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. The topics, which are dealt with, concern some spaces of functions, and properties of solutions of linear and nonlinear, stationary and evoluton differential equations namely: existence, spectral properties, resonances, singular perturbations, boundary layers, inertal manifolds. The aim of this document, and of [33] and [34], is to be a useful reference for (youngs) researchers in mathematics and applied sciences.

INTRODUCTION

The article is divided into several sections as follows 10 Resonances

20

The development of each entry includes indications on history, definitions, an overview of main results, examples and applications, but is, of course, non exhaustive. Complements will be found in the references.

1 Birman-Schwinger operator Definition 1. Consider the Schrödinger operator

H γ = H o + γV (x), H o = (-∆) l (1) 
acting on L 2 (R d ), 2l ≥ d, where x → V (x) is a real-valued continuous function defined on R d which is non-negative, and tends to zero sufficiently fast as |x| → ∞, γ is a small negative coupling constant. The operator H o is self adjoint and its spectrum is σ o = [0, +∞). The Birman-Schwinger operator associated to [START_REF] Aharonov | Significance of electromagnetic potentials in quantum theory[END_REF] is the operator

X V (λ) = V 1 2 R λ (H o )V 1 2 ,
where R λ (H o ) is the resolvent of H o in (-∞, 0). For each λ ∈ (-∞, 0), X V (λ) is self adjoint and compact (cf. J. Arazy, L. Zelenko [START_REF] Arazy | Virtual eigenvalues of high order Schrödinger operator[END_REF]).

Application

In [START_REF] Arazy | Virtual eigenvalues of high order Schrödinger operator[END_REF] , the authors consider the decomposition X V (λ) = Φ(λ) + T (λ), where Φ(λ) is a finite rank operator and T (λ) an Hilbert-Schmidt operator whose norm is uniformly bounded with respect to λ ∈ (-δ, 0) for some δ > 0. An asymptotic expansion of the bottom virtual eigenvalue λ o (γ) of H γ , as γ < 0 tends to zero, is deduced from this decomposition: if d is odd, it is of power type, while, when d is even , it involves the log function.

Asymptotic estimates are obtained, as γ ↑ 0, for the non-bottom virtual eigenvalues of H γ , {λ k (γ), k ∈ Z d + ; 0 < |k| ≤ m}, where m = l -d+1 2 if d is odd and m = l -d 2 if d is even. If d is odd, Φ(-t 2l ) is a meromorphic operator function, and the leading terms of the asymptotic estimates of λ k (γ) are of power type. An algorithm, based on the Puiseux-Newton diagram (cf. H. Baumgärtel [START_REF] Baumgärtel | Analytic perturbation theory for matrices and operators, Operator Theory[END_REF]), is proposed for an evaluation of the leading coefficients of these estimates. If d is even, two-sided estimates are obtained for eigenvalues with an exponential rate of decay; the rest of the eigenvalues have a power rate of decay. Estimates of Lieb-Thirring type are obtained for groups of eigenvalues which have the same rate of decay, when d is odd or even.

BMO spaces BMO and related spaces

Definitions Let sup I be the supremum over all cubes I ⊂ R n with edges parallel to the coordinate axes, l(I ) be the sidelength of I and f I the mean value of f over I. The square form of John-Nirenberg's BM O = BM O(R n ) space (cf. F. John, L. Nirenberg [START_REF] John | On functions of bounded mean oscillation[END_REF]) is the space of localy integrable complex-valued functions f defined on R n , such that

||f || BM O = sup I ( l(I )) -n I |f (x) -f I | 2 dx 1 2 < ∞.
The space of functions of bounded mean oscillation, modulo constants, equipped with the above norm, is a Banach space.

Real hardy space H

1 (R n ) A function f ∈ H 1 (R n ) if and only if f = c j α j (2) 
where c j ∈ R, |c j | < ∞, each function α j is supported on a ball B j , has integral zero, and sup

x∈Bj |α j (x)| ≤ 1 |B j |
. Functions α that satisfy the above properties are called 1-atom (cf.

E.M. Stein, [START_REF] Stein | Harmonic Analysis[END_REF]).With the norm

||f || H 1 = inf |c j | (3) 
for all decompositions of f of the form (2), H 1 (R n ) is a Banach space. For definitions and properties of Hardy-spaces H p (R n ), see C. Fefferman and E.M. Stein [START_REF] Fefferman | H p spaces of several variables[END_REF].

The definitions of the following spaces are recalled in J. Xiao [START_REF] Xiao | Homothetic variant of fractional Sobolev space with application to Navier-Stokes system[END_REF]. < ∞.

Q α spaces For α ∈ (-∞, ∞) , Q α (R n ) is
(cf. M. Essen, S. Janson, L. Peng, J. Xiao [23]).

Space

. L 2 α , α ∈ (0, 1)

The homogeneous Sobolev space

. L 2 α (R n ) is the space of complex-valued functions f such that ||f || . L 2 α = R n R n |f (x) -f (y)| 2 |x -y| n+2α dxdy 1 2 < ∞ Space L 2,n-2α , α ∈ (0, 1).
It is the space of measurable complex-valued functions f on R n such that

||f || L2,n-2α = sup I ( l(I )) 2α-n I |f (x) -f I | 2 dx 1 2 < ∞ Space Q -1 α;T , α ∈ (0, 1), T ∈ (0, ∞) A temperated distribution f on R n belongs to this space provided ||f || Q -1 α;T = sup x∈R n ,r∈(0,T ) r 2α-n r 2 0 |y-x|<r |e t∆ f (y)| 2 t -α dydt 1 2 < ∞
where e t∆ (x, y) is the heat kernel.

Relations between these spaces 1-In [START_REF] Fefferman | H p spaces of several variables[END_REF], it is proved that the dual of [START_REF] Strichartz | Bounded mean oscillation and Sobolev space[END_REF]). In [START_REF] Xiao | Homothetic variant of fractional Sobolev space with application to Navier-Stokes system[END_REF], when α ∈ (0, 1), it is proved that 1)

H 1 (R n ) is BM O (theorem 2). 2-For α ∈ R, f ∈ S (R n ), modulo polynomials, (-∆) -α 2 f = F -1 |ξ| -α f (ξ) = I αf (cf. R. Strichartz
Q α = (-∆) -α 2 L 2,n-2α , 2) . L 2 α = (-∆) -α 2 L 2 , 3) Q -1 α;∞ = ∇ . (Q α
) n and sharp estimates for the norms of the embeddings Q α → BM O, and

. L 2 α → L 2n n-2α , are obtained . We point out that 3) means that f ∈ Q -1 α;∞ if and only if there are f j ∈ Q α such that f = n j=1 ∂ j f j .

BMO nonlinearity

(cf. S-S. Byun and L. Wang [START_REF] Byun | Elliptic equations with BMO nonlinearity in Reifenberg domains[END_REF]) Let a(ξ, x) be a real valued function on R n × R n . For y ∈ R n and ρ > 0, B ρ (y) denotes the open ball of radius ρ centered at y. Set

āB ρ(y) (ξ) = 1 |B ρ(y) | B ρ(y) a(ξ, x)dx (4) 
and define the function β(a, B ρ(y) ) by

β[a, B ρ(y) ](x) = sup ξ∈R n |a(ξ, x) -āB ρ(y) (ξ)| |ξ| + 1 (5)
Definition 2. Small BMO condition The vector field a = a(ξ, x) satisfies the (δ, R)-

BMO condition if sup 0<ρ≤R sup y∈R n 1 |B ρ(y) | B ρ(y) |β[a, B ρ(y) ]| 2 (x)dx ≤ δ 2 (6) 
Definition 3. Reifenberg domain A bounded open set Ω in R n is (δ, R)-Reifenberg flat if, for every x o ∈ ∂Ω and every r ∈ (0, R], there exists a coordinate system {y 1 , ...y n }, (which can depend on r and x o ) so that x o is the origin in this coordinate system and that

B r (0) ∩ {y n > δr} ⊂ B r (0) ∩ Ω ⊂ B r (0) ∩ {y n > -δr} (7) 
(cf. [START_REF] Byun | Gradient estimates in orlicz spaces for nonlinear elliptic equations with BMO Nonlinearity in nonsmooth domains[END_REF])

Applications i)Let Ω be a bounded, open subset of R n , f ∈ L p (Ω; R n ), 2 ≤ p < ∞, a = a(ξ, x) : R n ×R n →
R n is a vector field measurable in x for almost every ξ, and continuous in ξ for each x. In [START_REF] Byun | Elliptic equations with BMO nonlinearity in Reifenberg domains[END_REF], the authors consider the non linear boundary value problem div a(∇u, x) = divf, in Ω u = 0 on ∂Ω.

The following conditions are imposed on a(ξ, x)

[a(ξ, x) -a(η, x)] . (ξ -η) ≥ c o |ξ -η| 2 (9) 
for all ξ, η ∈ R n and almost every x ∈ Ω.

|a(ξ, x)| ≤ c 1 (1 + |ξ|) (10) 
for all ξ ∈ R n and almost x ∈ R n , and

|∇ ξ a(ξ, x)| ≤ c 2 ∀ξ ∈ R n , and almost every x ∈ R n (11) 
for some positive constants c o , c 1 , c 2 . Then it is proved that there exists δ > 0 such that, if a satifies the (δ, R)-BMO condition and Ω is (δ, R)-Reifenberg flat, the weak solution u ∈ H 1 o (Ω) to (8) belongs to W 1,p o (Ω) with the estimate

| |∇u|| L p (Ω ≤ C(||f || L p (Ω) + 1) ( 12 
)
where C is independent of u and f .

ii)In [START_REF] Byun | Gradient estimates in orlicz spaces for nonlinear elliptic equations with BMO Nonlinearity in nonsmooth domains[END_REF], S-S Byun extends the previous results to Orlicz spaces.. He recalls the following definitions:

Definition 4. A positive function φ defined on [0, ∞) is called a Young function if it is increasing, convex and satisfies φ(0) = 0, φ(∞) = lim t→∞ φ(t) = ∞, lim t→0 φ(t) t = 0, lim t→∞ φ(t) t = ∞ (13) 
Definition 5. We say that the Young function

φ ∈ ∆ 2 ∪ ∇ 2 if it satisfies the following conditions φ(2t) ≤ κφ(t), ∀t ≥ 0, 2t o φ(t) ≤ φ(t o t), ∀t > 0 (14) 
for some numbers κ, t o > 1.

Definition 6. Let φ ∈ ∆ 2 ∪ ∇ 2 be a Young function. The Orlicz space L φ (Ω) is the linear space of all measurable functions v : Ω → R satisfying

Ω φ(|v|)dx < ∞ (15) 
Equipped with the norm

||v||| L φ (Ω) = inf{λ > 0 : Ω φ( |v| λ )dx ≤ 1} (16) 
L φ (Ω) is a Banach space.

The following result is proved in [START_REF] Byun | Gradient estimates in orlicz spaces for nonlinear elliptic equations with BMO Nonlinearity in nonsmooth domains[END_REF]: let φ ∈ ∆ 2 ∪ ∇ 2 be a Young function. There exists a small δ > 0 and a positive constant C such that, if the nonlinearity a satisfies (9), ( 10), [START_REF] Chepyzhov | Attractors for Equations of Mathematical Physics[END_REF], [START_REF] Bonfoh | Inertial manifolds for a singular perturbation of the viscous Cahn-Hilliard-Gurtin equation[END_REF], if Ω satisfies (7), and if |f | 2 ∈ L φ (Ω), then the unique weak solution u ∈ H 1 o (Ω) to (8) satifies |∇u| 2 ∈ L φ (Ω), with the estimate

Ω φ(|∇u| 2 )dx ≤ C(1 + Ω φ(|f | 2 )dx)) (17) 
Remark 1. If p > 2 and φ(t) = t p 2 the inequality (17) is only [START_REF] Cheviakov | An asymptotic analysis of the mean first passage for narrow escape problems: Part II the sphere[END_REF] 3 Bounded variation (functions of )

The notion of functions of bounded variation is closely related to the notion of measure and the following usual definitions are useful.

Measures-Definitions

Let Ω be an open subset of R n , and C c (Ω, C) [resp. C c (Ω, R)] be the space of continuous functions ϕ : Ω → C [resp. R] with compact support in Ω.

i) A measure µ on Ω is a linear functional

µ : ϕ ∈ C c (Ω, C) → µ(ϕ)(or µ, ϕ ) ∈ C ( 18 
)
that is continuous, in the following sense: for all K compact in Ω, there exists a constant

C K such that | µ, ϕ | ≤ C K ||ϕ|| ∞ (19) 
for all ϕ ∈ C c (Ω, C) whose support is contained in K. We write µ ∈ M(Ω). In [START_REF] Schwartz | théorie des distributions[END_REF], L.Schwartz introduces a topology on C c (Ω, C) and µ is continuous on this topological space .

ii) µ is said bounded on Ω if, in [START_REF] Dafermos | Asymptotic stability in viscoelasticity[END_REF], the constant is independent of K. The space of bounded measures on Ω is denoted by M 1 (Ω) .

iii) The conjugate μ of µ is given by

μ, ϕ = µ, φ (20) 
iv) µ is called real, if µ, ϕ ∈ R, ∀ϕ ∈ C c (Ω, R) v) µ is called positive if µ, ϕ ≥ 0, ∀ϕ ∈ C c (Ω, R), ϕ ≥ 0

Absolute value of a measure

If µ is a complex or real measure, its absolute value, denoted by |µ|, is the map

ψ ∈ C c (Ω, R), ψ ≥ 0 → |µ|, ψ = sup ϕ∈Cc(Ω,C),|ϕ|≤ψ {| µ, ϕ |} (21) 
Total variation of a positive bounded measure

Let µ be a positive, bounded measure on Ω. Its total variation, denoted by

|µ| Ω or Ω µ, is |µ| = sup ϕ∈Cc(Ω,R),0≤ϕ≤1 µ(ϕ) (22) 
Space BV (I, R) or BV (I)

Let I = (a, b) be an interval in R. The following definitions are well known. A function f : x ∈ I → R is of bounded variation i) if it can be expressed in the form φ -ψ, where φ, ψ are nondecreasing bounded functions ii) if the interval (a, b) is divided up by points

a = x o < x 1 < ... < x n-1 < x n = b
then, there exists a constant C > 0, independent of the mode of division, such that

n-1 ν=0 |f (x ν+1 ) -f (x ν )| < C (23) 
and the upper bound of the sum ( 23) is called the total variation of f on I and is denoted by V(f,I) For these definitions, see E.C. Titchmarsh [START_REF] Titchmarsh | The Theory of Functions[END_REF] p. 355 and F.Riesz and B. Sz-Nagy [START_REF] Riesz | Leçons d'analyse fonctionnelle[END_REF] p.10

iii

) If f ∈ L 1 loc (R), f defines a distribution T = T f ∈ D (R).
In order the derivative of T to be a measure, it is necessary and sufficient that f is of bounded variation on every finite interval, see L. Schwartz [START_REF] Schwartz | théorie des distributions[END_REF] p.53.

Space BV (Ω, R) or BV (Ω)

Definitions

The following definitions are equivalent (cf. H. Brezis [START_REF] Brezis | Analyse Functionnelle, Théorie et Applications[END_REF], p. 153): A function f ∈ W 1 1 (Ω), is of bounded variation i) if all first derivatives of f , in the distributional sense i.e. in D (Ω), are bounded measures.

ii) there exists a constant C such that

| Ω f ∂φ ∂x i dx| ≤ C||φ||L ∞ (Ω) ∀φ ∈ C ∞ c (Ω), i = 1, ..., n (24) 
iii) there exists a constant C such that

||τ h f -f || L 1 (ω) ≤ C|h| (25) 
for all open set ω ⊂⊂ Ω and all h ∈ R n with |h| < dist(ω, Ω). Moreover, in (24) and( 25) we can take C = ||∇f || L 1 (Ω) . Here τ h f (x) = f (x+h), and ∇f is the distributional gradient of f . iv) a function f ∈ L 1 (Ω) is of bounded variation if its first distributional derivatives are bounded measures. Then, the gradient ∇f is a bounded, vector-valued measure whose absolute value |∇f | is the map

ψ ∈ C c (Ω, R), ψ ≥ 0 → |∇f |, ψ = sup ϕ∈Cc(Ω,C n ), n i |ϕi| 2 ≤ψ 2 {| ∇f, ϕ |} (26) 
where ∇f, ϕ

= n i ∂f ∂x i ϕ i , |∇f | is a bounded positive measure. The total variation of |∇f | is Ω |∇f | = ||∇f || Ω = sup ψ∈Cc(Ω,R),0≤ψ≤1 |∇f |, ψ (27) 
(cf. F. and G. Demengel [21], p.303)

The general case

Let Ω be an open subset of R d with a smooth boundary. A function

f ∈ L 1 loc (Ω, R n ) has a bounded variation i.e.f ∈ BV (Ω, R n ), if ∇f , in the distributional sense, is a vector- valued Radon measure of finite total mass. Let |f | BV = Ω |∇f | be a BV-semi-norm.
In J. Davila [START_REF] Davila | On an open question about functions of bounded variation, Calculus of Variations and Partial Differential Equations[END_REF], the following property of |f | BV is proved: there exists a positive constant K, which depends on d, such that, for every family of non negative radial mollifiers ρ ∈

L 1 loc ((0, ∞), R + ) satisfying ∞ 0 ρ (r)r d-1 dr = 1 and lim →0 ∞ δ ρ (r)r d-1 dr = 0 ∀δ > 0, we have lim →0 Ω 2 |f (x) -f (y)| |x -y| ρ (|x -y|)dxdy = K|f | BV , ∀f ∈ BV (Ω, R q ).

Application

In [START_REF] Merlet | Two remarks on liftings of maps with values into S 1[END_REF], B. Merlet shows, by means of the above property

of |f | BV , that, if u ∈ BV (Ω, S 1 ), there exists a lifting ϕ ∈ BV (Ω, R) of u (i.e. u(x) = e iϕ(x) , ∀x ∈ Ω) such that |ϕ| BV ≤ 2|u| BV .

Discrete energy

Let ω N = (x 1 , ..., x N ), N ≥ 2 be a set of N points on the unit-sphere

S 2 = {x ∈ R 3 , |x| = 1}.

Discrete energy of ω N

Different discrete energies are associared with

ω N . Let α ∈ R, -2 < α < 2.
Definition 7. The Coulomb [resp. logarithmic] energy associated with ω N is

H C (ω N ) = N i=1 N j=i+1 1 |x i -x j | [resp. H L (ω N ) = - N i=1 N j=i+1 log |x i -x j | ] Definition 8. More generally, the α-energy associated with ω N is E(α, ω N ) =      N i=1 N j=i+1 |x i -x j | α if α = 0 H L (ω N ) if α = 0 Remark 2. H C (ω N ) = E(-1, ω N ) Remark 3. E(α, ω N )
is the energy of the N points x 1 , ..., x N , on the surface of the sphere, interacting through a potential V = r α (cf E. A. Rakhmanov, E.B. Saff, Y.M. Zhou [START_REF] Rakhmanov | Minimal discrete energy on the sphere[END_REF]).

The article [START_REF] Rakhmanov | Minimal discrete energy on the sphere[END_REF] is devoted to extremal energy for ω N :

E(α, N ) =    inf ω N ∈S 2 E(α, ω N ) if α ≤ 0 sup ω N ∈S 2 E(α, ω N ) if α < 0
Bounds for E(α, N ), -2 < α < 2 and explicit formula for N points on S 2 that yields good estimates for E(α, N ) are obtained. The authors point out important applications of the determination of E(α, N ) to geometry, chemistry, physics, and cristallography, and give references for the history of related researchs.

A more general discrete energy-like function on the unit sphere

In [START_REF] Cheviakov | An asymptotic analysis of the mean first passage for narrow escape problems: Part II the sphere[END_REF], A.F. Cheviakov, M.J. Ward, R. Straube introduce the following definition Definition 9. The discrete energy-like function associated with ω N is

H(ω N ) = H C (ω N ) + 1 2 H L (ω N ) - 1 2 N i=1 N j=i+1 log(2 + |x i -x j |)

Application

In [START_REF] Cheviakov | An asymptotic analysis of the mean first passage for narrow escape problems: Part II the sphere[END_REF], H(ω N ) is related to the mean first passage time (MFPT) v(x) for a Brownian particle in the unit ball Ω in R 3 that contains N small locally circular absorbing windows

∂Ω j on its boundary ∂Ω = S 2 . Set ∂Ω a = N j=1 ∂Ω j . The function v(x) is solution to the Dirichlet-Neumann problem : ∆v = - 1 D in Ω v = 0 on ∂Ω a , ∂v ∂n = 0 on ∂Ω \ ∂Ω a ( 28 
)
where D is a diffusivity coefficient. The authors obtain three-term asymptotic expansions for v(x), for the average MFPT v = 1 |Ω| Ω v(x)dx, and for the principal eigenvalue λ of the Laplacian associated with the boundary conditions [START_REF] Gatti | Continuous families of exponential attractors for singularly perturbed equations with memory[END_REF], when the area |∂Ω j | ∼ π 2 a 2 j , ∂Ω j → x j ∈ S 2 as → 0, j = 1, ..., N and |x i -x j | = O(1), i = j. For instance, when the windows have common radius 1, they obtain:

v = |Ω| 4 DN [1 + π log( 2 ) + π (- 9N 5 + 2(N -2) log 2 + 3 2 ) + 4 N H(x 1 , ..., x N ) + O( 2 log )].
and λ ∼ 1 Dv Next, v is minimized and the corresponding λ is maximized at the configuration ω N that minimizies H(ω N ). The optimum arrangements {x 1 , ..., x N } that minimize H(ω N ) are numerically computed by different methods.

Equal-area condition

Equal-area type conditions appear, as sufficient or necessary conditions, in the formation of layers (internal or superficial) in stationary solutions to various singularly perturbed reaction-diffusion systems. In the recent works A.S. do Nascimento [START_REF] Nascimento | Inner transition layers in an elliptic boundary value problem: a necessary condition[END_REF], J. Crema, A.S. do Nascimento [START_REF] Crema | On the role of the equal-area condition in internal layer stationary solutions to a class of reaction-diffusion systems[END_REF] and R.J. de Moura, A.S. do Nascimento [41], the authors prove the necessity of suitable equal-area condition for the formation of internal or (and) superficial transition layers in this type of problems.

Example 1. A simple particular case of problems studied in [START_REF] Nascimento | Inner transition layers in an elliptic boundary value problem: a necessary condition[END_REF] is the elliptic boundary value problem div

(h(x)∇u) + f (u) = 0 x ∈ Ω ∂u ∂n = 0 on ∂Ω ( 29 
)
where

Ω is a smooth domain in R N , N ≥ 1, f : R → R is such that there exist α, β, α > β,with f (α) = f (β) = 0.
Let Γ ⊂ Ω be a smooth (N-1) dimensional compact manifold without boundary. It is proved that, if (29) has a family {u } of solutions which develop an internal transition layer with interface Γ connecting the states α to β, then, necessarily, the simple equal-area condition

β α f (s)ds = 0 is satisfied.
Example 2. In [START_REF] Crema | On the role of the equal-area condition in internal layer stationary solutions to a class of reaction-diffusion systems[END_REF], the following stationary system is considered:

     div(h(x)∇u) + f (x, u, v) = 0 x ∈ Ω div(k(x)∇v) + g(x, u, v) = 0 x ∈ Ω ∂v ∂n = 0 (or v = 0) on ∂Ω. ( 30 
)
where Ω is a smooth domain in R N , N ≥ 1, v,k,g are sufficiently smooth R n -valued functions, and k∇v

= (k 1 ∇v 1 , ...k n ∇v n ).
Let U be an open connected set in Ω, Γ ⊂ U be an (N-1)-dimensional compact connected orientable manifold whose boundary ∂Γ is such that ∂Γ ∩ ∂Ω is an (N-2)-dimensional submanifold of ∂Ω. A definition of a family of internal transition layer solutions

{(u , v )}, 0 < < o } to (30) in U with interface Γ, depending on two functions α, β ∈ C o (U), α(x) < β(x) on Γ is given. For such a family, there exists u o [resp.v o ] such that u → u o [resp.v → v o ] on compact sets of U \ Γ [resp. in U].
It is proved that, if a family of internal transition layer solutions to (30) exists, then f (x, u o (x), v o (x)) = 0 on U \ Γ and necessarily the equal-area condition

Γ ( β(x) α(x) f (x, s, v o (x)) ds) dS = 0
is satisfied. Several concrete applications of these results are presented in the paper.

Example 3. In [41], Ω is a bounded domain in R N , N ≥ 1 with C 2 boundary ∂Ω, S is a C 2 (N-1)-dimensional surface with a boundary Σ which is assumed to be a C 2 (N-2)-dimensional compact surface without boundary with Σ = S ∩ ∂Ω, and S intersects ∂Ω transversally The authors define a family of solutions {u }, 0 < < o to the elliptic boundary value problem:

   div(a(x)∇v ) + f (x, v ) = 0, x ∈ Ω a(x) ∂v ∂ n = g(x, v ), x ∈ ∂Ω
which develops internal and superficial transition layers, depending on some smooth functions α, β, α(x) < β(x), x ∈ Ω, with interfaces S and Σ respectively.

Here a ∈ C 1 (Ω), a > 0, f : Ω × R → R and g : ∂Ω × R → R are of class C 1 and n is the exterior normal vector field on ∂Ω. It is proved that the equal-area conditions:

β(x) α(x) f (x, t)dt = 0 ∀x ∈ S and β(y) α(y)
g(y, t)dt = 0 ∀y ∈ Σ are necessary for the existence of such solutions.

Inertial manifolds

Let (E, d) be a metric space and S(t) a continuous semigroup on E.

Definition 10. A set M ⊂ E is an inertial manifold for S(t) if i) M is a finite-dimensional Lipschitz manifold in E ii)M is of class C 1
iii)M is positively invariant under the flow i.e. S(t)M ⊂ M, ∀t ≥ 0 iv)M is exponentially attracting i.e. there exists a constant c o such that, for ecery

u o ∈ E, there exists a constant c 1 (u o ) > 0 such that dist E (S(t)u o , M ) ≤ c 1 e -cot , ∀t ≥ 0
where dist E is the Hausdorff semi-distance (see section 1.8 in D.Huet [START_REF] Huet | A survey of topics in analysis and differential equations[END_REF]) cf A. Bonfoh, M. Grasselli, A. Miranville [START_REF] Bonfoh | Inertial manifolds for a singular perturbation of the viscous Cahn-Hilliard-Gurtin equation[END_REF] 

(B o ) such that S(t)B o ⊂ B, for all t ≥ t 1 . In particular, if B is bounded, S(t)B ⊂ B, for t ≥ t 1 (B)
Remark 4. Similar definitions were given in [55] and M.Luskin, G.R. Sell [START_REF] Luskin | Approximation theories for inertial manifolds[END_REF], in the case of Hilbert spaces. In [55] the smoothness of M and the continuity of the semi-group S(t) are not parts of the definition of an inertial manifold.

In a Hilbert space H, an inertial manifold M for a semi-group S(t) is usually viewed as the graph of a suitable smooth function Φ : P H → QH, where P is an orthogonal projection on H with finite-dimensional range, and Q = I -P. Usually, the semigroup S(t) is associated with an evolution equation of the form

u t + Au + Ru = 0 (31) 
with the initial condition u(0) = u o , where A is a linear operator and R a nonlinear one. When an inertial manifold M exists for problem [START_REF] Hoffman-Ostenhof | On the nodal line conjecture[END_REF], the restriction of [START_REF] Hoffman-Ostenhof | On the nodal line conjecture[END_REF] to M reduces to a finite dimensional ordinary differential equation, which is an exact copy of the initial system.

Construction of an inertial manifold

An Hilbert space case

(cf.[55]
). In a Hilbert space H whose norm is denoted by |.|, consider problem [START_REF] Hoffman-Ostenhof | On the nodal line conjecture[END_REF] where A is an unbounded linear operator in H, strictly positive (i.e. ∃c > 0 such that (Au, u) ≥ c||u|| 2 H for all u in the domain D(A) of A), and self-adjoint. It is assumed that A -1 is compact. Thanks to assumptions on A , it is possible to define its powers A s defined on D(A s ), for all s ∈ R. When 0 < s < 1 see also D. Huet [START_REF] Huet | Décomposition spectrale et opérateurs[END_REF],T. Kato [37], M. Schechter [START_REF] Schechter | Principles of functional analysis[END_REF]. For r > 0, we denote by B s,r the ball, in D(A s ), with center 0 of radius r, i.e.

B s,r = {v ∈ D(A s ); ||v|| s = |A s v| ≤ r} (32) 
It is assumed that R satisfies the following properties:

H 1 : ∃α ∈ R such that R is Lipschitz on the bounded sets of D(A α ) with values in D(A α-1 2 ) and |A α-1 2 R(u) -A α-1 2 R(v)| ≤ C K |A α (u -v)|, |A α u| ≤ K |A α v| ≤ K ∀u, v ∈ D(A α ) ( 33 
)
H 2 : If u o ∈ D(A α ) problem (31) has a unique solution u ∈ C(R + ; D(A α ))∩L 2 ((O, T ); D(A α+ 1 2
)), ∀T ≥ 0 and the map S(t) :

u o → u(t) is continuous from D(A α ) into itself, ∀t ≥ 0.
H 3 : The semi-group S(t) possesses an absorbing set

B o ⊂ D(A α ) such that 1-S(t)B o ⊂ B o , ∀t ≥ O 2-The ω-limit set of B o ω(B o ) = ∩ β≥0 ∪S(t)B o t≥β ( 34 
)
is the maximal attractor for

S(t) in D(A α ) 3-ρ > 0 is chosen such that B o is included in the ball B α, ρ 2 of D(A α ) (cf ( 32 
)
).

The prepared equation

The prepared equation is equivalent to the original one for t large. Let θ :

R + → [0, 1] be a C ∞ function such that θ(s) = 1 for 0 ≤ s ≤ 1 0 for s ≥ 2 and sup s≥0 |θ (s)| ≤ 2 (35) 
The aim of the prepared equation is to avoid the difficulties related to the behavior of the nonlinear term R(u) for large values of |A α (u)|. Let θ r (s) = θ( s r ), r > 0 and

R r (u) = θ r (|A α (u)|)R(u) ∀u ∈ D(A α ) (36) 
The prepared equation associated to [START_REF] Hoffman-Ostenhof | On the nodal line conjecture[END_REF] is of the form

u t + Au + R ρ u = 0 (37) 
Let S ρ (t) be the semi-group associated with (37). The following is assumed

H 4 : The ball B α,ρ is absorbing for S ρ (t)
Thanks to the assumptions on R, R ρ is a bounded operator, and a Lipschitz mapping from

D(A α ) into D(A α-1 2
). In particular

|R ρ (u 1 ) -R ρ (u 2 )| ≤ C ρ |A α (u 1 -u 2 )| ∀u 1 , u 2 ∈ D(A α ) ( 38 
)
where C ρ is a constant which depend of ρ.

Space F α N bl

Let N ∈ N, and b, l > 0. Under the assumptions on A, there exists an orthonormal basis w j in H, where w j is the eigenvector of A corresponding to the eigenvalue λ J , with 0 < λ 1 ≤ λ 2 ... ≤ λ J → ∞, as j → ∞. Set

P = P N Q = I -P = I -P N
where P N is the orthogonal projector, in H, onto the space spanned by w 1 , ...w N . The projections P and Q commute with A β , ∀β ∈ R.

Definition 12.

F = F α N bl = {ϕ : P D(A α ) → QD(A α )} ( 39 
)
where ϕ is a Lipschitz function with supp (ϕ) ⊂ {p ∈ P D(A α ), |A α p| ≤ 2ρ}, that satisfies

|A α ϕ(p)| ≤ b |A α ϕ(p 1 ) -A α ϕ(p 2 )| ≤ l|A α (p 1 -p 2 )| ( 40 
)
∀p ∈ P D(A α ), p 1 , p 2 ∈ D(A α ) Remark 5. 1-P D(A α ) is finite dimensional. 2-F is a complete metric space for the distance d(ϕ 1 , ϕ 2 ) = sup p∈P D(A α ) |A α (ϕ 1 (p) -ϕ 2 (p)) | (41) 
Construction of a map T : F → F Let ϕ ∈ F, p o ∈ P D(A α ).Thanks to assumptions on ϕ and R ρ , the problem:

dp dt + Ap + P R ρ (p + ϕ(p)), p(0) = p o (42) 
has a unique solution p po,ϕ (t) ∈ P D(A α ). Then, problem

dq dt + Aq = -QR ρ (p po,ϕ (t) + ϕ(p po,ϕ (t)) (43) 
has a unique solution q po,ϕ (t) ∈ C b (R; QD(A α )). Therefore q po,ϕ (0) ∈ QD(A α ) (cf lemma 2.3., p.420 in [55]). The mapping T is defined by ψ = T (ϕ) with

ψ : p o ∈ P D(A α ) → q po,ϕ (0) ∈ QD(A α ) (44) 
Let σ(t) denote the right member of [START_REF] Nascimento | Inner transition layers in an elliptic boundary value problem: a necessary condition[END_REF]. Then

ψ(p o ) = - 0 -∞ e tA σ(τ )dτ (45) 
Existence of an inertial manifold for (31) or (37)

Under asumptions H 1 -H 4 , if it is possible to find N,b,l, such that T is a strict contraction of F into itself i.e. ∃L < 1 with d(T ϕ 1 , T ϕ 2 ) ≤ Ld(ϕ 1 , ϕ 2 ), ∀ϕ 1 , ϕ 2 ∈ F, then, T has a fixed point Φ ∈ F, and the graph of Φ is an inertial manifold for (31) or (37)

Example 4. (cf. A. Bonfoh [7]) Set Ω = n i=1 (0, L i ), L i > 0, n ≤ 2 and denote by N the operator -∆ : H 2 (Ω) ∩ H 1 o (Ω) → L 2 (Ω).
The following singularly perturbed problem (P ) is studied, in Ω :

δφ t + N φ + g(φ) = u u t + φ t + N u = 0 ( 46 
)
with the boundary conditions φ, u| ∂Ω = 0 [START_REF] Rakhmanov | Minimal discrete energy on the sphere[END_REF] and the initial conditions

φ| t=0 = φ o , u| t=0 = u o (48) 
where δ > 0, ∈ (0, o , ], g ∈ C 2 (R) satisfies the conditions

|g (s)| ≤ C 1 (|s| p + 1), g (s) ≥ -C 2 , C 1 > 0, C 2 ≥ 0, p > 0, ∀s ∈ R (49) 
The limit problem (P o ) is given by ( 46) where = 0:

δφ t + N φ + g(φ) = u φ t + N u = 0 (50) 
(47), and the initial condition φ| t=0 = φ o . Set 

H 1 = H 1 o (Ω), H 2 = H 2 (Ω) ∩ H 1 o (Ω), H 3 = {q ∈ H 3 (Ω) ∩ H 1 o (Ω); ∆q ∈ H 1 o (Ω)} (
H o = H 1 × L 2 (Ω), with the norm ||(p, q)|| H o = (||p|| 2 1 + ||q|| 2 ) 1 2 (52) 
Under additional assumptions on the regularity of the data, there exists semigroups S (t), global attractors A and exponential attractors M for problems (P ), 0 ≤ ≤ o (cf C.V. Chepyzhov, M.I. Vishik [START_REF] Chepyzhov | Attractors for Equations of Mathematical Physics[END_REF]). It is proved that A and M converge as → 0, to some lifting of A o and M o , in H o 1 (cf ( 52)). Moreover, there exists r > 0, independent of , such that

B = {u ∈ H 3 , ||u|| 3 ≤ r} B = {(φ, u) ∈ H 2 , ||(φ, u)|| H 2 ≤ r} (53) 
are bounded absorbing sets for S(t) in H 3 and S (t) in H 2 , respectively, where

H 2 = H 3 × H 2 with the norm ||(p, q)|| 2 H 2 = ||p|| 2 3 + ||q|| 2 2 ( 54 
)
and there exists t 1 > 0 such that S(t)B ⊂ B, S (t)B ⊂ B , for t ≥ t 1 , in particular:

B = S(t 1 )B ⊂ B B = S (t 1 )B ⊂ B (55) 
Following the above construction, the authors associate an inertial manifold M r to problem (P o ), and a family of inertial manifolds M r to problems (P ) such that

M r ⊂ B, M r ⊂ B (56) 
Let (M r ) o be the following lifting of M r :

(M r ) o = {(φ, (I + δN ) -1 (N φ + g(φ)) ∈ H 1 , φ ∈ M r } (57)
Then, it is proved that 1) For all 0 < 2 < 1 small enouph, M r 2 is lower and upper semi-continuous at 2 , with respect to the metric induced by the H 0 1 norm 2)M r converge, in a suitable sense, to (M r ) o with respect to the metric induced by the H 0 1 norm, as goes to 0.

7 Mathieu-Hill type equations

Mathieu and Hill Equations

The real Mathieu [resp. Hill] equation has the form where q is any smooth periodic function of period 1 with mean 0 (see E.A. Coddington, N.

y" + (a + b cos 2πx)y = 0 β=α-1 -2 -1 1 α β β=2α
Levinson [START_REF] Coddington | Theory of Ordinary Differential Equations[END_REF] and Z.X. Wang, D.R. Guo [START_REF] Wang | Special functions[END_REF]). Physical problems leading to Mathieu or Hill equations often require solutions with periodicity, called oscillatory solutions . Therefore, to find conditions on the data for which the above equations have a fundamental system of periodic solutions is a central problem.

Its Equation

In [START_REF] Its | Asymptotic behavior of the solutions of the radial Schrödinger equation with oscillating potential for the zero value of the energy[END_REF], A.R. Its considers the Schrödinger equation on the positive semi-axis

y" -[x β p(x 1+α ) + cx -2 ]y = 0 ( 58 
)
where p is a smooth periodic function, with period 1 and mean 0, c is a real number and the parameters α, β satisfy the relations β -α ≥ -1 and 2α -β > 0 (cf.Figure 1).

He proves that equation ( 58) has oscillatory solutions when β > α -1. If β = α -1, the solutions are oscillatory or not. In all cases, asymptotic formulas for the solutions are stated, as x → ∞. His method is based on a transformation which leads to a Hill-type equation and Floquet functions.

Method of diagonalisation

In [5], S. Bodine and D.A. Lutz investigate equation ( 58) by a general method of diagonalization with a L 1 -regularity for p. Set

t = x 1+α , ρ(t) = t 0 p(s) 1 + α ds, µ = 1 0 ρ(t)dt, ν = 1 0 (ρ(t)) 2 dt, (µ 2 < ν). Let λ 1,2 = ( 1 2 ± c + µ 2 -ν + 1 4 )/(1 + α)
be the eigenvalues of a suitable matrix which depends on α, c, µ, ν, and Λ be the crucial diagonal matrix diag{λ 1 , λ 2 }. When β = α -1, three cases are studied separately according to λ 1 -λ 2 belongs to N, does not belong to N 0 or is equal to 0. In each case, very sharp asymptotic formulas are obtained for a fundamental system of solutions to [START_REF] Xiao | Homothetic variant of fractional Sobolev space with application to Navier-Stokes system[END_REF]. In particular, when λ 1 -λ 2 ∈ N o , a logarithmic term appears in the formulas. For instance, when λ 1 -λ 2 ∈ N the following formulas are obtained:

y 1 (x) = x λ1(1+α) [1 + N -1 r=1 p 1 r (x 1+α ) x r(1+α) + O( 1 x N (1+α) )] + η(lnx)y 2 (x) y 2 (x) = x λ2(1+α) [1 + N -1 r=1 p 2 r (x 1+α ) x r(1+α) + O( 1 x N (1+α) )]
where p 1,2 r are scalar valued , bounded, continuous, periodic functions with period 1 which are recursively calculated. This logarithmic term is missing in Its formulas.

8 Memory (equations with) Definition Definition 13. (cf. B. D. Coleman and W. Noll [START_REF] Coleman | Foundations of linear viscoelasticity[END_REF]) A function h is called an influence function if i) h(s) is defined for 0 ≤ s < ∞, h(s) > 0 ii)There exists r > 0 such that lim s→∞ s r h(s) = 0, monotonically for large s.

The function h(s) is said to be of order r.

Example 5. 1) h(s) = (s + 1) -p is an influence function for r < p 2) h(s) = e -βs , β > 0 is an influence function of any order

Dafermos results

Let H be a Hilbert space with inner product . and norm ||.||.

An abstract integrodifferential equation

In [START_REF] Dafermos | Asymptotic stability in viscoelasticity[END_REF], C.M. Dafermos investigates solutions t ∈ (-∞, +∞) → u(t) ∈ H, on [0, ∞), to the integrodifferential equation

d dt (ρ u(t)) + Cu(t) + t -∞ G(t -τ )u(τ )dτ = 0 ( 59 
)
with specified "history "

u(τ ) = v(τ ), τ ∈ (-∞, 0] (60) 
Here ρ, C, G(t) are self adjoint operators in H, ρ is bounded, C and G(t) are unbounded with dense domains D(C) and D[G(t)] respectively. Moreover, they satisfy the following conditions ρw, w

≥ ρ o ||w|| 2 , ∀w ∈ H Cw, w ≥ c||w|| 2 , ∀w ∈ D(C) G(t)w, w ≤ 0, ∀w ∈ D[G(t)], t ∈ [0, ∞). (61) 
with

ρ o > , c > 0. Let H 2 [resp.H 1 ] be the Hilbert space defined as D(C) [resp.D(C 1 
2 )],equipped with the natural norms, and H -1 the dual of H 1 . The injection H 2 → H is assumed to be compact. More regularity assumptions on G(t) and Ġ(t) imply the existence of a decreasing influence function

h ∈ C 0 [0, ∞) such that ∞ 0 [||G(t)|| L(H1,H-1) + || Ġ(t)|| L(H1,H-1) ]h -2 (t)dt < ∞ (62) 
In the following, h is a fixed influence function which satisfies (62)

Spaces of fading memory type; stability results

Set I = (-∞, 0]. For k = 0, 1, ...,, in [START_REF] Dafermos | Asymptotic stability in viscoelasticity[END_REF], the author introduces the Banach spaces of fading memory type (cf. [START_REF] Coleman | Foundations of linear viscoelasticity[END_REF]) C k [resp. B k ] of sufficiently smooth functions w : I → H 1 [resp.w : I → H 2 ] such that:

||w|| C k = 1 j=0 k+1-j i=0 sup I [h(-t)||w (i) (t)|| j ] < ∞ (63) 
[resp.

||w|| B k = 2 j=0 k+2-j i=0 sup I ||w (i) (t)|| j < ∞] (64) 
Then, B k ⊂ C k+1 ⊂ C k , and the injection B k → C k is compact. Let T > 0 and set 

I T = (-∞, T ]. If v ∈ C k [resp. B k ],
||u (i) (t)|| j ≤ c||v|| C k (65) 
[resp.

2 j=0 k+2-j i=0 sup [0,T ] ||u (i) (t)|| j ≤ c||v|| B k ] (66) 
The new function

ω : (v, ξ) ∈ C k × [0, ∞) → ω[(v, ξ)](τ ) = u(ξ + τ ) ∈ C k , τ ∈ I
where u is the solution to (59) on [0, ∞) with condition (60) on (-∞, 0], satisfies

ω(v, 0) = v ∀v ∈ C k ω(v, ξ + ξ ) = ω[ω(v, ξ), ξ ] , ∀ξ, ξ ∈ [0, ∞), v ∈ C k
i.e. w looks like a dynamical system on C k (or B k ), but it is not necessarily continuous on C k ×[0, ∞). Therefore, w is not a classical dynamical system (cf. J.K. Hale [START_REF] Hale | Dynamical systems and stability[END_REF]) Nevertheless, it is possible to define a Lyapunov function V k (v), for w, on C k and prove, with suitable spectral conditions on G, via an adaptation of J.K. Hale's results [START_REF] Hale | Dynamical systems and stability[END_REF], the following stability results for the solution u to (59) on [0, ∞) with condition (60) on (-∞, 0] , when v ∈ C m , m = 0, 1, ...,:

u (i) (t) → 0 in H 1 as t → ∞ i = 0, 1, ...m u m+1 (t) → 0 in H as t → ∞
Equations with memory and singular perturbations Example 6. In [START_REF] Gatti | Continuous families of exponential attractors for singularly perturbed equations with memory[END_REF], S. Gatti, A. Miranville, V. Pata, S. Zelik consider a family of Banach spaces H and a family of semi-groups S (t) : H → H , ∈ [0, 1]. They state sufficient conditions on H and S which imply the existence of exponential attractors E for

S (t), ∈ [0, 1] such that dist-sym H (E , E o ) ≤ C δ and dist-sym H 2 (E 1 , E 2 ) ≤ C( 1 -2 ) δ ∀ 1 ≥ 2 > 0
with C ≥ 0 and δ ∈ (0, 1).The results are applied to evolution equations with memory of the form

∂ t x(t) + ∞ 0 k (s)B o (x(t -s))ds + B 1 (x(t)) = O, t ∈ [0, ∞) (67) 
with specified history

x(t) = v(t), t ∈ (-∞, 0] ( 68 
)
where v is a given function,

k : [0, ∞) → [0, ∞) is a convex summable function with ∞ 0 k(s)ds = 1 and k (s) = 1 k( s ), B 0 , B 1 
are densely defined, possibly nonlinear, operators in a suitable Banach space. As → 0, the formal limit to problem (67) and ( 68)

is ∂ t x(t) + B o (x(t)) + B 1 (x(t)) = 0, x(0) = v(0) (69) 
Example 7. In [START_REF] Conti | Singular limit of differential systems with memory[END_REF], M. Conti, V. Pata and M. Squassina are interested in the convergence, in an appropriate sense, as → 0, of the solution u (x, t), x ∈ Ω, t ∈ R to problem (p ):

u t -ω∆u -(1 -ω) ∞ 0 k (s)∆u(t -s)ds + ϕ(u) = f, t > 0,
with Dirichlet boundary conditions on the boundary of the smooth bounded domain Ω in R 3 , ω > 0, ϕ is a suitable nonlinearity, f is a time independent source term , and the memory kernel k converges to the Dirac distribution at the origin, u(x, t) is supposed to be a given datum for t ≤ 0. Let A = -∆ on L 2 (Ω) with domain Dafermos [19] and M. Grasselli and V. Pata [START_REF] Grasselli | Uniform attractors of nonautonomous dynamical systems with memory[END_REF], they introduce, under additional assumptions on k, ϕ, f, (ϕ(x) = x 3 -x is allowed), the auxiliary variable

D(A) = H 1 o (Ω) ∩ H 2 (Ω), H r = D(A r 2 ), r ∈ R. Following C.
η t (x, s) = s o u(x, t -y)dy, the functions µ(s) = -(1 -ω)k (s), µ (s) = 1 2 µ( s ), the Hilbert spaces M r = L 2 µ (R + , H r+1
) and H r = H r × M r for > 0, H r o = H r . The correct reformulation of p , in the frame work of dynamical systems, is(

P ) : find (u , η ) ∈ C([0, ∞), H o ) solution to u t + ωAu + ∞ o µ (s)Aη(s)ds + ϕ(u) = f, ∂ t η = -∂ s η + u
for t > 0, associated with the initial condition (u o , η o ) ∈ H o . The existence, for > 0, of a strongly continuous semi-group S (t) on H o corresponding to P and of an exponential attractor E for S (t) are proved. The convergence of E is also studied.

Nodes, Nodal

Nodal points, curves, surfaces, or nodes Definition 14. In R. Courant, D. Hilbert [START_REF] Courant | Hilbert Method of mathematical Physics[END_REF], they are defined as points [resp. curves, surfaces], on which some eigenfunctions of a differential problem, in a domain G ∈ R N , N = 1 [resp. N = 2, 3], vanishes.

Example 8. In the 1970 edition of [START_REF] Courant | Hilbert Method of mathematical Physics[END_REF], p.452, a second order Sturm-Liouville problem is considered. It is proved that the nodes of the n th eigenfunction u n divide the domain into no more than n subdomains.

Nodal sets, Nodal domains, Nodal solutions Example 9. In [START_REF] Hoffman-Ostenhof | On the nodal line conjecture[END_REF], M. and T. Hoffman-Ostenhof and N. Nadirashvili study the Dirichlet eigenvalue problem

-∆u i = λ i u i , i = 1, 2, ... u ∈ H 1 o (D),
where D is a bounded domain in R n , . The nodal set u i is defined as

N (u i ) = {x ∈ D : u i (x) = 0}
The nodal domains of u i are the connected components of D\N (u i ).The authors construct a domain D ⊂ R 2 on which the second eigenvalue has a nodal set disjoint from the boundary, whereas the nodal line conjecture, first mentioned by L.E. Payne [START_REF] Payne | Isoperimetric inequalities and their applications[END_REF], stated that

N (u 2 ) ∩ ∂D = ∅.
Example 10. In [3], T. Bartsch and T.Weth consider the nonlinear elliptic Dirichlet problem:

-

2 ∆u + au = f (u) in Ω, u ∈ H 1 o (Ω) ( 70 
)
where Ω is a bounded domain in R N , N ≥ 2, a > 0, is a small positive parameter, and f grows superlinearly and subcritically. They study the number of nodal solutions i.e. signchanging solutions of (70) and their nodal domains. They show that the number of nodal solutions can be expressed as a Lyusternik-Schnirelman category (cf. L. A. Lyusternik, L. Schnirelman [START_REF] Lyusternik | Methodes toptologiques dans les problemes variationnels[END_REF]), of a suitable inclusion between two spaces which involve the shape of ∂Ω.

. Example 11. The Ehrenberg-Siday-Aharonov-Bohm effect This effect is a quantum mechanical phenomenom in which an electrically charged particle is affected by an electromagnetic field (E, B) despite being confined to a region in which both the magnetic field B and the electric field E are zero (cf. Y. Aranov, D. Bohm [START_REF] Aharonov | Significance of electromagnetic potentials in quantum theory[END_REF], W. Ehrenberg, R.E. Siday [START_REF] Ehrenberg | The refractive index in electron optics and the principles of dynamics[END_REF]) and M. Peshkin, A. Tonomura [START_REF] Peshkin | The Aharonov-Bohm effect[END_REF]). In [44], B. Noris and S. Terracini consider the following problem of Ehrenberg-Siday -Aharonov-Bohm type:

H a,V u ≡ (i∇ + A a ) 2 u + V u = 0 in D a , u = Γ on ∂D. ( 71 
) acting in L 2 (D; C) where D is the open unit disk in R 2 , a = (a 1 , a 2 ) ∈ D, D a = D\{a}, V ∈ W 1,∞ (D)
is the scalar potential, A a is the following vectorial potential

A a (x 1 , x 2 ) = 2n + 1 2 (- x 2 -a 2 (x 1 -a 1 ) 2 + (x 2 -a 2 ) 2 , x 1 -a 1 (x 1 -a 1 ) 2 + (x 2 -a 2 ) 2 ) + ∇φ, (72) 
Γ ∈ W 1,∞ (D; C), n ∈ Z, φ ∈ C 2 (D)
. The magnetic fied associate to A a is a Dirac distribution at a, directed orthogonally to the plane. The magnetic potential A a satisfies ∇ × A a = 0 in D a , and the half integer circulation

1 2π σ A a . dx = 2n + 1 2 , n ∈ Z, (73) 
for every closed path σ which winds one around the pole. The authors investigate the nodal set N (u) for a class of solutions to (71) whose nodal set consists of regular arcs connecting the singular points with the boundary and , in particular, when N (u) consists of exactly three arcs, intersecting in a.

N-mode solution

In [START_REF] Nakashima | Transitions layers and spikes for a bistable reaction-diffusion equation[END_REF], K. Nakashima, M. Urano and Y. Yamada, consider the following ordinary differential problem :

2 u"(x) + f (x, u(x)) = 0 x ∈]0, 1[; u (0) = u (1) = 0 (74) where f (x, u) = u(1 -u)(u -a(x)); a is a C 2 [0, 1] function such that 0 < a(x) < 1, a (0) 
= a (1) = 0, and the subsets Σ and Λ of (0, 1) where a(x) = 1 2 and a (x) = 0, respectively, are finite sets and a (x) = 0 for any x ∈ Σ. The authors study the asymptotic behavior, as → 0, of n-mode solutions u of (74) i.e. solutions such that v = u -a has exactly n zero-points in (0, 1), and show that any transition layer [resp. spike] is located in a neighborhood of a point of Σ [resp. Λ].

Resonances

Only a few aspects of this large topic are presented here. More aspects are in preparation.

The case of a vibrating string

Free motion (cf. L. Schwartz [START_REF] Schwartz | Méthodes mathématiques pour les sciences physiques[END_REF]) Consider a homogeneous vibrating string , with linear density ρ, subjected to a constant tension µ.The position of the string, fixed at the end points x = 0, x = L is given by solutions of the wave equation

1 v 2 ∂ 2 u ∂t 2 - ∂ 2 u ∂x 2 = 0 x in [0, L] (75) 
with the boundary conditions u(t, 0) = u(t, L) = 0 (76)

where v = µ ρ has the dimension of a velocity. To solve problem (75)(76) the initial values of the position and of the velocity of the string are needed, i.e.

u(0, x) = u o (x) ∂u ∂t (0, x) = u 1 (x) (77) 
Solutions u(x, t) of the above initial value problem of the form u(x, t) = U (x)V (t) are

u k (x, t) = sin kπx L (A k cos kπvt L + B k sin kπvt L )
where k > 0 is an integer and A k , B k are constants.The numbers λ =

k 2 π 2 L 2 , such that U (x) + λU (x) = 0, U (0) = U (L) = 0 (78)
are called the eigenvalues and sin kπx L the eigenfunctions of the problem. The constants A k , B k are the Fourier coefficients of suitable extensions of u o and u 1 to periodic functions .

The case of a forced motion: resonance (cf. R. Courant and D. Hilbert [START_REF] Courant | Hilbert Method of mathematical Physics[END_REF]) We suppose that the vibrating string is under the influence of an external force which has the Fourier expansion:

Q(x, t) = ∞ k=1 Q k (t) sin kπx L
Then, the deflection of the string is solution to

1 v 2 ∂ 2 u ∂t 2 - ∂ 2 u ∂x 2 = Q(x, t), u(0, t) = u(L, t) = 0
with the initial conditions (77). We look for a solution of the form

u(x, t) = ∞ k=1 N k (t) sin kπx L . (79) 
The coefficients N k (t) must be solutions of the equations

1 v 2 N k (t) + k 2 π 2 L 2 N k (t) = Q k (t) (80) 
The general solution of the homogeneous equation associated to (80) is

a k cos kπvt L + b k sin kπvt L
A particular solution of (80)is obtained by the method of variation of constants (cf E.A. Coddington [13]). Finaly,

N k (t) = 1 kπ L t 0 Q k (u) sin kπ L (t -u)du + a k cos kπvt L + b k sin kπvt L
where the constants a k , b k are determined by the initial conditions (77) 

Now, suppose Q k (t) = α cos ωt + β sin ωt. Then, if ω = kπ L , u(x, t), in ( 

Resonances as poles of complex functions

(cf. M.Zworski [START_REF] Zworski | Resonances in physics and geometry[END_REF]). Set X = [0, L] with L = π, for simplicity,

P V = - ∂ 2 ∂x 2 + V (x), V ∈ C ∞ (X), V (x) ≥ 0 and U (x, t) = u(t, x) -i∂ t u(t, x) P V = 0 1 P V 0 (81) 
Consider the system

1 i ∂ t U = P V U U (t, 0) = U (t, π) = 0 U (0, x) = u o (x) -iu 1 (x) (82) 
The solution to system (82) involves eigenvalues and eigenfunctions of

P V W = λW, W | ∂X = 0
Consider the Hilbert space H, closure of C ∞ c (X) × C ∞ c (X) for the inner product

Φ, Ψ = P V φ 1 , ψ 1 + φ 2 , ψ 2 , Φ = φ 1 φ 2 , Ψ = ψ 1 ψ 2 
Then P V is an unbounded self-adjoint operator on H and its eigenvalues are real. Let σ(P V ) be the spectrum of P V . It is pointed out, in [START_REF] Zworski | Resonances in physics and geometry[END_REF] that λ ∈ σ(P V ) ⇐⇒ λ is a pole of (P V -z) -1 : H → H Remark 6. When V (x) = 0, system (82) is equivalent to problem (75)-(77), and the eigenvalues of P 0 W = λW, W | ∂X = 0 are λ = k ∈ Z -{0} which correspond to the eigenvalues k 2 of problem (78)

More generally, consider the problem with a dissipative term a∂ t , a > 0 :

(-∂ 2 ∂t 2 + a ∂ ∂t -P V )u(t, x) = 0, t > 0, x ∈ X, u| ∂X = 0

It can be rewritten as 1 i ∂ t U (t, x) = P a U (t, x), u| ∂X = 0 (83

)
where U is defined in (81) and

P a = 0 1 P V ia
The operator P a is not self-adjoint on H. The eigenvalues and the eigenfunctions of P a are still defined by has a solution. But, if a is small enough, λ = α + ia 2 is a pole of (P a -z) -1 very close to α, and, for a suitable choice of f , the solution of equation ( 86) can be "enormous "(cf. [START_REF] Zworski | Resonances in physics and geometry[END_REF]). We say that a resonance occurs Quasi-periodic Schrödinger operator, the resonant case

In their papers [24], [25] and [START_REF] Fedotov | Weakly resonant tunneling interactions for adiabatic quasiperiodic Schrödinger operators[END_REF] A. Fedotov and F. Klop study the spectrum of quasi periodic schrödinger operators of the form

H z, = - d 2 dx 2 + V (x -z) + α cos( x) (87) 
where, α > 0, V ∈ L 2 loc (R) is periodic with period 1, z is a real parameter indexing the equations of the family; > 0 is such that 2π is irrational. Let In each case, under specific additional assumptions, the authors describe the nature of the spectrum of (87), and state asymptotic formulas, as → 0.

In [25], they are interested in the spectrum of (87), in intervals J such that for all E ∈ J, F(E) covers the edges of two neighboring spectral bands of H o and the spectral gap located between them (Figure 2 (d))). Let Γ R be the real iso-energy curve associated to (87) and γ 0 , γ π , be the connected components of Γ R in a periodicity cell. To each of these loops, one associates a sequence of energies in J, E n a , a = {0, π}, and, near each E n a , an exponentally small interval I n a such that the spectrum of (87) , in J, is contained in the union of these intervals. The location and the nature of the spectrum of (87) are investigated in the union I n 0 ∪ I m π , in the resonant case, i.e. when I n 0 and I m π intersect each other.
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  he proves the existence of a unique solution u to (59) on [0, T ] which satisfies (60) on (-∞, 0]. Moreover, si v ∈ C k [resp B k ], u satisfies

2 , α 2 = µ 2 - a 2 4 .Figure 2 :

 2242 Figure 2: Spectral band

H o = - d 2 dx 2 +

 2 V (x) be the periodic Schrödinger unperturbed operator. Its spectrum, on L 2 (R), consists of the union of intervals [E 2n-1 , E 2n ], n ≥ 1, such that E n → ∞, as n → ∞. It is assumed that all the spectral gaps (E 2n , E 2n+1 ) are open. The spectrum of (87), at an energy E, depends on the relative position of the spectral window F(E) = [E -α, E + α] with respect to the spectrum of H o . In [24] four cases are distinguished according as F(E) lies inside or completely covers a spectral band of H o or contains exactly one edge or two edges (Figure 2 (d)) of a spectral band.

  p.164. Definition 11. (see R. Temam [55]) Let B ⊂ E, and U an open subset of E such that B ⊂ U ; B is said absorbing for S(t) in U if, for any bounded set B o in U , there exists t 1

  51) Let || . || denote the usual norm in L 2 (Ω) and set ||q|| r = ||N r 2 q||, r = 1, 2, 3. The norms || . || r are equivalent to the usual Sobolev H r (Ω) norms on H r . Several Banach spaces whose norms depend on are introduced,in particular