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Abstract

This paper is the result of investigations suggested by recent publications and com-
pletes D.Huet [33] and [34]. The topics, which are dealt with, concern some spaces of
functions, and properties of solutions of linear and nonlinear, stationary and evoluton
differential equations namely: existence, spectral properties, resonances, singular per-
turbations, boundary layers, inertal manifolds. The aim of this document, and of [33]
and [34], is to be a useful reference for (youngs) researchers in mathematics and applied
sciences.
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INTRODUCTION
The article is divided into several sections as follows
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10 Resonances 20

The development of each entry includes indications on history, definitions, an overview of
main results, examples and applications, but is, of course, non exhaustive. Complements
will be found in the references.

1 Birman-Schwinger operator

Definition 1. Consider the Schrödinger operator

Hγ = Ho + γV (x), Ho = (−∆)l (1)

acting on L2(Rd), 2l ≥ d, where x → V (x) is a real-valued continuous function defined on
Rd which is non-negative, and tends to zero sufficiently fast as |x| → ∞, γ is a small negative
coupling constant. The operator Ho is self adjoint and its spectrum is σo = [0,+∞). The
Birman-Schwinger operator associated to (1) is the operator

XV (λ) = V
1
2Rλ(Ho)V

1
2 ,

where Rλ(Ho) is the resolvent of Ho in (−∞, 0). For each λ ∈ (−∞, 0), XV (λ) is self adjoint
and compact (cf. J. Arazy, L. Zelenko [2]).

Application

In [2] , the authors consider the decomposition XV (λ) = Φ(λ) +T (λ), where Φ(λ) is a finite
rank operator and T (λ) an Hilbert-Schmidt operator whose norm is uniformly bounded
with respect to λ ∈ (−δ, 0) for some δ > 0. An asymptotic expansion of the bottom
virtual eigenvalue λo(γ) of Hγ , as γ < 0 tends to zero, is deduced from this decomposi-
tion: if d is odd, it is of power type, while, when d is even , it involves the log function.
Asymptotic estimates are obtained, as γ ↑ 0, for the non-bottom virtual eigenvalues of Hγ ,
{λk(γ),k ∈ Zd+; 0 < |k| ≤ m}, where m = l − d+1

2 if d is odd and m = l − d
2 if d is even. If

d is odd, Φ(−t2l) is a meromorphic operator function, and the leading terms of the asymp-
totic estimates of λk(γ) are of power type. An algorithm, based on the Puiseux-Newton
diagram (cf. H. Baumgärtel [4]), is proposed for an evaluation of the leading coefficients
of these estimates. If d is even, two-sided estimates are obtained for eigenvalues with an
exponential rate of decay; the rest of the eigenvalues have a power rate of decay. Estimates
of Lieb-Thirring type are obtained for groups of eigenvalues which have the same rate of
decay, when d is odd or even.

2 BMO spaces

BMO and related spaces

Definitions

Let sup
I

be the supremum over all cubes I ⊂ Rn with edges parallel to the coordinate axes,

�l(I) be the sidelength of I and fI the mean value of f over I. The square form of John-
Nirenberg’s BMO = BMO(Rn) space (cf. F. John, L. Nirenberg [36]) is the space of localy
integrable complex-valued functions f defined on Rn, such that

||f ||BMO =

(
sup
I

(�l(I))−n
∫
I

|f(x)− fI |2dx
) 1

2

<∞.
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The space of functions of bounded mean oscillation, modulo constants, equipped with the
above norm, is a Banach space.

Real hardy space H1(Rn)

A function f ∈ H1(Rn) if and only if

f =
∑

cjαj (2)

where cj ∈ R,
∑
|cj | < ∞, each function αj is supported on a ball Bj , has integral zero,

and sup
x∈Bj
|αj(x)| ≤ 1

|Bj |
. Functions α that satisfy the above properties are called 1-atom (cf.

E.M. Stein, [53]).With the norm

||f ||H1 = inf
∑
|cj | (3)

for all decompositions of f of the form (2), H1(Rn) is a Banach space. For definitions and
properties of Hardy-spaces Hp(Rn), see C. Fefferman and E.M. Stein [27].
The definitions of the following spaces are recalled in J. Xiao [58].

Qα spaces

For α ∈ (−∞,∞) , Qα(Rn) is the Banach space of all measurable complex-valued functions
on Rn, modulo constants, such that

||f ||Qα = sup
I

(
(�l(I))2α−n

∫
I

∫
I

|f(x)− f(y)|2

|x− y|n+2α
dxdy

) 1
2

<∞.

(cf. M. Essen, S. Janson, L. Peng, J. Xiao [23]).

Space
.

L
2

α, α ∈ (0, 1)

The homogeneous Sobolev space
.

L
2

α(Rn) is the space of complex-valued functions f such
that

||f || .
L

2

α

=

(∫
Rn

∫
Rn

|f(x)− f(y)|2

|x− y|n+2α
dxdy

) 1
2

<∞

Space L2,n−2α, α ∈ (0, 1).

It is the space of measurable complex-valued functions f on Rn such that

||f ||L2,n−2α = sup
I

(
(�l(I))2α−n

∫
I

|f(x)− fI |2dx
) 1

2

<∞

Space Q−1
α;T , α ∈ (0, 1), T ∈ (0,∞)

A temperated distribution f on Rn belongs to this space provided

||f ||Q−1
α;T

= sup
x∈Rn,r∈(0,T )

(
r2α−n

∫ r2

0

∫
|y−x|<r

|et∆f(y)|2t−αdydt

) 1
2

<∞

where et∆(x, y) is the heat kernel.
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Relations between these spaces

1–In [27], it is proved that the dual of H1(Rn) is BMO (theorem 2).

2–For α ∈ R, f ∈ S ′(Rn), modulo polynomials, (−∆)−
α
2 f = F−1

(
|ξ|−αf̂(ξ)

)
= Iαf (cf. R.

Strichartz [54]). In [58], when α ∈ (0, 1), it is proved that
1) Qα = (−∆)−

α
2 L2,n−2α,

2)
.

L
2

α = (−∆)−
α
2 L2,

3) Q−1
α;∞ = ∇.(Qα)n

and sharp estimates for the norms of the embeddings Qα ↪→ BMO, and
.

L
2

α ↪→ L
2n

n−2α , are
obtained .
We point out that 3) means that f ∈ Q−1

α;∞ if and only if there are fj ∈ Qα such that
f =

∑n
j=1 ∂jfj .

BMO nonlinearity

(cf. S-S. Byun and L. Wang [10]) Let a(ξ, x) be a real valued function on Rn × Rn. For
y ∈ Rn and ρ > 0, Bρ(y) denotes the open ball of radius ρ centered at y. Set

āBρ(y)(ξ) =
1

|Bρ(y)|

∫
Bρ(y)

a(ξ, x)dx (4)

and define the function β(a,Bρ(y)) by

β[a,Bρ(y)](x) = sup
ξ∈Rn

|a(ξ, x)− āBρ(y)(ξ)|
|ξ|+ 1

(5)

Definition 2. Small BMO condition The vector field a = a(ξ, x) satisfies the (δ,R)-
BMO condition if

sup
0<ρ≤R

sup
y∈Rn

1

|Bρ(y)|

∫
Bρ(y)

|β[a,Bρ(y)]|2(x)dx ≤ δ2 (6)

Definition 3. Reifenberg domain A bounded open set Ω in Rn is (δ,R)-Reifenberg
flat if, for every xo ∈ ∂Ω and every r ∈ (0, R], there exists a coordinate system {y1, ...yn},
(which can depend on r and xo) so that xo is the origin in this coordinate system and that

Br(0) ∩ {yn > δr} ⊂ Br(0) ∩ Ω ⊂ Br(0) ∩ {yn > −δr} (7)

(cf.[9])

Applications

i)Let Ω be a bounded, open subset of Rn, f ∈ Lp(Ω;Rn), 2 ≤ p <∞, a = a(ξ, x) : Rn×Rn →
Rn is a vector field measurable in x for almost every ξ, and continuous in ξ for each x. In
[10], the authors consider the non linear boundary value problem

div a(∇u, x) = divf, in Ω u = 0 on ∂Ω. (8)

The following conditions are imposed on a(ξ, x)

[a(ξ, x)− a(η, x)].(ξ − η) ≥ co|ξ − η|2 (9)

for all ξ, η ∈ Rn and almost every x ∈ Ω.

|a(ξ, x)| ≤ c1(1 + |ξ|) (10)

4



for all ξ ∈ Rn and almost x ∈ Rn, and

|∇ξa(ξ, x)| ≤ c2 ∀ξ ∈ Rn, and almost every x ∈ Rn (11)

for some positive constants co, c1, c2. Then it is proved that there exists δ > 0 such that,
if a satifies the (δ,R)- BMO condition and Ω is (δ,R)-Reifenberg flat, the weak solution
u ∈ H1

o (Ω) to (8) belongs to W 1,p
o (Ω) with the estimate

||∇u||Lp(Ω ≤ C(||f ||Lp(Ω) + 1) (12)

where C is independent of u and f .

ii)In [9], S-S Byun extends the previous results to Orlicz spaces.. He recalls the following
definitions:

Definition 4. A positive function φ defined on [0,∞) is called a Young function if it
is increasing, convex and satisfies

φ(0) = 0, φ(∞) = lim
t→∞

φ(t) =∞, lim
t→0

φ(t)

t
= 0, lim

t→∞

φ(t)

t
=∞ (13)

Definition 5. We say that the Young function φ ∈ ∆2 ∪∇2 if it satisfies the following
conditions

φ(2t) ≤ κφ(t),∀t ≥ 0, 2toφ(t) ≤ φ(tot),∀t > 0 (14)

for some numbers κ, to > 1.

Definition 6. Let φ ∈ ∆2 ∪ ∇2 be a Young function. The Orlicz space Lφ(Ω) is the
linear space of all measurable functions v : Ω→ R satisfying∫

Ω

φ(|v|)dx <∞ (15)

Equipped with the norm

||v|||Lφ(Ω) = inf{λ > 0 :

∫
Ω

φ(
|v|
λ

)dx ≤ 1} (16)

Lφ(Ω) is a Banach space.

The following result is proved in [9]: let φ ∈ ∆2 ∪∇2 be a Young function. There exists
a small δ > 0 and a positive constant C such that, if the nonlinearity a satisfies (9), (10),
(11), (6), if Ω satisfies (7), and if |f |2 ∈ Lφ(Ω), then the unique weak solution u ∈ H1

o (Ω)
to (8) satifies |∇u|2 ∈ Lφ(Ω), with the estimate∫

Ω

φ(|∇u|2)dx ≤ C(1 +

∫
Ω

φ(|f |2)dx)) (17)

Remark 1. If p > 2 and φ(t) = t
p
2 the inequality (17) is only (12)

3 Bounded variation (functions of)

The notion of functions of bounded variation is closely related to the notion of measure
and the following usual definitions are useful.

5



Measures-Definitions

Let Ω be an open subset of Rn, and Cc(Ω,C) [resp. Cc(Ω,R)] be the space of continuous
functions ϕ : Ω→ C [resp. R] with compact support in Ω.

i) A measure µ on Ω is a linear functional

µ : ϕ ∈ Cc(Ω,C)→ µ(ϕ)(or〈µ, ϕ〉) ∈ C (18)

that is continuous, in the following sense: for all K compact in Ω, there exists a constant
CK such that

|〈µ, ϕ〉| ≤ CK ||ϕ||∞ (19)

for all ϕ ∈ Cc(Ω,C) whose support is contained in K. We write µ ∈M(Ω). In [51], L.Schwartz
introduces a topology on Cc(Ω,C) and µ is continuous on this topological space .

ii) µ is said bounded on Ω if, in(19), the constant is independent of K. The space of
bounded measures on Ω is denoted by M1(Ω) .

iii) The conjugate µ̄ of µ is given by

〈µ̄, ϕ〉 = 〈µ, ϕ̄〉 (20)

iv) µ is called real, if 〈µ, ϕ〉 ∈ R,∀ϕ ∈ Cc(Ω,R)

v) µ is called positive if 〈µ, ϕ〉 ≥ 0,∀ϕ ∈ Cc(Ω,R), ϕ ≥ 0

Absolute value of a measure

If µ is a complex or real measure, its absolute value, denoted by |µ|, is the map

ψ ∈ Cc(Ω,R), ψ ≥ 0→ 〈|µ|, ψ〉 = sup
ϕ∈Cc(Ω,C),|ϕ|≤ψ

{|〈µ, ϕ〉|} (21)

Total variation of a positive bounded measure

Let µ be a positive, bounded measure on Ω. Its total variation, denoted by |µ|Ω or
∫

Ω
µ,

is
|µ| = sup

ϕ∈Cc(Ω,R),0≤ϕ≤1

µ(ϕ) (22)

Space BV (I,R) or BV (I)

Let I = (a, b) be an interval in R. The following definitions are well known. A function
f : x ∈ I → R is of bounded variation

i) if it can be expressed in the form φ−ψ, where φ, ψ are nondecreasing bounded functions

ii) if the interval (a, b) is divided up by points

a = xo < x1 < ... < xn−1 < xn = b

then, there exists a constant C > 0, independent of the mode of division, such that

n−1∑
ν=0

|f(xν+1)− f(xν)| < C (23)
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and the upper bound of the sum (23) is called the total variation of f on I and is denoted
by V(f,I)
For these definitions, see E.C. Titchmarsh [56] p. 355 and F.Riesz and B. Sz-Nagy [48] p.10

iii) If f ∈ L1
loc(R), f defines a distribution T = Tf ∈ D′(R). In order the derivative of T

to be a measure, it is necessary and sufficient that f is of bounded variation on every finite
interval, see L. Schwartz [51] p.53.

Space BV (Ω,R) or BV (Ω)

Definitions

The following definitions are equivalent (cf. H. Brezis [8], p. 153):
A function f ∈W 1

1 (Ω), is of bounded variation

i) if all first derivatives of f , in the distributional sense i.e. in D′(Ω), are bounded measures.

ii) there exists a constant C such that

|
∫

Ω

f
∂φ

∂xi
dx| ≤ C||φ||L∞(Ω) ∀φ ∈ C∞c (Ω), i = 1, ..., n (24)

iii) there exists a constant C such that

||τhf − f ||L1(ω) ≤ C|h| (25)

for all open set ω ⊂⊂ Ω and all h ∈ Rn with |h| < dist(ω, {Ω). Moreover, in (24) and(25) we
can take C = ||∇f ||L1(Ω). Here τhf(x) = f(x+h), and∇f is the distributional gradient of f .

iv) a function f ∈ L1(Ω) is of bounded variation if its first distributional derivatives are
bounded measures. Then, the gradient ∇f is a bounded, vector-valued measure whose
absolute value |∇f | is the map

ψ ∈ Cc(Ω,R), ψ ≥ 0→ 〈|∇f |, ψ〉 = sup
ϕ∈Cc(Ω,Cn),

∑n
i |ϕi|2≤ψ2

{|〈∇f, ϕ〉|} (26)

where 〈∇f, ϕ〉 =
∑n
i

∂f

∂xi
ϕi, |∇f | is a bounded positive measure. The total variation of

|∇f | is ∫
Ω

|∇f | = ||∇f ||Ω = sup
ψ∈Cc(Ω,R),0≤ψ≤1

〈|∇f |, ψ〉 (27)

(cf. F. and G. Demengel [21], p.303)

The general case

Let Ω be an open subset of Rd with a smooth boundary. A function f ∈ L1
loc(Ω,Rn)

has a bounded variation i.e.f ∈ BV (Ω,Rn), if ∇f , in the distributional sense, is a vector-
valued Radon measure of finite total mass. Let |f |BV =

∫
Ω
|∇f | be a BV-semi-norm.

In J. Davila [20], the following property of |f |BV is proved: there exists a positive constant
K, which depends on d, such that, for every family of non negative radial mollifiers ρε ∈
L1
loc((0,∞),R+) satisfying∫ ∞

0

ρε(r)r
d−1dr = 1 and lim

ε→0

∫ ∞
δ

ρε(r)r
d−1dr = 0 ∀δ > 0,
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we have

lim
ε→0

∫
Ω2

|f(x)− f(y)|
|x− y|

ρε(|x− y|)dxdy = K|f |BV , ∀f ∈ BV (Ω,Rq).

Application

In [40], B. Merlet shows, by means of the above property of |f |BV , that, if u ∈ BV (Ω, S1),
there exists a lifting ϕ ∈ BV (Ω,R) of u (i.e. u(x) = eiϕ(x),∀x ∈ Ω) such that |ϕ|BV ≤
2|u|BV .

4 Discrete energy

Let ωN = (x1, ..., xN ), N ≥ 2 be a set of N points on the unit-sphere S2 = {x ∈ R3, |x| = 1}.

Discrete energy of ωN

Different discrete energies are associared with ωN . Let α ∈ R,−2 < α < 2.

Definition 7. The Coulomb [resp. logarithmic] energy associated with ωN is

HC(ωN ) =

N∑
i=1

N∑
j=i+1

1

|xi − xj |

[resp.

HL(ωN ) = −
N∑
i=1

N∑
j=i+1

log |xi − xj | ]

Definition 8. More generally, the α-energy associated with ωN is

E(α, ωN ) =


N∑
i=1

N∑
j=i+1

|xi − xj |α if α 6= 0

HL(ωN ) if α = 0

Remark 2.
HC(ωN ) = E(−1, ωN )

Remark 3. E(α, ωN ) is the energy of the N points x1, ..., xN , on the surface of the
sphere, interacting through a potential V = rα (cf E. A. Rakhmanov, E.B. Saff, Y.M. Zhou
[47]).

The article [47] is devoted to extremal energy for ωN :

E(α,N) =


inf

ωN∈S2
E(α, ωN ) if α ≤ 0

sup
ωN∈S2

E(α, ωN ) if α < 0

Bounds for E(α,N),−2 < α < 2 and explicit formula for N points on S2 that yields good
estimates for E(α,N) are obtained. The authors point out important applications of the
determination of E(α,N) to geometry, chemistry, physics, and cristallography, and give
references for the history of related researchs.

8



A more general discrete energy-like function on the unit sphere

In [12], A.F. Cheviakov, M.J. Ward, R. Straube introduce the following definition

Definition 9. The discrete energy-like function associated with ωN is

H(ωN ) = HC(ωN ) +
1

2
HL(ωN )− 1

2

N∑
i=1

N∑
j=i+1

log(2 + |xi − xj |)

Application

In [12], H(ωN ) is related to the mean first passage time (MFPT) v(x) for a Brownian
particle in the unit ball Ω in R3 that contains N small locally circular absorbing windows

∂Ωεj on its boundary ∂Ω = S2. Set ∂Ωa =
N⋃
j=1

∂Ωεj . The function v(x) is solution to the

Dirichlet-Neumann problem :

∆v = − 1

D
in Ω

v = 0 on ∂Ωa,
∂v

∂n
= 0 on ∂Ω \ ∂Ωa (28)

where D is a diffusivity coefficient. The authors obtain three-term asymptotic expansions

for v(x), for the average MFPT v̄ =
1

|Ω|
∫

Ω
v(x)dx, and for the principal eigenvalue λ of

the Laplacian associated with the boundary conditions (28), when the area |∂Ωεj | ∼ πε2a2
j ,

∂Ωεj → xj ∈ S2 as ε → 0, j = 1, ..., N and |xi − xj | = O(1), i 6= j. For instance, when the
windows have common radius ε� 1, they obtain:

v̄ =
|Ω|

4εDN
[1 +

ε

π
log(

2

ε
) +

ε

π
(−9N

5
+ 2(N − 2) log 2 +

3

2
) +

4

N
H(x1, ..., xN ) +O(ε2 log ε)].

and

λ ∼ 1

Dv̄
Next, v̄ is minimized and the corresponding λ is maximized at the configuration ωN that
minimizies H(ωN ). The optimum arrangements {x1, ..., xN} that minimize H(ωN ) are nu-
merically computed by different methods.

5 Equal- area condition

Equal-area type conditions appear, as sufficient or necessary conditions, in the formation
of layers (internal or superficial) in stationary solutions to various singularly perturbed
reaction-diffusion systems. In the recent works A.S. do Nascimento [43], J. Crema, A.S. do
Nascimento [18] and R.J. de Moura, A.S. do Nascimento [41], the authors prove the necessity
of suitable equal-area condition for the formation of internal or (and) superficial transition
layers in this type of problems.

Example 1. A simple particular case of problems studied in [43] is the elliptic boundary
value problem {

εdiv(h(x)∇u) + f(u) = 0 x ∈ Ω
∂u

∂n
= 0 on ∂Ω

(29)

where Ω is a smooth domain in RN , N ≥ 1, f : R→ R is such that there exist α, β, α > β,with
f(α) = f(β) = 0.
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Let Γ ⊂ Ω be a smooth (N-1) dimensional compact manifold without boundary. It is
proved that, if (29) has a family {uε} of solutions which develop an internal transition
layer with interface Γ connecting the states α to β, then, necessarily, the simple equal-area
condition ∫ β

α

f(s)ds = 0

is satisfied.

Example 2. In [18], the following stationary system is considered:
εdiv(h(x)∇u) + f(x, u,v) = 0 x ∈ Ω
div(k(x)∇v) + g(x, u,v) = 0 x ∈ Ω
∂v

∂n
= 0 (or v = 0) on ∂Ω.

(30)

where Ω is a smooth domain in RN , N ≥ 1, v,k,g are sufficiently smooth Rn-valued func-
tions, and k∇v = (k1∇v1, ...kn∇vn).

Let U be an open connected set in Ω, Γ ⊂ U be an (N-1)-dimensional compact connected
orientable manifold whose boundary ∂Γ is such that ∂Γ ∩ ∂Ω is an (N-2)-dimensional sub-
manifold of ∂Ω. A definition of a family of internal transition layer solutions {(uε,vε)}, 0 <
ε < εo} to (30) in U with interface Γ, depending on two functions α, β ∈ Co(U), α(x) < β(x)
on Γ is given. For such a family, there exists uo [resp.vo] such that uε → uo [resp.vε → vo]
on compact sets of U \Γ [resp. in U ]. It is proved that, if a family of internal transition layer
solutions to (30) exists, then f(x, uo(x),vo(x)) = 0 on U \Γ and necessarily the equal-area
condition ∫

Γ

(

∫ β(x)

α(x)

f(x, s,vo(x)) ds) dS = 0

is satisfied. Several concrete applications of these results are presented in the paper.

Example 3. In [41], Ω is a bounded domain in RN , N ≥ 1 with C2 boundary ∂Ω,
S is a C2 (N-1)-dimensional surface with a boundary Σ which is assumed to be a C2

(N-2)-dimensional compact surface without boundary with Σ = S ∩ ∂Ω, and S intersects
∂Ω transversally The authors define a family of solutions {uε}, 0 < ε < εo to the elliptic
boundary value problem: 

εdiv(a(x)∇vε) + f(x, vε) = 0, x ∈ Ω

εa(x)
∂vε
∂n̂

= g(x, vε), x ∈ ∂Ω

which develops internal and superficial transition layers, depending on some smooth
functions α, β, α(x) < β(x), x ∈ Ω, with interfaces S and Σ respectively.

Here a ∈ C1(Ω), a > 0, f : Ω× R→ R and g : ∂Ω× R→ R are of class C1 and n̂ is the
exterior normal vector field on ∂Ω. It is proved that the equal-area conditions:∫ β(x)

α(x)

f(x, t)dt = 0 ∀x ∈ S and

∫ β(y)

α(y)

g(y, t)dt = 0 ∀y ∈ Σ

are necessary for the existence of such solutions.
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6 Inertial manifolds

Let (E, d) be a metric space and S(t) a continuous semigroup on E.

Definition 10. A set M ⊂ E is an inertial manifold for S(t) if
i) M is a finite-dimensional Lipschitz manifold in E
ii)M is of class C1

iii)M is positively invariant under the flow i.e. S(t)M ⊂M,∀t ≥ 0
iv)M is exponentially attracting i.e. there exists a constant co such that, for ecery uo ∈ E,
there exists a constant c1(uo) > 0 such that

distE(S(t)uo,M) ≤ c1e−cot, ∀t ≥ 0

where distE is the Hausdorff semi-distance (see section 1.8 in D.Huet [34]) cf A. Bonfoh, M.
Grasselli, A. Miranville [6] p.164.

Definition 11. (see R. Temam [55]) Let B ⊂ E, and U an open subset of E such that
B ⊂ U ; B is said absorbing for S(t) in U if, for any bounded set Bo in U , there exists
t1(Bo) such that S(t)Bo ⊂ B, for all t ≥ t1. In particular, if B is bounded, S(t)B ⊂ B, for
t ≥ t1(B)

Remark 4. Similar definitions were given in [55] and M.Luskin, G.R. Sell [38], in the
case of Hilbert spaces. In [55] the smoothness of M and the continuity of the semi-group
S(t) are not parts of the definition of an inertial manifold.

In a Hilbert space H, an inertial manifold M for a semi-group S(t) is usually viewed as
the graph of a suitable smooth function Φ : PH → QH, where P is an orthogonal projection
on H with finite-dimensional range, and Q = I − P.
Usually, the semigroup S(t) is associated with an evolution equation of the form

u′t +Au+Ru = 0 (31)

with the initial condition u(0) = uo, where A is a linear operator and R a nonlinear one.
When an inertial manifold M exists for problem (31), the restriction of (31) to M reduces
to a finite dimensional ordinary differential equation, which is an exact copy of the initial
system.

Construction of an inertial manifold

An Hilbert space case

(cf.[55]). In a Hilbert space H whose norm is denoted by |.|, consider problem (31) where A is
an unbounded linear operator in H, strictly positive (i.e. ∃c > 0 such that (Au, u) ≥ c||u||2H
for all u in the domain D(A) of A), and self-adjoint. It is assumed that A−1 is compact.
Thanks to assumptions on A , it is possible to define its powers As defined on D(As), for
all s ∈ R. When 0 < s < 1 see also D. Huet [32],T. Kato [37], M. Schechter [49]. For r > 0,
we denote by Bs,r the ball, in D(As), with center 0 of radius r, i.e.

Bs,r = {v ∈ D(As); ||v||s = |Asv| ≤ r} (32)

It is assumed that R satisfies the following properties:

11



H1: ∃α ∈ R such that R is Lipschitz on the bounded sets of D(Aα) with values in D(Aα−
1
2 )

and
|Aα− 1

2R(u)−Aα− 1
2R(v)| ≤ CK |Aα(u− v)|,

|Aαu| ≤ K |Aαv| ≤ K ∀u, v ∈ D(Aα)
(33)

H2: If uo ∈ D(Aα) problem (31) has a unique solution u ∈ C(R+;D(Aα))∩L2((O, T );D(Aα+ 1
2 )), ∀T ≥

0 and the map S(t) : uo → u(t) is continuous from D(Aα) into itself, ∀t ≥ 0.

H3: The semi-group S(t) possesses an absorbing set Bo ⊂ D(Aα) such that
1-S(t)Bo ⊂ Bo, ∀t ≥ O
2-The ω-limit set of Bo

ω(Bo) = ∩
β≥0
∪S(t)Bo

t≥β
(34)

is the maximal attractor for S(t) in D(Aα)
3-ρ > 0 is chosen such that Bo is included in the ball Bα, ρ2 of D(Aα) (cf (32)).

The prepared equation

The prepared equation is equivalent to the original one for t large. Let θ : R+ → [0, 1] be a
C∞ function such that

θ(s) =

{
1 for 0 ≤ s ≤ 1

0 for s ≥ 2

and
sup
s≥0
|θ′(s)| ≤ 2 (35)

The aim of the prepared equation is to avoid the difficulties related to the behavior of the

nonlinear term R(u) for large values of |Aα(u)|. Let θr(s) = θ(
s

r
), r > 0 and

Rr(u) = θr(|Aα(u)|)R(u) ∀u ∈ D(Aα) (36)

The prepared equation associated to (31) is of the form

u′t +Au+Rρu = 0 (37)

Let Sρ(t) be the semi-group associated with (37). The following is assumed

H4: The ball Bα,ρ is absorbing for Sρ(t)

Thanks to the assumptions on R, Rρ is a bounded operator, and a Lipschitz mapping from

D(Aα) into D(Aα−
1
2 ). In particular

|Rρ(u1)−Rρ(u2)| ≤ Cρ|Aα(u1 − u2)| ∀u1, u2 ∈ D(Aα) (38)

where Cρ is a constant which depend of ρ.

Space FαNbl
Let N ∈ N, and b, l > 0. Under the assumptions on A, there exists an orthonormal basis wj
in H, where wj is the eigenvector of A corresponding to the eigenvalue λJ , with 0 < λ1 ≤
λ2... ≤ λJ →∞, as j →∞. Set

P = PN Q = I − P = I − PN

where PN is the orthogonal projector, in H, onto the space spanned by w1, ...wN . The
projections P and Q commute with Aβ ,∀β ∈ R.

12



Definition 12.
F = FαNbl = {ϕ : PD(Aα)→ QD(Aα)} (39)

where ϕ is a Lipschitz function with supp (ϕ) ⊂ {p ∈ PD(Aα), |Aαp| ≤ 2ρ}, that satisfies

|Aαϕ(p)| ≤ b |Aαϕ(p1)−Aαϕ(p2)| ≤ l|Aα(p1 − p2)| (40)

∀p ∈ PD(Aα), p1, p2 ∈ D(Aα)

Remark 5. 1-PD(Aα) is finite dimensional.
2- F is a complete metric space for the distance

d(ϕ1, ϕ2) = sup
p∈PD(Aα)

|Aα (ϕ1(p)− ϕ2(p)) | (41)

Construction of a map T : F → F

Let ϕ ∈ F , po ∈ PD(Aα).Thanks to assumptions on ϕ and Rρ, the problem:

dp

dt
+Ap+ PRρ(p+ ϕ(p)), p(0) = po (42)

has a unique solution ppo,ϕ(t) ∈ PD(Aα). Then, problem

dq

dt
+Aq = −QRρ(ppo,ϕ(t) + ϕ(ppo,ϕ(t)) (43)

has a unique solution qpo,ϕ(t) ∈ Cb(R;QD(Aα)). Therefore qpo,ϕ(0) ∈ QD(Aα) (cf lemma
2.3., p.420 in [55]). The mapping T is defined by ψ = T (ϕ) with

ψ : po ∈ PD(Aα)→ qpo,ϕ(0) ∈ QD(Aα) (44)

Let σ(t) denote the right member of (43). Then

ψ(po) = −
∫ 0

−∞
etAσ(τ)dτ (45)

Existence of an inertial manifold for (31) or (37)

Under asumptions H1−H4, if it is possible to find N,b,l, such that T is a strict contraction
of F into itself i.e. ∃L < 1 with d(T ϕ1, T ϕ2) ≤ Ld(ϕ1, ϕ2),∀ϕ1, ϕ2 ∈ F , then, T has a fixed
point Φ ∈ F , and the graph of Φ is an inertial manifold for (31) or (37)

Example 4. (cf. A. Bonfoh [7]) Set Ω =
∏n
i=1(0, Li), Li > 0, n ≤ 2 and denote by N

the operator −∆ : H2(Ω) ∩ H1
o (Ω) → L2(Ω). The following singularly perturbed problem

(Pε) is studied, in Ω : {
δφt +Nφ+ g(φ) = u
εut + φt +Nu = 0

(46)

with the boundary conditions
φ, u|∂Ω = 0 (47)

and the initial conditions
φ|t=0 = φo, u|t=0 = uo (48)

where δ > 0, ε ∈ (0, εo, ], g ∈ C2(R) satisfies the conditions

|g′(s)| ≤ C1(|s|p + 1), g′(s) ≥ −C2, C1 > 0, C2 ≥ 0, p > 0,∀s ∈ R (49)

13



The limit problem (Po) is given by (46) where ε = 0:{
δφt +Nφ+ g(φ) = u
φt +Nu = 0

(50)

(47), and the initial condition φ|t=0 = φo. Set

H1 = H1
o (Ω), H2 = H2(Ω) ∩H1

o (Ω), H3 = {q ∈ H3(Ω) ∩H1
o (Ω); ∆q ∈ H1

o (Ω)} (51)

Let ||.|| denote the usual norm in L2(Ω) and set ||q||r = ||N
r

2 q||, r = 1, 2, 3. The norms
||.||r are equivalent to the usual Sobolev Hr(Ω) norms on Hr. Several Banach spaces whose
norms depend on ε are introduced,in particular

Hoε = H1 × L2(Ω), with the norm ||(p, q)||Hoε = (||p||21 + ε||q||2)
1
2 (52)

Under additional assumptions on the regularity of the data, there exists semigroups Sε(t),
global attractors Aε and exponential attractors Mε for problems (Pε), 0 ≤ ε ≤ εo (cf C.V.
Chepyzhov, M.I. Vishik [11]). It is proved that Aε and Mε converge as ε → 0, to some
lifting of Ao and Mo, in Ho1 (cf (52)). Moreover, there exists r > 0, independent of ε, such
that

B = {u ∈ H3, ||u||3 ≤ r} Bε = {(φ, u) ∈ H2
ε , ||(φ, u)||H2

ε
≤ r} (53)

are bounded absorbing sets for S(t) in H3 and Sε(t) in H2
ε , respectively, where

H2
ε = H3 ×H2 with the norm ||(p, q)||2H2

ε
= ||p||23 + ε||q||22 (54)

and there exists t1 > 0 such that S(t)B ⊂ B,Sε(t)Bε ⊂ Bε, for t ≥ t1, in particular:

B̃ = S(t1)B ⊂ B B̃ε = Sε(t1)Bε ⊂ Bε (55)

Following the above construction, the authors associate an inertial manifold Mr to problem
(Po), and a family of inertial manifolds Mr

ε to problems (Pε) such that

Mr ⊂ B̃, Mr
ε ⊂ B̃ε (56)

Let (Mr)o be the following lifting of Mr:

(Mr)o = {(φ, (I + δN)−1(Nφ+ g(φ)) ∈ H1
ε , φ ∈Mr} (57)

Then, it is proved that
1) For all 0 < ε2 < ε1 small enouph, Mr

ε2 is lower and upper semi-continuous at ε2, with
respect to the metric induced by the H0

ε1 norm
2)Mr

ε converge, in a suitable sense, to (Mr)o with respect to the metric induced by the
H0

1norm, as ε goes to 0.

7 Mathieu-Hill type equations

Mathieu and Hill Equations

The real Mathieu [resp. Hill] equation has the form

y” + (a+ b cos 2πx)y = 0
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β=α−1
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-1 1
α

β
β=2α

Figure 1: The α− β plane

where a and b are constants, [resp.

y” + (a+ bq(x))y = 0]

where q is any smooth periodic function of period 1 with mean 0 (see E.A. Coddington, N.
Levinson [14] and Z.X. Wang, D.R. Guo [57]). Physical problems leading to Mathieu or Hill
equations often require solutions with periodicity, called oscillatory solutions . Therefore,
to find conditions on the data for which the above equations have a fundamental system of
periodic solutions is a central problem.

Its Equation

In [35], A.R. Its considers the Schrödinger equation on the positive semi-axis

y”− [xβp(x1+α) + cx−2]y = 0 (58)

where p is a smooth periodic function, with period 1 and mean 0, c is a real number and
the parameters α, β satisfy the relations β − α ≥ −1 and 2α− β > 0 (cf.Figure 1).

He proves that equation (58) has oscillatory solutions when β > α − 1. If β = α − 1, the
solutions are oscillatory or not. In all cases, asymptotic formulas for the solutions are stated,
as x → ∞. His method is based on a transformation which leads to a Hill-type equation
and Floquet functions.

Method of diagonalisation

In [5], S. Bodine and D.A. Lutz investigate equation (58) by a general method of diagonal-
ization with a L1-regularity for p. Set

t = x1+α, ρ(t) =

∫ t

0

p(s)

1 + α
ds, µ =

∫ 1

0

ρ(t)dt, ν =

∫ 1

0

(ρ(t))2dt, (µ2 < ν).

Let

λ1,2 = (
1

2
±
√
c+ µ2 − ν +

1

4
)/(1 + α)
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be the eigenvalues of a suitable matrix which depends on α, c, µ, ν, and Λ be the crucial
diagonal matrix diag{λ1, λ2}. When β = α−1, three cases are studied separately according
to λ1 − λ2 belongs to N, does not belong to N0 or is equal to 0. In each case, very sharp
asymptotic formulas are obtained for a fundamental system of solutions to (58). In partic-
ular, when λ1 − λ2 ∈ No, a logarithmic term appears in the formulas. For instance, when
λ1 − λ2 ∈ N the following formulas are obtained:

y1(x) = xλ1(1+α)[1 +

N−1∑
r=1

p1
r(x

1+α)

xr(1+α)
+O(

1

xN(1+α)
)] + η(lnx)y2(x)

y2(x) = xλ2(1+α)[1 +

N−1∑
r=1

p2
r(x

1+α)

xr(1+α)
+O(

1

xN(1+α)
)]

where p1,2
r are scalar valued , bounded, continuous, periodic functions with period 1 which

are recursively calculated. This logarithmic term is missing in Its formulas.

8 Memory (equations with)

Definition

Definition 13. (cf. B. D. Coleman and W. Noll [15]) A function h is called an
influence function if
i) h(s) is defined for 0 ≤ s <∞, h(s) > 0
ii)There exists r > 0 such that lim

s→∞
srh(s) = 0, monotonically for large s.

The function h(s) is said to be of order r.

Example 5. 1) h(s) = (s+ 1)−p is an influence function for r < p
2) h(s) = e−βs, β > 0 is an influence function of any order

Dafermos results

Let H be a Hilbert space with inner product 〈.〉 and norm ||.||.

An abstract integrodifferential equation

In [19], C.M. Dafermos investigates solutions t ∈ (−∞,+∞)→ u(t) ∈ H, on [0,∞), to the
integrodifferential equation

d

dt
(ρu̇(t)) + Cu(t) +

∫ t

−∞
G(t− τ)u(τ)dτ = 0 (59)

with specified “history ”
u(τ) = v(τ), τ ∈ (−∞, 0] (60)

Here ρ, C,G(t) are self adjoint operators in H, ρ is bounded, C and G(t) are unbounded
with dense domains D(C) and D[G(t)] respectively. Moreover, they satisfy the following
conditions

〈ρw,w〉 ≥ ρo||w||2, ∀w ∈ H
〈Cw,w〉 ≥ c||w||2, ∀w ∈ D(C)
〈G(t)w,w〉 ≤ 0, ∀w ∈ D[G(t)], t ∈ [0,∞).

(61)

with ρo > , c > 0. LetH2 [resp.H1] be the Hilbert space defined asD(C) [resp.D(C
1
2 )],equipped

with the natural norms, and H−1 the dual of H1. The injection H2 → H is assumed to be
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compact. More regularity assumptions on G(t) and Ġ(t) imply the existence of a decreasing
influence function h ∈ C0[0,∞) such that∫ ∞

0

[||G(t)||L(H1,H−1) + ||Ġ(t)||L(H1,H−1)]h
−2(t)dt <∞ (62)

In the following, h is a fixed influence function which satisfies (62)

Spaces of fading memory type; stability results

Set I = (−∞, 0]. For k = 0, 1, ...,, in [19], the author introduces the Banach spaces of
fading memory type (cf.[15]) Ck [resp. Bk] of sufficiently smooth functions w : I → H1

[resp.w : I → H2] such that:

||w||Ck =

1∑
j=0

k+1−j∑
i=0

sup
I

[h(−t)||w(i)(t)||j ] <∞ (63)

[resp.

||w||Bk =

2∑
j=0

k+2−j∑
i=0

sup
I
||w(i)(t)||j <∞] (64)

Then, Bk ⊂ Ck+1 ⊂ Ck, and the injection Bk → Ck is compact. Let T > 0 and set
IT = (−∞, T ]. If v ∈ Ck [resp. Bk], he proves the existence of a unique solution u to (59) on
[0, T ] which satisfies (60) on (−∞, 0]. Moreover, si v ∈ Ck [resp Bk], u satisfies

1∑
j=0

k+1−j∑
i=0

sup
[0,T ]

||u(i)(t)||j ≤ c||v||Ck (65)

[resp.
2∑
j=0

k+2−j∑
i=0

sup
[0,T ]

||u(i)(t)||j ≤ c||v||Bk ] (66)

The new function

ω : (v, ξ) ∈ Ck × [0,∞)→ ω[(v, ξ)](τ) = u(ξ + τ) ∈ Ck, τ ∈ I

where u is the solution to (59) on [0,∞) with condition (60) on (−∞, 0], satisfies

ω(v, 0) = v ∀v ∈ Ck
ω(v, ξ + ξ′) = ω[ω(v, ξ), ξ′] ,∀ξ, ξ′ ∈ [0,∞), v ∈ Ck

i.e. w looks like a dynamical system on Ck (or Bk), but it is not necessarily continuous on
Ck×[0,∞). Therefore, w is not a classical dynamical system (cf. J.K. Hale [30]) Nevertheless,
it is possible to define a Lyapunov function Vk(v), for w, on Ck and prove, with suitable
spectral conditions on G, via an adaptation of J.K. Hale’s results [30], the following stability
results for the solution u to (59) on [0,∞) with condition (60) on (−∞, 0] , when v ∈
Cm,m = 0, 1, ...,:

u(i)(t)→ 0 in H1 as t→∞ i = 0, 1, ...m
um+1(t)→ 0 in H as t→∞
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Equations with memory and singular perturbations

Example 6. In [28], S. Gatti, A. Miranville, V. Pata, S. Zelik consider a family of
Banach spaces Hε and a family of semi-groups Sε(t) : Hε → Hε, ε ∈ [0, 1]. They state
sufficient conditions on Hε and Sε which imply the existence of exponential attractors Eε for
Sε(t), ε ∈ [0, 1] such that

dist-symHε(Eε, Eo) ≤ Cε
δ

and
dist-symHε2

(Eε1 , Eε2) ≤ C(ε1 − ε2)δ ∀ε1 ≥ ε2 > 0

with C ≥ 0 and δ ∈ (0, 1).The results are applied to evolution equations with memory of
the form

∂tx(t) +

∫ ∞
0

kε(s)Bo(x(t− s))ds+B1(x(t)) = O, t ∈ [0,∞) (67)

with specified history
x(t) = v(t), t ∈ (−∞, 0] (68)

where v is a given function, k : [0,∞) → [0,∞) is a convex summable function with∫∞
0
k(s)ds = 1 and kε(s) =

1

ε
k(
s

ε
), B0, B1 are densely defined, possibly nonlinear, oper-

ators in a suitable Banach space. As ε → 0, the formal limit to problem (67) and (68)
is

∂tx(t) +Bo(x(t)) +B1(x(t)) = 0, x(0) = v(0) (69)

Example 7. In [16], M. Conti, V. Pata and M. Squassina are interested in the conver-
gence, in an appropriate sense, as ε → 0, of the solution uε(x, t), x ∈ Ω, t ∈ R to problem
(pε):

ut − ω∆u− (1− ω)

∫ ∞
0

kε(s)∆u(t− s)ds+ ϕ(u) = f, t > 0,

with Dirichlet boundary conditions on the boundary of the smooth bounded domain Ω
in R3, ω > 0, ϕ is a suitable nonlinearity, f is a time independent source term , and the
memory kernel kε converges to the Dirac distribution at the origin, u(x, t) is supposed
to be a given datum for t ≤ 0. Let A = −∆ on L2(Ω) with domain D(A) = H1

o (Ω) ∩
H2(Ω), Hr = D(A

r
2 ), r ∈ R. Following C. Dafermos [19] and M. Grasselli and V. Pata [29],

they introduce, under additional assumptions on k, ϕ, f, (ϕ(x) = x3 − x is allowed), the
auxiliary variable ηt(x, s) =

∫ s
o
u(x, t − y)dy, the functions µ(s) = −(1 − ω)k′(s), µε(s) =

1

ε2
µ(
s

ε
), the Hilbert spaces Mr

ε = L2
µε(R

+, Hr+1) and Hrε = Hr ×Mr
ε for ε > 0, Hro = Hr.

The correct reformulation of pε, in the frame work of dynamical systems, is( Pε) : find
(uε, ηε) ∈ C([0,∞),Hoε ) solution to

ut + ωAu+

∫ ∞
o

µε(s)Aη(s)ds+ ϕ(u) = f, ∂tη = −∂sη + u

for t > 0, associated with the initial condition (uo, ηo) ∈ Hoε . The existence, for ε > 0, of
a strongly continuous semi-group Sε(t) on Hoε corresponding to Pε and of an exponential
attractor Eε for Sε(t) are proved. The convergence of Eε is also studied.
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9 Nodes, Nodal

Nodal points, curves, surfaces, or nodes

Definition 14. In R. Courant, D. Hilbert [17], they are defined as points [resp. curves,
surfaces], on which some eigenfunctions of a differential problem, in a domain G ∈ RN , N = 1
[resp. N = 2, 3], vanishes.

Example 8. In the 1970 edition of [17], p.452, a second order Sturm-Liouville problem
is considered. It is proved that the nodes of the nth eigenfunction un divide the domain into
no more than n subdomains.

Nodal sets, Nodal domains, Nodal solutions

Example 9. In [31], M. and T. Hoffman-Ostenhof and N. Nadirashvili study the
Dirichlet eigenvalue problem

−∆ui = λiui, i = 1, 2, ... u ∈ H1
o (D),

where D is a bounded domain in Rn, . The nodal set ui is defined as

N (ui) = {x ∈ D : ui(x) = 0}

The nodal domains of ui are the connected components of D\N (ui).The authors construct
a domain D ⊂ R2 on which the second eigenvalue has a nodal set disjoint from the boundary,
whereas the nodal line conjecture, first mentioned by L.E. Payne [45], stated that

N (u2) ∩ ∂D 6= ∅.

Example 10. In [3], T. Bartsch and T.Weth consider the nonlinear elliptic Dirichlet
problem:

− ε2∆u+ au = f(u) in Ω, u ∈ H1
o (Ω) (70)

where Ω is a bounded domain in RN , N ≥ 2, a > 0, ε is a small positive parameter, and f
grows superlinearly and subcritically. They study the number of nodal solutions i.e. sign-
changing solutions of (70) and their nodal domains. They show that the number of nodal
solutions can be expressed as a Lyusternik-Schnirelman category (cf. L. A. Lyusternik, L.
Schnirelman [39]), of a suitable inclusion between two spaces which involve the shape of ∂Ω.

.

Example 11. The Ehrenberg-Siday-Aharonov-Bohm effect
This effect is a quantum mechanical phenomenom in which an electrically charged particle
is affected by an electromagnetic field (E,B) despite being confined to a region in which
both the magnetic field B and the electric field E are zero (cf. Y. Aranov, D. Bohm [1], W.
Ehrenberg, R.E. Siday [22]) and M. Peshkin, A. Tonomura [46]).
In [44], B. Noris and S. Terracini consider the following problem of Ehrenberg-Siday -
Aharonov-Bohm type:

Ha,V u ≡ (i∇+Aa)2u+ V u = 0 in Da, u = Γ on ∂D. (71)

acting in L2(D;C) where D is the open unit disk in R2, a = (a1, a2) ∈ D,Da = D\{a},
V ∈W 1,∞(D) is the scalar potential, Aa is the following vectorial potential

Aa(x1, x2) =
2n+ 1

2
(− x2 − a2

(x1 − a1)2 + (x2 − a2)2
,

x1 − a1

(x1 − a1)2 + (x2 − a2)2
) +∇φ, (72)
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Γ ∈W 1,∞(D;C), n ∈ Z, φ ∈ C2(D). The magnetic fied associate to Aa is a Dirac distribution
at a, directed orthogonally to the plane. The magnetic potential Aa satisfies ∇×Aa = 0 in
Da, and the half integer circulation

1

2π

∮
σ

Aa.dx =
2n+ 1

2
, n ∈ Z, (73)

for every closed path σ which winds one around the pole. The authors investigate the nodal
set N (u) for a class of solutions to (71) whose nodal set consists of regular arcs connecting
the singular points with the boundary and , in particular, when N (u) consists of exactly
three arcs, intersecting in a.

N-mode solution

In [42], K. Nakashima, M. Urano and Y. Yamada, consider the following ordinary differential
problem :

ε2u”(x) + f(x, u(x)) = 0 x ∈]0, 1[; u′(0) = u′(1) = 0 (74)

where f(x, u) = u(1 − u)(u − a(x)); a is a C2[0, 1] function such that 0 < a(x) < 1,
a′(0) = a′(1) = 0, and the subsets Σ and Λ of (0, 1) where a(x) = 1

2 and a′(x) = 0,
respectively, are finite sets and a′(x) 6= 0 for any x ∈ Σ. The authors study the asymptotic
behavior, as ε → 0, of n-mode solutions uε of (74) i.e. solutions such that vε = uε − a has
exactly n zero-points in (0, 1), and show that any transition layer [resp. spike] is located in
a neighborhood of a point of Σ [resp. Λ].

10 Resonances

Only a few aspects of this large topic are presented here. More aspects are in preparation.

The case of a vibrating string

Free motion

(cf. L. Schwartz [50]) Consider a homogeneous vibrating string , with linear density ρ,
subjected to a constant tension µ.The position of the string, fixed at the end points x =
0, x = L is given by solutions of the wave equation

1

v2

∂2u

∂t2
− ∂2u

∂x2
= 0 x in [0, L] (75)

with the boundary conditions
u(t, 0) = u(t, L) = 0 (76)

where v =

√
µ

ρ
has the dimension of a velocity. To solve problem (75)(76) the initial values

of the position and of the velocity of the string are needed, i.e.

u(0, x) = uo(x)
∂u

∂t
(0, x) = u1(x) (77)

Solutions u(x, t) of the above initial value problem of the form u(x, t) = U(x)V (t) are

uk(x, t) = sin
kπx

L
(Ak cos

kπvt

L
+Bk sin

kπvt

L
)
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where k > 0 is an integer and Ak, Bk are constants.The numbers λ =
k2π2

L2
, such that

U ′′(x) + λU(x) = 0, U(0) = U(L) = 0 (78)

are called the eigenvalues and sin
kπx

L
the eigenfunctions of the problem. The constants

Ak, Bk are the Fourier coefficients of suitable extensions of uo and u1 to periodic functions .

The case of a forced motion: resonance

(cf. R. Courant and D. Hilbert [17]) We suppose that the vibrating string is under the
influence of an external force which has the Fourier expansion:

Q(x, t) =

∞∑
k=1

Qk(t) sin
kπx

L

Then, the deflection of the string is solution to

1

v2

∂2u

∂t2
− ∂2u

∂x2
= Q(x, t), u(0, t) = u(L, t) = 0

with the initial conditions (77). We look for a solution of the form

u(x, t) =

∞∑
k=1

Nk(t) sin
kπx

L
. (79)

The coefficients Nk(t) must be solutions of the equations

1

v2
N ′′k (t) +

k2π2

L2
Nk(t) = Qk(t) (80)

The general solution of the homogeneous equation associated to (80) is

ak cos
kπvt

L
+ bk sin

kπvt

L

A particular solution of (80)is obtained by the method of variation of constants (cf E.A.
Coddington [13]). Finaly,

Nk(t) =
1
kπ
L

∫ t

0

Qk(u) sin
kπ

L
(t− u)du+ ak cos

kπvt

L
+ bk sin

kπvt

L

where the constants ak, bk are determined by the initial conditions (77)

Now, suppose Qk(t) = α cosωt + β sinωt. Then, if ω 6= kπ

L
, u(x, t), in (79), is a linear

combination of a sinusoidal function of frequancy ω, and one of frequency
kπ

L
. But, if

ω =
kπ

L
, Nk(t) contains terms of the forms t sin t and t cos t which are unbounded, we say

that resonance occurs.
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Resonances as poles of complex functions

(cf. M.Zworski [59]). Set X = [0, L] with L = π, for simplicity, PV = − ∂2

∂x2
+ V (x), V ∈

C∞(X), V (x) ≥ 0 and

U(x, t) =

(
u(t, x)

−i∂tu(t, x)

)
PV =

(
0 1
PV 0

)
(81)

Consider the system

1

i
∂tU = PV U U(t, 0) = U(t, π) = 0 U(0, x) =

(
uo(x)
−iu1(x)

)
(82)

The solution to system (82) involves eigenvalues and eigenfunctions of

PVW = λW, W |∂X = 0

Consider the Hilbert space H, closure of C∞c (X)× C∞c (X) for the inner product

〈Φ,Ψ〉 = 〈PV φ1, ψ1〉+ 〈φ2, ψ2〉, Φ =

(
φ1

φ2

)
, Ψ =

(
ψ1

ψ2

)
Then PV is an unbounded self-adjoint operator on H and its eigenvalues are real. Let σ(PV )
be the spectrum of PV . It is pointed out, in [59] that

λ ∈ σ(PV )⇐⇒ λ is a pole of (PV − z)−1 : H → H

Remark 6. When V (x) = 0, system (82) is equivalent to problem (75)– (77), and the
eigenvalues of

P0W = λW, W |∂X = 0

are λ = k ∈ Z− {0} which correspond to the eigenvalues k2 of problem (78)

More generally, consider the problem with a dissipative term a∂t, a > 0 :

(− ∂2

∂t2
+ a

∂

∂t
− PV )u(t, x) = 0, t > 0, x ∈ X, u|∂X = 0

It can be rewritten as
1

i
∂tU(t, x) = PaU(t, x), u|∂X = 0 (83)

where U is defined in (81) and

Pa =

(
0 1
PV ia

)
The operator Pa is not self-adjoint on H. The eigenvalues and the eigenfunctions of Pa
are still defined by

PaW = λW W |∂X = 0 (84)

and the solutions of (83) are given by superpositions of solutions of the form

U(t, x) = exp(−itλ)W (x) (85)

but the eigenvalues λ = α + iβ are not real any more. An elementary calculus shows that

λ(λ− ia) = µ2, where µ ∈ R, is an eigenvalue of PV , i.e. β =
a

2
, α2 = µ2 − a2

4
. Here, again,
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Figure 2: Spectral band

the eigenvalues of Pa are poles of (Pa − z)−1 : H → H. Now, since α /∈ σ(Pa), for a given f
the equation

(Pa − α)u = f (86)

has a solution. But, if a is small enough, λ = α+
ia

2
is a pole of (Pa− z)−1 very close to α,

and, for a suitable choice of f , the solution of equation (86) can be “enormous ”(cf. [59]).
We say that a resonance occurs

Quasi-periodic Schrödinger operator, the resonant case

In their papers [24], [25] and [26] A. Fedotov and F. Klop study the spectrum of quasi
periodic schrödinger operators of the form

Hz,ε = − d2

dx2
+ V (x− z) + α cos(εx) (87)

where, α > 0, V ∈ L2
loc(R) is periodic with period 1, z is a real parameter indexing the

equations of the family; ε > 0 is such that 2π
ε is irrational. Let

Ho = − d2

dx2
+ V (x)

be the periodic Schrödinger unperturbed operator. Its spectrum, on L2(R), consists of the
union of intervals [E2n−1, E2n], n ≥ 1, such that En →∞, as n→∞. It is assumed that all
the spectral gaps (E2n, E2n+1) are open. The spectrum of (87), at an energy E, depends
on the relative position of the spectral window F(E) = [E − α,E + α] with respect to
the spectrum of Ho. In [24] four cases are distinguished according as F(E) lies inside or
completely covers a spectral band of Ho or contains exactly one edge or two edges (Figure
2 (d)) of a spectral band.

In each case, under specific additional assumptions, the authors describe the nature of the
spectrum of (87), and state asymptotic formulas, as ε→ 0.
In [25], they are interested in the spectrum of (87), in intervals J such that for all E ∈ J ,
F(E) covers the edges of two neighboring spectral bands of Ho and the spectral gap located
between them (Figure 2 (d))). Let ΓR be the real iso-energy curve associated to (87) and
γ0, γπ, be the connected components of ΓR in a periodicity cell. To each of these loops, one
associates a sequence of energies in J, Ena , a = {0, π}, and, near each Ena , an exponentally
small interval Ina such that the spectrum of (87) , in J, is contained in the union of these
intervals. The location and the nature of the spectrum of (87) are investigated in the union
In0 ∪ Imπ , in the resonant case, i.e. when In0 and Imπ intersect each other.
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(2006), 415–427. 9, 10

[42] K. Nakashima, M. Urano, Y. Yamada, Transitions layers and spikes for a bistable
reaction-diffusion equation, Advances in Mathematical Sciences and Applications, 15
no.2 (2005), 683–707. 20

[43] A.S. do Nascimento, Inner transition layers in an elliptic boundary value problem: a
necessary condition, Nonlinear Analysis, 44 (2001), 487–497. 9

[44] B. Noris, S. Terracini, Nodal sets of magnetic Schödinger operators of Aharonov-Bohm
type and energy minimizing partition. Indiana University Mathematics Journal, 59 no.
4 (2010), 1361–1403 19

[45] L.E. Payne, Isoperimetric inequalities and their applications, Siam Review, 9 (1967),
453–488. 19

[46] M. Peshkin, A. Tonomura,The Aharonov-Bohm effect, Lecture Notes in Physics, 340,
Springer, Berlin (1989). 19

[47] E.A. Rakhmanov, E.B. Saff, Y.M. Zhou, Minimal discrete energy on the sphere, Math-
ematical Research Letters , 1 (1994), 647–662 8
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