively by vectgrandy, of dimensiorP.
The feature vectors are classified itanodel classes, to be
defined. For each clasg), we consider the sample

mean , variance (o, 2 and cross-covariance
Hq qlP

(a(’;y(p))2 of the pth parameter component. We consider

each parameter component independently, correspgrdia
constraint that all covariance matrices be diagoAatuming
a Gaussian distribution for each component of thece and

target feature vectors, the transformation funcfamthe pth

parameter component is the Maximum Likelihood (ML)

Estimator, y(p) , given by
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where x(p) belongs to clasg. All of the transformation
functions considered in this work follow (1). Withe notation
defined above, we can now consider formalizing @atbn
metrics.

2.1. Metricsfor Evaluation

In this paper, we will consider three criteria ftive
evaluation of spectral transformation. First is gteength of
the link between the source and target parameterthe
model. Formally, this is expressed in the correfati
Specifically, we consider the average correlaticetwieen
source and target parameters in the model
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This criterion is critical in determining the capgcof the
parameters in the model for transformation, as gberce-
target feature correlation scales the factor in it is
dependent on the source data to be transformeda8ijmthe
variance of the transformed data will depend o factor
and, thus, the correlation. Generally, the variantethe
transformed data captures the influence of theetattion in
the transformation results. Accordingly, the secaniterion
that we consider compares the transformed variafocesach
class to those of the target. Specifically, we atsrsthe
average ratio of the variancé4y,
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where ag(o) represents the sample variance of the

transformed data andl, frames are considered in clags

Finally, for an indicator of the transformation tjba we
consider the absolute error between the transfoameldtarget
frame envelopes; specifically, the Mean Squaredr5iVISE)
normalized by the target parameter energy:
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Together, these three criteria (2)-(4) form a catepl
evaluation of spectral transformation, both ofaipproach and
the results.

2.2. Speech Data

Our speech data is taken from corpora used in France

Télécom's speech synthesis systamnatinoo, which contains

speech sampled at 16kHz whose phonetic labeling and

segmentation is manually verified. Currently, wensider
transforming only vowels, as these are among thestmo
important phonemes in speaker identification. lis thork, a
parallel corpus consisting of a female (source) anale
(target) speaker is used. The source and targetlpgeames
are analyzed pitch synchronously. The three cefiséable™)
frames of each source and target phoneme are atitatya
aligned. The remaining frames are aligned uniforinlyime,
within each phoneme. The training and test data eath
consist of 100 distinct phrases (roughly 30,000redd frames
per set).

2.3. Evaluating " Classic" Spectral Transformation

Given the evaluation criteria described in secoh, we can
now re-visit a classic approach to spectral tramséion. In
particular, we consider DCCs, as described in [lith wo
cutoff frequency and no frequency-scale warpingoider to
avoid erroneous source-to-target mappings, we medeh
phoneme with a Gaussian distribution, as in [4]bl&al
summarizes the evaluation results. We considecdnelation
for different model orders in parentheses; singhéi order
coefficients capture more detail, we can exped tesrelation
as we increase the cepstral order. Additionally, have
included the MSEge, , for "transformed” data calculated

using only the target mean in (1), corresponding ¥Q-type
conversion scheme.

Table 1.Evaluation Results: Classic Transformation

o
order 40 (20, 10) | 0-08 (012, 0.16)
VR 0.02
£ -8.46 dB
Emean -8.19 dB

The results in Table 1 show weak links betweersthece and
target parameters, as evident by the low averagelaton
(for all cepstral orders). Accordingly, the low icatof
variances shows that there is very little variation the
transformed data. What's more, the difference batwihe
MSE using the entire transformation function versng the
mean is a fraction of a dB. Hence, the estimatedetar
parameters are essentially the target means. Thesdts
verify those in [2] and [3]. However, in this casme-to-one
mappings between the source and target framesjnwith
phoneme, are ensured. Based on these observatimns,
hypothesize that the lack of inter-speaker featoreelation is



primarily due to the parameter choice. Consequenty seek
an alternative spectral parameterization for tramsétion,
namely spectral peaks.

3. Transforming Spectral Peaks

3.1. Peak Modeling & Analysis

Similarly to [5]-[6], we model the spectral envetoffor
framen as a sum of Gaussian peaks

My, _ M2
sq(f)=2a§‘exn[—%}

m=1
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wheref indicates frequency anil,, is the number of peaks in
framen. The number of peaks for each frame is not fixat b

is limited to 20. The parametess' = [fnm,arr]“,v,’ﬂr represent

the frequency, amplitude and variance of tiné peak in
framen (of the source speaker in this case). As discussed
[5] and [6], this representation offers an intwtiand flexible
representation for the spectral envelope in a cmive
context.

For the peak analysis, as in [6], the Gaussian peak

parameters are selected from peak-picking direotly the
Discrete Fourier Transform (DFT), using a frequen@sknto
avoid modeling harmonic peaks and to increase uésal in
regions more sensitive to human hearing. The paaknce is
then calculated to fill-in the envelope in-betwe@eak
amplitudes. We note here that, given
estimation, the spectral peak variance does nog egohysical
meaning. Consequently, later in learning, this peter is not
considered in determining model classes. Finalby, the
current work, we do not use the inter-frame alignime
described in [6], as we do not currently considher évolution
of spectral parameters in time.

3.2. Learning

The number of peaks determined from the analysis

described above can vary for each source and t&ayse.
Thus, there is no inherent intra or inter-speakegneent
between peaks and the Phonetic GMM described itiosec
2.2 cannot be directly applied. In order to mode source
and target speaker spaces with this peak repreéisentave
consider the spectral envelope as a sequence &6 pra
frequency. Explicitly, for framen of the source speaker, we

have the following sequencé(n=[><%,...,XTT,...,X,';’1"X} of
spectral peak parameters. The ensemble of sourcer@et)
peak sequences, for a particular phoneme, can teen
modeled by an HMM, as in [7]. Unlike [7], we do not
currently consider the time dimension. Letting $teges in this
HMM follow a Gaussian distribution, we can then aseML
estimator (1) to transform the spectral peaks.
transformation process will be described in sect3od. We
refer to this modeling of spectral peaks usingraylsi HMM

per phoneme as a Peak-HMM. The learning procedsire i
summarized as follows.

this parameter

This

Peak-HMM Learning: (For Phonemek)

Data:xy, m=1:M); y', m=1:M}, n=1:Ny
For each source & target speaker (independently)
i. Data clustering: Generate Gaussian Classes ¢ptate
ii. Generate HMM from Gaussian States
Joint Source-Target Space
iii. Inter-Speaker State Alignment
iv. Calculate Cross-Covariance

First, all of the source (or target) peaks (frequyei
amplitude) are grouped using a simplified GMM wid®
classes. The simplification consists in using a M&Rstraint
on the EM algorithm so that each peak is associaiéu a
single class. Statistically insignificant classese athen
removed. These Gaussian classes then form thes statae
phoneme HMM. In the second stei),( the transition
probabilities and initial probability distributicior the speaker
HMMs are calculated. The third stefii); determines an
alignment between the source and target HMM statea
phoneme. Considering only the HMM statistics, wengste
the most-likely state sequence for the target aodrce
speaker. Each of the most-likely target statedigmed to the
most-likely source state closest in frequency. Earhaining
un-aligned source state (most likely or not) isntladigned to
the target state (most likely or not) nearest @gérency. In the

final step {v), the cross-covariance for each source-targes stat

pair is calculated by considering the source amgetapeaks
corresponding to the same frame in time, that lgelanthe
states (classes) satisfying the respective aligaéd

3.3. Transformation

Given the model variables and source-to-targenaignt
determined in the Peak-HMM learning, the followidiggram
in Figure 1 describes the transformation proceamaty how
to transform an observed source peak sequence anto
estimated target peak sequence.

Figure 1:Peak-HMM Transformation

Observed Estimated
Source Peak 3 Source Statd
Sequence Sequence
o Inter-speaker
state alignment
Estimated Estimated
Target Peak Target State
Sequence Sequence

ML Estimator

The first step in this transformation is to findetimost
likely source state sequence given the observedcaqeak

sequence. This problem can be solved using a Viterb

algorithm, as described in [8]. Each state in thégjuence
corresponds to a target state, according to ther-sgteaker
state alignment determined in the Peak-HMM learn{Biyen
these estimated target states, we find the mostapie target
state sequence, allowing the addition of targetestaif
necessary. In the final estimation step, for eaulyet state
related to an observed source peak, the ML estim{afois
used to estimate the corresponding target peak eStimated
target peaks from the remaining target statesdrsédguence, if



any, are taken as the target state mean. Finalgngthe
estimated target peak sequence, the estimated tmgelope
is generated from (5).

4. Evaluation Results

As in the case evaluating a classic spectral toamsttion
in section 2.2, the capability of a chosen modetrémsform
the chosen spectral parameters is indicated byatleeage
correlation (2). Examining this correlation for theeak
parameters, we have the following results showiable 2.
Of the three parameters in Table 2, the peak logltude is
the most relevant. Considering the peak frequency,
transformation of this parameter is essentiallyriedrout in
selecting the state sequence. Significant variation
frequency will not exist within the model states,this would
correspond to a change in state. Considering thak pe
variance, as previously discussed in section B3i§,is a less
important parameter in transformation. Consequettiy most
significant indication of the Peak-HMM's capabilitior
transformation is given by the average correlatbithe peak
amplitude (log amplitude). Comparing this value hnthose
for the classic transformation approach in Tablevé,find a
significant increase in correlation using spectrahks rather
than DCCs. In other words, the link between thers®wand
target parameters, as expressed in the modetpisgsr in the
Peak-HMM.

Table 2.Peak-HMM Parameter Correlation

parameter correlation

frequency 0.10
log(amplitude) 0.38
sqrt(variation) 0.26

In order to examine the accuracy of the Peak-HMM in
estimating the target parameters, we need to cengtie
remaining evaluation metrics in (3), (4). Addititlgawe seek
to compare the Peak-HMM results with those of tlasgical
approach to transformation described in section 2.
Consequently, a common reference for both apprcachest
be considered. We select the peak envelope cadcufadpm
the DFT, given by (5), as the reference envelopéhfe source
and target speakers. For the phonetic GMM, the D@@ter
40) are calculated from this reference envelope #rel
corresponding model and results are examined. Matethe
reference envelopes are not the same as in seztyrthus,
the results could change from Table 1. Howeverstate here
that parameter correlation for cepstral order 4@aieed the
same as in Table 1, 0.08. In the case of the P&&lktH
learning and transformation are carried out as ridest in
section 3 in the spectral peak domain. The regultin
transformed envelopes are then parameterized wiiCD
(order 40). Applying the metrics (3) and (4) to Ibot
transformation results, considering the average Btatistics
for each phoneme, we have the following resulfBahle 3.

Table 3.Evaluation Results; DCC-GMMP vs Peak-HMM

DCC-GMMP Peak-HM M
(peak reference)
VR 0.01 0.32
MSE: € -7.86 -4.34

In Table 3, there is significantly larger similgrivetween the
transformed and target data variance for the PedkiHNote
that, unlike the work in [2] and [3], this varianisenot a result

of heuristic constraints introduced in the transfation
function, but rather a result of the differences fime
transformation domain; notably, a difference in guageter
choice and, consequently transformation model. ©enisg

the MSE, we see that the DCC-GMMP gives higher accuracy
in a frame-by-frame transformed-target comparisdinis
result can be expected as GMM-based transformaison
intended to minimize the mean squared error, whigePeak-
HMM does not globally consider error in transforioat
Nonetheless, the frame-by-frame envelope comparison
indicates that the Peak-HMM is currently lackingestimation
accuracy. However, the stronger source and target for the
Peak-HMM and the ability to better capture the atioh in

the target spectral envelope show that this apprdaalds
promise for spectral transformation.

5. Conclusions & Future Work

This work has shown that the "over-smoothing" peafbl
in spectral transformation can be reduced by cimgosin
adequate spectral parameterization. Spectral peaks been
shown to better capture the correlation betweencgsoand
target speech, as compared to cepstral coefficigvitsle the
transformation accuracy needs to be improved, ricecased
inter-speaker feature correlation and, consequenthe
increase in transformed data variance, demongtrataise in
using spectral peaks for voice conversion.

Future work will incorporate the time-evolution sgectral
peaks in analysis, as in [6], and in the transfdionamodel,
as in [7]. Evaluation of transformation performandgth time-
evolution of the spectral peaks can first be exadhiwith the
goal of improving transformation accuracy and chent be
compared to more classic transformation using dymam
features of the cepstral coefficients.
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