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Abstract 
This paper addresses the problem of low transformed data 

variance, or "over-smoothing," in spectral transformation for 
Voice Conversion. In examining a classic GMM-based 
transformation with cepstral coefficients, we show that this 
problem lies, not only in the transformation model (as 
commonly assumed), but also in the choice of spectral 
parameterization. Consequently, we propose an alternative 
method for spectral transformation using spectral peaks and an 
HMM with Gaussian state distributions. The spectral peaks are 
shown to offer higher inter-speaker feature correlation and 
yield higher transformed data variance than their cepstral 
coefficient counterparts. Additionally, the accuracy of the 
transformed envelopes is examined.      
Index Terms: voice conversion, spectral transformation, 
spectral peaks 

1. Introduction 
Spectral transformation plays a crucial role in voice 

conversion (VC), both in identifying speakers' voices and 
ensuring high quality synthesis. The goal of spectral 
transformation is to transform the spectral envelope of a 
(source) speaker into that of a different (target) speaker. The 
transformation methodology can be described in three stages: 
first, analysis of the speech signal in order to extract spectral 
envelope parameters; second, training through learning a 
mapping between the source and target parameters; third, 
transformation of the source parameters to estimate those of 
the target. Based on this methodology, the performance of a 
VC system depends on two key factors:  i) the choice of 
spectral parameters and ii) the choice of model for learning 
and transformation.  

Traditional approaches to spectral transformation typically 
use Gaussian Mixture Models (GMM) [1] on cepstral 
coefficients or Line Spectral Frequencies (LSF). These 
approaches generally succeed in capturing and reproducing 
certain characteristic traits of the target speaker. However, the 
transformed data in these cases exhibits little variance, a 
problem often called "over-smoothing," [2], [3]. Chen et al. 
showed in [2] that this lack of variance in the transformed data 
results from a weak correlation between the source and target 
parameters. In addressing this problem, Chen et al. assume 
that the target variance is the same as that of the source and 
suggest a MAP adaptation algorithm to adjust the 
transformation function. Alternatively, in [3], Toda et al 
address this problem by also modifying the transformation 
function, but with the introduction of a "global variance" 
parameter to ensure that the transformed data variance mimics 
the target variance. In both of these cases, the "over-
smoothing" problem is attributed to the transformation model 
and heuristics are introduced in order to increase the 
transformed data variance.  

Fundamentally, the small transformed data variance is a 
result of low correlation between the source and target spectral 
features, as captured in the transformation model. There exist 
two possible explanations for this low inter-speaker 
correlation. First, this problem could be attributed to the 
transformation model, as in the previously mentioned works. 
Explicitly, the "mixing" of the data may destroy inherent inter-
speaker correlation. This erroneous mixing translates into a 
source-to-target mapping problem, commonly referred to as 
the "one-to-many" problem, [4]. The second possible 
explanation for the low inter-speaker correlation could be that 
the chosen spectral parameters are not capturing a meaningful 
link between the source and target speech. While the first 
hypothesis has often been assumed in related works, this paper 
seeks to address the second. Specifically, we can alleviate the 
"one-to-many" mapping problem by following the work in [4] 
and introducing context-dependent parameters into the GMM 
modeling, creating a "Phonetic GMM." In using a Phonetic-
GMM, we then effectively reduce the problems resulting from 
the transformation model choice and can consequently focus 
our problem analysis on the transformation parameter choice. 

In this paper, we will show that, even when ensuring 
correct mappings between the source and target features (on a 
phoneme-level), there still remains a low inter-speaker feature 
correlation in a classic transformation approach. Explicitly, 
these results indicate that the problem of low-correlation 
between the source and target features is due to the parameter 
choice (in this particular case, the cepstral coefficients) rather 
than the choice of transformation model. Consequently, we 
seek an alternative spectral parameterization that can better 
capture a meaningful link between the source and target 
speech. Specifically, we examine the use of spectral peaks as 
an alternate parameterization for voice conversion. 

The structure of this paper is as follows. Section 2 begins 
by defining some general notation and metrics for 
transformation evaluation. These metrics are then applied to a 
classic approach to voice conversion using discrete cepstral 
coefficients (DCC) in a Phonetic GMM, "DCC-GMMP." This 
evaluation shows that the chosen parameters, as expressed in 
the model, exhibit low inter-speaker correlation and are thus 
inadequate for conversion. In section 3, an alternative 
parameterization for the spectral envelope, along with an 
adapted model for transformation, is presented. Specifically, 
we consider spectral peaks and their transformation using a 
Hidden Markov Model (HMM) with Gaussian-state 
distributions, the "Peak-HMM." In section 4, the two different 
approaches, DCC-GMMP and Peak-HMM, are compared 
using a common reference for the spectral envelope. Finally, 
in section 5, we conclude our evaluation and discuss avenues 
for future work.                                       

2. Spectral Transformation Evaluation 
Before considering the metrics for evaluating spectral 
transformation, we begin by introducing some general 



notation. Let's consider N aligned source and target frames 
parameterized respectively by vectors x and y, of dimension P.  
The feature vectors are classified intoQ  model classes, to be 
defined. For each class q, we consider the sample 

mean )(pqµ , variance 2))(( pqσ and cross-covariance 

2))(( pxy
qσ  of the thp  parameter component. We consider 

each parameter component independently, corresponding to a 
constraint that all covariance matrices be diagonal. Assuming 
a Gaussian distribution for each component of the source and 

target feature vectors, the transformation function for the thp  
parameter component is the Maximum Likelihood (ML) 
Estimator, )(ˆ py , given by  
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where )( px  belongs to class q. All of the transformation 
functions considered in this work follow (1). With the notation 
defined above, we can now consider formalizing evaluation 
metrics.  

2.1. Metrics for Evaluation 

In this paper, we will consider three criteria for the 
evaluation of spectral transformation. First is the strength of 
the link between the source and target parameters in the 
model. Formally, this is expressed in the correlation. 
Specifically, we consider the average correlation between 
source and target parameters in the model 
 

( )
.

)()(

)(11

1 1

2

∑ ∑
= = 
















=
Q

q

P

p
y
q

x
q

xy
qXY

pp

p

PQ σσ

σ
ρ    (2) 

 
This criterion is critical in determining the capacity of the 
parameters in the model for transformation, as the source-
target feature correlation scales the factor in (1) that is 
dependent on the source data to be transformed. Similarly, the 
variance of the transformed data will depend on this factor 
and, thus, the correlation. Generally, the variance of the 
transformed data captures the influence of the correlation in 
the transformation results. Accordingly, the second criterion 
that we consider compares the transformed variances for each 
class to those of the target. Specifically, we consider the 
average ratio of the variances, VR, 
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where )(ˆ py
qσ  represents the sample variance of the 

transformed data and qN  frames are considered in class q. 

Finally, for an indicator of the transformation quality, we 
consider the absolute error between the transformed and target 
frame envelopes; specifically, the Mean Squared Error (MSE) 
normalized by the target parameter energy: 
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Together, these three criteria (2)-(4) form a complete 
evaluation of spectral transformation, both of the approach and 
the results.  

2.2. Speech Data  

Our speech data is taken from corpora used in France 
Télécom's speech synthesis system Baratinoo, which contains 
speech sampled at 16kHz whose phonetic labeling and 
segmentation is manually verified. Currently, we consider 
transforming only vowels, as these are among the most 
important phonemes in speaker identification. In this work, a 
parallel corpus consisting of a female (source) and male 
(target) speaker is used. The source and target speech frames 
are analyzed pitch synchronously. The three center ("stable") 
frames of each source and target phoneme are automatically 
aligned. The remaining frames are aligned uniformly in time, 
within each phoneme. The training and test data sets each 
consist of 100 distinct phrases (roughly 30,000 aligned frames 
per set).  

2.3. Evaluating "Classic" Spectral Transformation 

Given the evaluation criteria described in section 2.1, we can 
now re-visit a classic approach to spectral transformation. In 
particular, we consider DCCs, as described in [1], with no 
cutoff frequency and no frequency-scale warping. In order to 
avoid erroneous source-to-target mappings, we model each 
phoneme with a Gaussian distribution, as in [4]. Table 1 
summarizes the evaluation results. We consider the correlation 
for different model orders in parentheses; since higher order 
coefficients capture more detail, we can expect less correlation 
as we increase the cepstral order. Additionally, we have 
included the MSE,meanε , for "transformed" data calculated 

using only the target mean in (1), corresponding to a VQ-type 
conversion scheme.    

Table 1. Evaluation Results: Classic Transformation 

XYρ  
order 40 (20, 10) 

 
0.08 (0.12, 0.16) 

VR 0.02 

ε  -8.46 dB 

meanε  -8.19 dB 

   
The results in Table 1 show weak links between the source and 
target parameters, as evident by the low average correlation 
(for all cepstral orders). Accordingly, the low ratio of 
variances shows that there is very little variation in the 
transformed data. What's more, the difference between the 
MSE using the entire transformation function versus only the 
mean is a fraction of a dB. Hence, the estimated target 
parameters are essentially the target means. These results 
verify those in [2] and [3]. However, in this case, one-to-one 
mappings between the source and target frames, within a 
phoneme, are ensured. Based on these observations, we 
hypothesize that the lack of inter-speaker feature correlation is 



primarily due to the parameter choice. Consequently, we seek 
an alternative spectral parameterization for transformation, 
namely spectral peaks.   

3. Transforming Spectral Peaks 

3.1. Peak Modeling & Analysis 

Similarly to [5]-[6], we model the spectral envelope for 
frame n as a sum of Gaussian peaks 
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where f indicates frequency and nM  is the number of peaks in 

frame n. The number of peaks for each frame is not fixed but 

is limited to 20. The parameters [ ]Tm
n

m
n

m
n

m
n vafx ,,=  represent 

the frequency, amplitude and variance of the thm  peak in 
frame n (of the source speaker in this case). As discussed in 
[5] and [6], this representation offers an intuitive and flexible 
representation for the spectral envelope in a conversion 
context. 

For the peak analysis, as in [6], the Gaussian peak 
parameters are selected from peak-picking directly on the 
Discrete Fourier Transform (DFT), using a frequency mask to 
avoid modeling harmonic peaks and to increase resolution in 
regions more sensitive to human hearing. The peak variance is 
then calculated to fill-in the envelope in-between peak 
amplitudes. We note here that, given this parameter 
estimation, the spectral peak variance does not carry a physical 
meaning. Consequently, later in learning, this parameter is not 
considered in determining model classes. Finally, for the 
current work, we do not use the inter-frame alignment 
described in [6], as we do not currently consider the evolution 
of spectral parameters in time.           

3.2. Learning 

The number of peaks determined from the analysis 
described above can vary for each source and target frame. 
Thus, there is no inherent intra or inter-speaker alignment 
between peaks and the Phonetic GMM described in section 
2.2 cannot be directly applied. In order to model the source 
and target speaker spaces with this peak representation, we 
consider the spectral envelope as a sequence of peaks in 
frequency. Explicitly, for frame n of the source speaker, we 

have the following sequence 
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spectral peak parameters. The ensemble of source (or target) 
peak sequences, for a particular phoneme, can then be 
modeled by an HMM, as in [7]. Unlike [7], we do not 
currently consider the time dimension. Letting the states in this 
HMM follow a Gaussian distribution, we can then use an ML 
estimator (1) to transform the spectral peaks. This 
transformation process will be described in section 3.3. We 
refer to this modeling of spectral peaks using a single HMM 
per phoneme as a Peak-HMM. The learning procedure is 
summarized as follows. 
 

 
 
 

Peak-HMM Learning: (For Phoneme k) 
 

    Data: k
y
n

m
n

x
n

m
n NnMmyMmx :1,:1,;:1, ===  

   For each source & target speaker (independently): 
       i.  Data clustering: Generate Gaussian Classes (States) 
      ii.  Generate HMM from Gaussian States 
   Joint Source-Target Space 
     iii.  Inter-Speaker State Alignment 
     iv.  Calculate Cross-Covariance 
 

First, all of the source (or target) peaks (frequency & 
amplitude) are grouped using a simplified GMM with 20 
classes. The simplification consists in using a MAP constraint 
on the EM algorithm so that each peak is associated with a 
single class. Statistically insignificant classes are then 
removed. These Gaussian classes then form the states in the 
phoneme HMM. In the second step (ii), the transition 
probabilities and initial probability distribution for the speaker 
HMMs are calculated.  The third step (iii), determines an 
alignment between the source and target HMM states in a 
phoneme. Considering only the HMM statistics, we estimate 
the most-likely state sequence for the target and source 
speaker.  Each of the most-likely target states is aligned to the 
most-likely source state closest in frequency. Each remaining 
un-aligned source state (most likely or not) is then aligned to 
the target state (most likely or not) nearest in frequency. In the 
final step (iv), the cross-covariance for each source-target state 
pair is calculated by considering the source and target peaks 
corresponding to the same frame in time, that belong to the 
states (classes) satisfying the respective aligned pair.  

3.3. Transformation 

Given the model variables and source-to-target alignment 
determined in the Peak-HMM learning, the following diagram 
in Figure 1 describes the transformation process, namely how 
to transform an observed source peak sequence into an 
estimated target peak sequence.  
 

Figure 1: Peak-HMM Transformation 

 
The first step in this transformation is to find the most 

likely source state sequence given the observed source peak 
sequence. This problem can be solved using a Viterbi 
algorithm, as described in [8]. Each state in this sequence 
corresponds to a target state, according to the inter-speaker 
state alignment determined in the Peak-HMM learning. Given 
these estimated target states, we find the most probable target 
state sequence, allowing the addition of target states, if 
necessary. In the final estimation step, for each target state 
related to an observed source peak, the ML estimator (1) is 
used to estimate the corresponding target peak. The estimated 
target peaks from the remaining target states in the sequence, if 

Observed 
Source Peak 
Sequence 

Estimated 
Target Peak 
Sequence 

Estimated  
Source State 
Sequence 

Estimated  
Target State 
Sequence 

Inter-speaker 
state alignment 

ML Estimator 



any, are taken as the target state mean. Finally, given the 
estimated target peak sequence, the estimated target envelope 
is generated from (5).           

4. Evaluation Results 
As in the case evaluating a classic spectral transformation 

in section 2.2, the capability of a chosen model to transform 
the chosen spectral parameters is indicated by the average 
correlation (2). Examining this correlation for the peak 
parameters, we have the following results shown in Table 2.      
Of the three parameters in Table 2, the peak log-amplitude is 
the most relevant. Considering the peak frequency, 
transformation of this parameter is essentially carried out in 
selecting the state sequence. Significant variations in 
frequency will not exist within the model states, as this would 
correspond to a change in state. Considering the peak 
variance, as previously discussed in section 3.1, this is a less 
important parameter in transformation. Consequently, the most 
significant indication of the Peak-HMM's capability for 
transformation is given by the average correlation of the peak 
amplitude (log amplitude). Comparing this value with those 
for the classic transformation approach in Table 1, we find a 
significant increase in correlation using spectral peaks rather 
than DCCs. In other words, the link between the source and 
target parameters, as expressed in the model, is stronger in the 
Peak-HMM. 

Table 2. Peak-HMM Parameter Correlation 

parameter correlation 
frequency 0.10 

log(amplitude) 0.38 

sqrt(variation) 0.26 

 
In order to examine the accuracy of the Peak-HMM in 

estimating the target parameters, we need to consider the 
remaining evaluation metrics in (3), (4). Additionally, we seek 
to compare the Peak-HMM results with those of the classical 
approach to transformation described in section 2. 
Consequently, a common reference for both approaches must 
be considered. We select the peak envelope calculated from 
the DFT, given by (5), as the reference envelope for the source 
and target speakers. For the phonetic GMM, the DCCs (order 
40) are calculated from this reference envelope and the 
corresponding model and results are examined. Note that the 
reference envelopes are not the same as in section 2.2, thus, 
the results could change from Table 1. However, we state here 
that parameter correlation for cepstral order 40 remained the 
same as in Table 1, 0.08. In the case of the Peak-HMM, 
learning and transformation are carried out as described in 
section 3 in the spectral peak domain. The resulting 
transformed envelopes are then parameterized with DCCs 
(order 40). Applying the metrics (3) and (4) to both 
transformation results, considering the averaged DCC statistics 
for each phoneme, we have the following results in Table 3.  

Table 3. Evaluation Results: DCC-GMMP vs Peak-HMM  

 DCC-GMMP 
(peak reference) 

Peak-HMM 

VR 0.01 0.32 
MSE: ε  -7.86 -4.34 

 

In Table 3, there is significantly larger similarity between the 
transformed and target data variance for the Peak-HMM. Note 
that, unlike the work in [2] and [3], this variance is not a result 
of heuristic constraints introduced in the transformation 
function, but rather a result of the differences in the 
transformation domain; notably, a difference in parameter 
choice and, consequently transformation model. Considering 
the MSE, we see that the DCC-GMMP gives higher accuracy 
in a frame-by-frame transformed-target comparison. This 
result can be expected as GMM-based transformation is 
intended to minimize the mean squared error, while the Peak-
HMM does not globally consider error in transformation. 
Nonetheless, the frame-by-frame envelope comparison 
indicates that the Peak-HMM is currently lacking in estimation 
accuracy. However, the stronger source and target links for the 
Peak-HMM and the ability to better capture the variation in 
the target spectral envelope show that this approach holds 
promise for spectral transformation.          

5. Conclusions & Future Work 
This work has shown that the "over-smoothing" problem 

in spectral transformation can be reduced by choosing an 
adequate spectral parameterization. Spectral peaks have been 
shown to better capture the correlation between source and 
target speech, as compared to cepstral coefficients. While the 
transformation accuracy needs to be improved, the increased 
inter-speaker feature correlation and, consequently, the 
increase in transformed data variance, demonstrate promise in 
using spectral peaks for voice conversion.     

Future work will incorporate the time-evolution of spectral 
peaks in analysis, as in [6], and in the transformation model, 
as in [7]. Evaluation of transformation performance with time-
evolution of the spectral peaks can first be examined with the 
goal of improving transformation accuracy and can then be 
compared to more classic transformation using dynamic 
features of the cepstral coefficients.  
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