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Informed Audio Source Separation Using
Linearly Constrained Spatial Filters

Stanislaw Gorlow, Graduate Student Member, IEEE, and Sylvain Marchand, Senior Member, IEEE

Abstract—In this work we readdress the issue of audio source
separation in an informed scenario, where certain information
about the sound sources is embedded into their mixture as an
imperceptible watermark. In doing so, we provide a description
of an improved algorithm that follows the linearly constrained
minimum-variance filtering approach in the subband domain,
in order to obtain perceptually better estimates of the source
signals in comparison to other published approaches. Just as its
predecessor, the algorithm does not impose any restrictions on
the number of simultaneously active sources, neither on their
spectral overlap. It rather adapts to a given signal constellation
and provides the best possible estimates under given constraints
in linearithmic time. The validity of the approach is demonstrated
on a stereo mixture with two levels of sound complexity. It is also
shown by means of both objective and subjective evaluation that
the proposed algorithm outperforms a reference algorithm by
at least one grade. Bearing high perceptual resemblance to the
original signals at a fairly tolerable data rate of 10–20 kbps per
source, the algorithm hence seems well-suited for active listening
applications such as re-mixing or re-spatialization in real time.

Index Terms—Array signal processing, audio quality assess-
ment, audio watermarking, informed audio source separation.

I. INTRODUCTION

IN recent years several approaches have been proposed that
address audio source separation in an “informed” scenario

[1]–[3]. The reason for this new trend is the plain fact that
after decades of research, “blind” or rather “semi-blind” source
separation approaches to this day yield unsatisfactory quality
with regard to what may be considered as “professional” audio
applications, for which quality is key; for an overview and
general concepts of blind approaches see [4]. Blind speech
separation techniques, on the other hand, often rely on a
speech production model and/or make specific assumptions,
which generally cannot be upheld for music [5]. But what
is even worse is that many sophisticated techniques are not
applicable if the separation problem is ill posed, that is when
the number of observations (channels) is smaller than the
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number of sources. Illposedness is yet the normal case for
most music recordings, as the content is still distributed and
consumed primarily in stereo format. The concept of informed
source separation (ISS) that was first promoted by Knuth in
[6] can hence be seen as a way of overcoming the limitations
of blind source separation encountered in today’s state-of-the-
art algorithms.

The informed approach is first and foremost characterized
by the temporally and locally bounded access to the source
signals. One differentiates respectively between the processes
of content creation and content consumption: The content
creator provides all the necessary information for the content
consumer to decompose the music piece into its constituent
components—the source signals—in order to recompose the
content ad libitum. Backward compatibility with conventional
playback systems is further guaranteed, if the information is
small enough to be inaudibly hidden in the mixture signal
itself. Moreover, due to the fact that a professionally premixed
version is provided by the content creator and not the source
signals, intellectual property rights remain inviolate. The task
of an ISS encoder is hence to extract a minimum of auxiliary
information from the source signals, so that the ISS decoder
can recover copies of the original signals from the mixture in
high perceptual quality. The information about the sources or
the signals can be embedded into the mixture signal using an
audio watermarking technique, such as [7].

In the present paper we give an elaborate description for a
straightforward implementation of the underdetermined source
signal recovery (USSR) algorithm that was introduced in [3].
Generally speaking, USSR is a subband-domain beamforming
technique that makes an extensive use of approximate short-
time power spectral densities (STPSDs) of the source signals
in order to attain an improved separation performance. In [3] it
was demonstrated that a perceptually motivated approximation
of the STPSDs is sufficiently precise to achieve high similarity
with the original signals. In the proposed non-iterative variant
of the algorithm, the STPSDs are also used to model the spatial
correlation matrices in each point of the time-frequency (TF)
plane, so as to calculate an optimum spatial filter with a desired
beam response.

The idea of informing the separator with the approximate
STPSDs is also found in [2]. There, however, the STPSDs are
used to calculate a generalized Wiener filter for each source
signal in each channel separately. This type of mean square
error (MSE) based interference reduction takes account of the
power relations between the source signals but not their spatial
diversity, neither does it invert the mixing system. It is further
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known that the Wiener filter minimizes the noise power at
the cost of the signal of interest, which means nothing else
but that the signal of interest is also attenuated for the sake
of a higher signal-to-noise ratio (SNR) at the output. In the
case of multiple source signals, one can equally expect the
estimated source-signal spectra to be attenuated depending on
whether the signal-to-interference ratio (SIR) in a TF point is
high or low (for proof see Appendix). In direct consequence of
this aspect, the estimated spectra of the source signals with a
low SIR exhibit audibly missing spectral components, which
may deteriorate the quality of the listening experience. The
same effect but in a much more extreme manner was already
observed with regard to the work in [1] and illustrated in [3].
The approach presented herein stands in marked contrast to
the aforementioned techniques, first, because it exploits spatial
diversity, and second, because it constrains the output to have
a desired power level in order to overcome the issue of spectral
gaps.

The rest of the paper is organized as follows: The mixture
model, the problem to be solved, and the pursued approach
are illustrated in Section II. The theoretical foundations for
linearly constrained spatial filtering are laid in Section III, and
a power-constraining minimum-variance (PCMV) beamformer
is derived thereupon. Section IV gives a detailed description
of the new non-iterative USSR algorithm, which is followed
by the analysis of important performance characteristics in
Section V. Objective and subjective test results are contrasted
with each other in Section VI. Section VII finally concludes
the paper and points out possible directions for future work.

II. DATA MODEL, PROBLEM FORMULATION, AND
PROPOSED SOLUTION

A. Data Model

In the considered scenario, d source signals {si(n)}di=1 are
mixed into a stereo signal {x1(n), x2(n)} through a linear
time-invariant and memoryless system which is given by the
mixing matrix A = [ a1 a2 ··· ad ], with ai = [ sin θi cos θi ]

T

being the panning vector associated with the ith source. Each
source is positioned at the unique azimuth θi between fully left
and fully right in the stereo sound field as illustrated in Fig. 1.
The placement can be chosen either arbitrarily or following
some common mixing rules. The signal power is considered
inherent to the source signals and is not explicitly modeled.
Furthermore, owing to the trigonometric identity

‖a(θ)‖2 = sin2 θ + cos2 θ = 1, (1)

the sound power level is kept constant across the two output
channels. By rewriting the source signals in vector form as
s(n) = [ s1(n) s2(n) ··· sd(n) ]

T and by doing the same for the
observed system output x(n) = [ x1(n) x2(n) ]

T respectively,
the latter is put in relation to s(n) by the mixture model

x(n) =

d∑
i=1

aisi(n) = As(n). (2)

thgiRtfeL

sd

s2

s1

VolumePanning

Fig. 1. Modeling of monophonic sources in the stereophonic sound field
using the parameters panning (azimuth) and volume (radius). A sound source
is considered unique, if the associated panning angle is unique within the
considered range.

B. Problem Formulation

What we seek is a function f which transforms the mixture
signal x(n) into an approximate source signal ŝi(n) with the
knowledge of the model parameters θ = [ θ1 θ2 ··· θd ]

T and
a measurable signal characteristic {φi(n)}i=1,...,d. The latter
shall be deemed as perceptually relevant, where

φ : {R,C} → R, si(n) 7→ φi(n) = φ (si(n)) . (3)

Postulating the preservation of φi(n) in ŝi(n), the problem to
be solved is formulated as follows: Given x(n), θi, and φi(n),
find

ŝi(n) = f (x(n), θi, φi(n)) (4)

such that
φ (ŝi(n)) = φi(n) (5)

for i = 1, 2, . . . , d.

C. Proposed Solution

In order that the source signals in (2) show a better disjoint
orthogonality [8] in comparison with the waveform domain,
the mixture signal x(n) is mapped onto an adequate time-
frequency representation (TFR). The transformed mixture can
then be expressed in terms of subband signals as

xk(m) =

d∑
i=1

aisik(m) = Ask(m), (6)

where k represents the subband index and m denotes the index
of the preferably complex-valued1 time series in that particular
subband. Each mixture signal xk(m) is then decomposed into
its constituent parts by use of linear spatial filtering according
to

ŝik(m) =

2∑
c=1

wickxck(m) = wT
ikxk(m), (7)

where wik = [wi1k wi2k ]
T is the spatial filter, or beamformer,

that provides an estimate ŝik(m) for the ith signal component
in the kth subband based on the observed mixture signal, and

1The use of a real-valued filter bank may cause aliasing artifacts.
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Fig. 2. Beampattern and power distribution of the stereo beamformer. The
beam is gain adjusted and directed such that the signal of interest is preserved
and either one interferer is suppressed or, in case of multiple interferers, the
total power of all interferers is minimized.

wT
ik is its transpose. Since the mixing system that we seek to

invert is real-valued, so is the beamformer. From a geometrical
point of view, the beam in Fig. 2 is steered and amplified (or
attenuated), so that the signal component in the direction of
θi is preserved, while the contribution from the interfering
sources is canceled out or at least minimized. In the latter
case, the beamformer shall be constrained to adjust the power
level of the output signal to the instantaneous power level
of the original signal—|sik(m)|2—in the respective subband.
This is formally achieved by choosing φ in (3) as the squared
magnitude. The filtered subband signals are then recombined
into an isolated version of the original source signal ŝi(n).

III. LINEARLY CONSTRAINED SPATIAL FILTERING

A. Preliminaries

Before going into detail about linearly constrained spatial
filtering, let us recall two typical beamforming quantities that
will be used in this paper first (see also [9]). The indices i and
k are omitted for simplicity.

1) The azimuth-dependent beam response or gain is defined
as

g(θ) , wTa(θ), (8)

and the so-called beampattern is the magnitude-squared
beam response.

2) The spatial power spectrum

P (θ) , wT(θ)Rxw(θ) (9)

is a measure for the mean total sound power received
from the direction of θ and Rx is the spatial correlation
matrix of the two-channel mixture vector x.

B. Signal Model

Following classical literature on statistical signal processing,
the source signals are modeled as zero-mean Gaussian random

processes that are mutually independent and non-stationary.
Joint wide-sense stationarity can nonetheless be presumed for
the duration of a sufficiently short time segment. The short-
time power spectral density (STPSD or PSD for short) may
then be used as a measure for how the mean signal power or
variance distributes with time and frequency (see the Wiener–
Khinchin convergence theorem).

C. Well-Posed Case (1 6 d 6 2)

The term “well posed” shall characterize the case when the
number of active sound sources is at least one but not larger
than the number of channels, which is two. In such a case, it
exists one exact solution.

1) Unity-Gain Filter: Let us suppose that the mixture signal
xk(m) constitutes only one directional source signal,

xk(m) = aisik(m). (10)

By comparing (1) with (8) under the unity-gain constraint

gk(θi)
!
= 1, (11)

it becomes evident that the source signal component sik(m)
can be extracted from the mixture xk(m) by setting

wik = ai, (12)

so that
sik(m) = aT

i xk(m). (13)

2) Zero-Forcing Filter: Now let two sources contribute to
the mixture xk(m) simultaneously:

xk(m) = aisik(m) + alslk(m), (14)

where sik(m) is the signal of interest and slk(m) shall denote
the jammer respectively. By enforcing identity as in (11) for
sik(m) and full cancellation of slk(m) by

gk(θl)
!
= 0, (15)

the sought-after weight vector calculates from

wik =
(
A−1

)T
gik, (16)

where gik = [ 1 0 ]
T is the gain vector and A−1 is the inverse

of the corresponding mixing matrix A = [ ai al ]. Applying
the above procedure for both sources yields the separation
matrix Wk = [ wik wlk ] =

(
A−1

)T
, and the source signals

sk(m) = [ sik(m) slk(m) ]
T are obtained less surprisingly from

sk(m) = A−1xk(m). (17)

D. Ill-Posed Case (d > 2)

The term “ill posed”, as opposed to “well posed”, shall be
used as a synonym for the case when a unique solution to
the source separation problem does not exist, that is when
the mixture is composed of more than two source signals. An
optimum solution can be found instead by means of linearly
constrained minimum-variance (LCMV) filtering [10]. What
is considered as the jammer then is the sum of all interfering
source signals. In consequence, the mixture signal xk(m) is
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equally modeled in terms of two components: a unidirectional
signal of interest and a multidirectional jammer, i.e.

xk(m) = aisik(m) + rk(m), (18)

where rk(m) =
∑
l,l 6=i alslk(m). An estimate ŝik(m) for the

signal of interest sik(m) is found by minimizing the mean
jammer power, or equivalently the mean beamformer output
power, along the direction of the signal of interest

Pk(θi) = wT
ik(m)Rxk

(m)wik(m), (19)

subject to identity with respect to a given power level φik(m).
In other words, we seek after the weight vector that solves the
quadratic optimization problem

wiko(m) = arg min
wik(m)

Pk(θi)

s.t. gk(θi)
!
=

√
φik(m)aT

i R
−1
x ai.

(20)

The desired solution to the above problem is found, e.g., by
use of the method of Lagrange multipliers, which yields

wiko(m) = R−1
xk

(m)ai

√
φik(m)

aT
i R
−1
xk (m)ai

. (21)

When applied to the mixture signal xk(m), the derived filter
will narrow the lobe of the jammer power spectrum and the
leakage from the interfering sources into the estimated signal
of interest, hence, will be reduced. Due to the power constraint,
it is furthermore ensured that the power level of the estimate
will match with the desired power level in every point of the
time-frequency plane. This can be easily verified by plugging
(21) in into (19).

E. Noisy Case
In the case where watermarking forms a part of the encoder,

the mixture model in (6) can be extended by a noise term in
the following way:

xw
k (m) = Ask(m) + nk(m), (22)

where xw
k (m) is the watermarked mixture signal and nk(m) is

an additive noise component in the respective TF point. Due
to the fact that the employed watermarking technique is based
on the on-frequency masking phenomenon, the noise term can
be assumed to be collinear with the noise-free mixture signal,
which results in the following relation:

xw
k (m) = [1 + ηk(m)]xk(m), (23)

with nk(m) = ηk(m)xk(m), and ηk(m) being a scalar that
represents the corruption due to the watermark. From (23) it
is evident that the estimate ŝik(m) = wT

ikx
w
k (m) needs to

be rectified by [1 + ηk(m)]
−1, so as to compensate for the

watermark. In the general case, however, 1 + ηk(m) will not
be known. We can yet give an estimate for the deviation of
the magnitude with respect to a (known) noise-free power level
φik(m), which is

|1 + ηk(m)| = |ŝik(m)|√
φik(m)

. (24)

This a posteriori estimate for magnitude distortion can then be
used to partly compensate for errors due to watermarking.

F. General Remarks

If the constraints from (11) and (15) are imposed on the
beamformer in (20) at the same time, as in [3], the obtained
solution folds up to the expression in (16), simply because
no degrees of freedom are left with regard to the number of
weight coefficients to minimize the jammer power. This has
as consequence that the estimator is definitely suboptimal in
the case of multiple interferers: Canceling out just one of the
interfering sources analogously to (16) often enough leaves a
strong residual, which is further amplified by the filter.

Another very popular yet unconstrained solution, which is
the best solution in the MSE sense, can be obtained by leaving
out the identity constraint in (20). The corresponding weight
coefficients of such a “spatial” Wiener filter, alias minimum
mean-square error (MMSE) beamformer, are [11, ch. 2]

wMMSE
iko (m) = R−1

xk
(m)pik(m), (25)

where pik(m) = E [xk(m)s∗ik(m)] is the cross-correlation
signal between the mixture xk(m) and the complex conjugate
of the signal of interest s∗ik(m). E further denotes the statistical
expectation operator. Given that pik(m) = aiσ

2
ik(m), where

σ2 is the variance, it then follows that wiko(m) ∼ wMMSE
iko (m),

and from this one can infer that the two beams have the same
look direction but different gains: The beamformer from (21)
adapts the gain in order to conform with the power constraint,
whereas the MMSE beamformer will likewise power down
the output signal for the sake of a lower MSE. This issue is
addressed in the Appendix.

IV. THE ALGORITHM

A. System Overview

A schematic overview of the algorithm that was given the
name “Underdetermined Source Signal Recovery” (USSR) is
shown in Fig. 3. Although some naming differences can be
found with regard to [3], the processing steps are essentially
identical.

1) Encoder: The source signals {si(n)}di=1 are blockwise
time-frequency mapped by means of the short-time Fourier
transform (STFT) as stated by the formula below:

sik(m) =

L−1∑
n=0

si(mM + n)w(n)e−j2π/Nkn, (26)

0 6 k < N , where m is the segment index, L is the size of
the window w(n), M is the window shift size (0 < M 6 L),
j is the imaginary unit, and N is the transform length (L 6
N ). The instantaneous power signal φik(m) is calculated next
according to

φik(m) = |sik(m)|2 , (27)

where φi(m) = [ φi,0(m) φi,1(m) ··· φi,N−1(m) ] is equally the
time-varying PSD of the ith source signal. All d STPSDs are
approximated and quantized on a double-logarithmic scale (see
Section IV-B) and afterwards hidden together with the model
parameters θ in the waveform signal x(n) as an imperceptible
watermark. Finally, the watermarked mixture signal xw(n) is
communicated to the decoder.
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Fig. 3. Functional block diagram of the encoder and the decoder. The
source signals are transmitted to the decoder in a watermarked downmix and
recovered from the latter using approximate power spectral densities and the
panning angles.

2) Decoder: The incoming signal xw(n) is first “signed”,
meaning that the watermark is extracted, and then channelwise
TF transformed to obtain the subband signals {xw

k (m)}N−1
k=0 .

The latter are then processed by the separator kernel which
avails himself of the dequantized STPSDs φ̃i(m) (see Section
IV-C) and the model parameters θ; the exact procedure is given
in Section IV-D. The filtered signal spectra {s̃i(m)}di=1, where
s̃i(m) = [ s̃i,0(m) s̃i,1(m) ··· s̃i,N−1(m) ], are then transformed
back to the waveform domain using the inverse STFT (ISTFT)
[12, ch. 10].

B. Approximation and Quantization

A significant reduction of side information can be achieved
in two ways: first, by reducing the frequency resolution of
the PSDs φi(m) in approximation of the critical bands [13],
and second, by quantizing the PSD values φik(m) with a step
size equal to some value ∆, which is put in relation to an
appropriate psychoacoustic criterion.

The peripheral auditory system is usually modeled as a bank
of overlapping bandwidth filters, the auditory filters, which
possess an equivalent rectangular bandwidth (ERB). The scale
that relates the center frequency of auditory filters to units of
the ERB is the ERB-rate scale. Using the ERB-rate function
in [14] we can define a relation between the frequency index
k and the critical-band index zk by

zk , b21.4 log10 (4.37fs/Nk + 1)c , (28)

where b·c is the floor function and fs is the sampling frequency
in kHz. The zth critical-band value of the approximate PSDs
is then calculated as the arithmetic mean between lb(z) =

inf {k : zk = z} and ub(z) = sup {k : zk = z} according to

φ̄iz(m) =
1

ub(z)− lb(z) + 1

ub(z)∑
k=lb(z)

φik(m). (29)

Furthermore, under the assumption that the the minimum
just-noticeable-difference level and so the maximum allowed
quantization error is 1 dB [13], the quantization step size ∆ is
chosen as 2 dB, and the irrelevancy-reduced PSD values are
obtained from the uniform quantizer

φ∆
iz(m) =

⌊
5 log10 φ̄iz(m)

⌉
, (30)

where b·e denotes the round-to-nearest rounding function. The
panning angles θi are simply rounded to the nearest integer
value.

C. Dequantization

As the beamforming is carried out based on the availability
of short-time PSDs, the signed PSD values are converted back
into linear PSD values and extrapolated to the resolution of the
STFT. This operation, which is labeled as “dequantization” in
Fig. 3b, is performed by

φ̃ik(m) = 10φ
∆
iz(m)/5 ∀k : zk = z. (31)

D. Power-Constrained Beamforming

In analogy with Section III, we differentiate between (over-)
determined and underdetermined TF regions. Determined TF
regions are points in the TF plane with at least one and at most
two active sources, whereas underdetermined regions are TF
points with more than two active sources respectively. The
indices of the active sources are determined by comparing the
PSD values φ̃ik(m) in a given TF point with the noise-floor
power level. Sources for which the PSD value is greater than
say -60 dB are consequently deemed as active. Determined TF
regions with the same source indices may beyond be grouped
into clusters. The noise cluster would hence be formed by
TF regions without any sources. Each signal component of an
active source in a given TF point or cluster is then filtered
out of the mixture according to one of the three cases listed
below.

1) One active source: If one single source was detected in
the respective TF region, the signal component is calculated
as

ŝik(m) = aT
i x

w
k (m). (32)

2) Two active sources: If two sources were detected, each
of the two signal components is obtained by

ŝik(m) = [ 1 0 ] [ ai al ]
−1

xw
k (m), (33)

with interchanging the indices.
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3) More than two active sources: If more than two sources
were detected in the same TF point, the beamformer from (21)
is steered for each of the signal components separately, so that
each component is estimated as

ŝik(m) =

√
φ̃ik(m)

aT
i R̃
−1
xk (m)ai

aT
i R̃
−1
xk

(m)xw
k (m), (34)

where the output correlation matrix is approximated as

R̃xk
(m) =

d∑
i=1

φ̃ik(m)aia
T
i . (35)

The beamformer will hence seek to spatially decorrelate the
ith signal component from the rest, while adjusting the signal
amplitude to the desired level at the same time.

In the case where the amount of hidden information is quite
large, so that the watermarking noise cannot be neglected, the
estimated signal components are in addition power adjusted,
as stated by

s̃ik(m) =
ŝik(m)

|ŝik(m)|

√
φ̃ik(m). (36)

V. PERFORMANCE CHARACTERISTICS

A. Algorithmic Delay

The algorithmic delay of the USSR algorithm is determined
by the framing and overlap delay of the STFT and its inverse.
By using a 2048-length symmetric window with 50-% overlap
between consecutive frames, the algorithmic delay amounts to
2047 samples. This value corresponds to 46.4 ms at a sampling
rate of 44.1 kHz.

B. Computational Complexity

The filtering performed by the USSR algorithm depends on
the frequency content of source signals and thus varies from
one mixture to another. It is therefore convenient to analyze
the run-time complexity for the worst-case scenario in terms of
“big O” notation. Moreover, we seek to establish a relationship
between the running time and the following input parameters:
the number of sources d, the number of frequency bands Z,
and the transform length N , where d < Z < N . We further
postulate that all arithmetic operations that we want to count
require exactly one unit of time to execute. The results of the
analysis are summarized in Table I. The figures reveal that the
decoder has a complexity that is comparable to the complexity
of the encoder. Evidently, the execution time is dominated by
the d-fold STFT and its inverse.

C. Information Rate

The information rate of the USSR algorithm is measured by
the number of bits that are communicated to the decoder per
time frame excluding the mixture signal. These comprise the
PSD values and the panning angles. The panning angles have a
payload of 7 bit times the number of sources and are signaled
to the decoder once at the beginning of the transmission. The
PSD values are represented as 6-bit unsigned integers. Table II
provides a brief overview of the capacities that are necessary to

TABLE I
RUN-TIME COMPLEXITY OF THE USSR ALGORITHM AS A FUNCTION OF

THE NUMBER OF SOURCES d, THE NUMBER OF FREQUENCY BANDS Z ,
AND THE TRANSFORM LENGTH N

Subroutine Arithmetic operations
in units of time

STFT O(dN logN)
STPSD Calculation O(dN)
Approximation & Quantization O(dN)
Downmix O(dN)

Tenc (d, Z,N) = O(dN logN)

STFT O(N logN)
Dequantization O(dZ)
Power-Constrained Beamforming O(dN)
ISTFT O(dN logN)

Tdec (d, Z,N) = O(dN logN)

TABLE II
INFORMATION RATE OF PSD VALUES (LEFT) AND PSD DIFFERENCE

VALUES USING TFDPCM AND HUFFMAN CODING (RIGHT) AT 44.1 KHZ
SAMPLING RATE AND 16-KHZ CUTOFF

ERB Number of Information rate
subdivision factor frequency bands in kbps per source

– 39 10.1 / 5.88
2 76 19.6 / 11.5
3 108 28.0 / 16.3
4 136 35.2 / 20.6
5 163 42.2 / 24.6
...

...
...

store the PSD values for various numbers of frequency bands.
They were calculated according to

bitrate =
fs
M
· 6 · Z · d, with M = L/2. (37)

The information rate is therefore varied upon a subdivision
the ERB by an integer factor. As a rule of thumb, the finer is
the frequency resolution the higher is the observed quality of
the spectrum estimates. On the other hand, the larger is the
number of source signals, the higher is their spectral overlap,
and the finer is to be chosen the frequency resolution to have a
quality that is comparable to a sparser configuration. Whatever
the case, the numbers in Table II can be drawn upon to make
an estimate for the information rate of the USSR algorithm,
as the rate of the panning angles is comparably negligible.2

To reduce the amount of side information even more, one
can exploit the correlation of quantized PSD values between
adjacent TF points. This can be achieved, e.g., by calculating
the difference between two consecutive PSD values either in
time or frequency direction and by coding the difference signal
based on its entropy. This principle is well known as first-order
differential pulse-code modulation (DPCM).

We have validated the concept by modeling the probability
distribution of the input symbols based on the occurrence of

2In the particular case of an instantaneous mixture, the mixing coefficients
may just as well be estimated from the mixture signal itself using the algorithm
in [15]. The transmission of the panning angles can then be entirely omitted.
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each possible difference value in a training set. It was observed
that the difference signal both in time and frequency direction
has a Laplace(µ, b) distribution with µ̂ ≈ −0.2 and b̂ ≈ 2. We
have thereupon derived a Huffman codebook [16] from the
estimated input probability distribution with a mean codeword
length of 3.5 bit. This corresponds to a compression ratio of
1.7:1, which means that almost twice as many source signals
can now be extracted from the mixture for the same amount
of side information. The corresponding bitrates are listed in
Table II in boldface.

VI. QUALITY ASSESSMENT

A. Algorithms Under Test

The following two algorithms were compared against each
other: the USSR algorithm and an in-house implementation of
the algorithm described in [1]. These algorithms were already
compared in [3], but this time the USSR algorithm is served
in three different flavors. The tested algorithms hence are:

ISSA The reference ISS algorithm from [1].
USSR-A The iterative USSR algorithm [3] with pairwise

extraction.
USSR-B The proposed non-iterative USSR algorithm.
USSR-C USSR-B in combination with the unconstrained

Wiener–Hopf solution from (25).

B. Test Items

We had selected two pieces from different music genres: a
5-track hip-hop mixture and a more complex 7-track pop-rock
mixture. The hip-hop piece was DJ Vadim’s “The Terrorist”. It
is composed of a leading vocal, a synthesizer in the bassline,
and a percussion section that includes a kick, a snare, and a hi
hat. Phoenix’s “Lisztomania” was chosen from within the pop-
rock genre. It has a bass guitar together with drums forming
the rhythmic section, several guitars in the harmonic section, a
vocal melody, and a keyboard to create a sustained pad for the
song. The signals used in the test were 30-s long monophonic
excerpts from the multitrack masters. Their spatial placement,
which was aligned with the commercial publications, is given
in Table III.

C. Test Conditions

To exclude a performance bias due to different TFRs, all
four algorithms were implemented using the STFT. The STFT
was realized as a 2048-point fast Fourier transform (FFT) with
a Kaiser–Bessel derived window of the same length and a 50-
% overlap between succeeding frames. The sampling rate was
set to 44.1 kHz. The effective data rate of the ISSA algorithm
was 86.1 kbps for the 5-track mixture and 108 kbps for the 7-
track mixture, respectively. The USSR algorithm was tuned in
such a way that the raw bitrates were approximately the same:
93.4 and 103 kbps. In addition, the same audio watermarking
technique [7] was used in all four cases.

TABLE III
PANNING USED FOR THE TWO MUSIC PIECES

Track name Panning

Acapella 6.7 % right
Bass 20 % left
Hi Hat 29 % left
Kick 6.7 % left
Snare centered

“The Terrorist” by DJ Vadim

Bass 1.6 % right
Beat 4.4 % left
Cocotte 41 % right
Guitar 1 9.3 % left
Guitar 3 76 % left
Key 9.6 % right
Vox 4.0 % right

“Lisztomania” by Phoenix

D. Objective Performance Metrics

The following four metrics were used in order to assess the
audio quality of the algorithms: the signal-to-interference ratio
(SIR), the so-termed “target-related” perceptual score (TPS), a
frequency-weighted signal-to-noise ratio (SNRF) [17], and the
“auditory” bandwidth as the counterpart of the “articulatory”
bandwidth [17]. The first two metrics were computed with the
PEASS toolkit [18]. The SNRF was redefined in the following
manner:

SNRFi(m) ,
1

Z

Z∑
z=1

10 log10

φ̄iz(m)

φ̄iz,n(m)
, (38)

where Z = 39, z is the ERB-scale index, φ̄iz(m) is the
average power of the reference signal, and φ̄iz,n(m) is the
corresponding average noise power,

φ̄iz,n(m) =

ub(z)∑
k=lb(z)

[min (|s̃ik(m)| − |sik(m)| , 0)]
2

ub(z)− lb(z) + 1
. (39)

The noise signal is calculated in such a way as to accentuate
the subjective effect of spectral gaps on audio quality, as only
lacking signal components are taken into account. We further
used a time resolution of 23.2 ms for both the SNRFi and the
bandwidth measure. The final score was obtained by taking
the average over all time segments.

E. Mean Opinion Scores

As a supplement to the objective metrics, a multi-stimulus
test with hidden reference and anchor (MUSHRA) [19] has
been administered, so as to obtain a set of subjective scores.
The latter were intended to help verify consistency between
objective performance metrics and human perception. The
test was carried out in the audiovisual production facilities
within the University of Western Brittany. Sennheiser HD
650 headphones and MOTU’s UltraLite-mk3 Hybrid audio
interface were used during the test for sound reproduction.
The gain of the preamplifier stage was adjusted to a reference
listening level of -20 dB below the clipping level of a digital
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tape recording. All test signals were shortened to 20 s at the
longest and the anchor was a 3.5-kHz lowpass filtered version
of the sum of the original source signals with a 3-dB signal-to-
interference ratio and a 50-% spectral-gap rate. The anchor was
altered in such a way as to show similar types of impairment
as the algorithms under test. Nine audiovisual media students
have taken part in the test. They were instructed to score the
stimuli according to the continuous quality scale by judging
their degree of preference for one type of artifact versus some
other type.

F. Test Results

The results of quality assessment are summarized in Figs. 4–
8. Figs. 4–5 show the SIR and the TPS for each track from
the two selected music excerpts. The corresponding SNRFs as
well as the auditory bandwidths are depicted in Figs. 6–7. The
mean opinion scores (MOSs) including the 95-% confidence
intervals are plotted in Fig. 8. As it was anticipated, USSR-C
exhibits the highest SIR. USSR-B shows a clear improvement
over USSR-A. The SIR for ISSA is also quite high but always
lower than for USSR-B and USSR-C however. The TPS is
fairly consistent in all three USSR variants for the hip-hop
mixture, whereas a slight tendency towards USSR-B can be
observed for the pop-rock mixture. ISSA has definitely the
worst TPS of all tested ISS algorithms. In respect of the SNRF,
the two constrained USSR variants, A and B, show superiority
over the rest. Again, this is something that could be expected,
since these algorithms preserve the auditory bandwidth of the
signal. Moreover, it can be seen that the number of spectral
gaps is lesser with USSR-C than with ISSA, which supports
the statement made in the introductory paragraph. De facto,
the effect observed with USSR-C is more of a band limitation
than the “arid” effect [3], and as such it produces a sound that
is rather “dull” than “annoying”. On the whole, the preferential
tendencies of the TPS have shown to be rather consistent
with the MOS. Yet, the TPS seems to overrate the audio
quality by some 20–40 points, which again corresponds to 1–
2 grades! In this regard, the SNRF has too proven to provide
the desired tendencies, which allows the conclusion that if it
was properly scaled, it might just as well serve as an objective
measure for the perceived audio quality but at a much lower
computational cost. With a mean score between “good” and
“fair”, the USSR algorithm came off as the clear winner in any
of its variants. ISSA was overall graded as “bad”—but better
than the anchor. A slight preference of USSR-B, which is the
improved version of the algorithm, to its predecessor USSR-A
could also be noted. That preference would seem to be linked
to the complexity of the mixture. But above all, USSR-B was
assessed to perform significantly better than USSR-C, which
once more highlights the fact that full bandwidth is essential
for a natural listening experience.

VII. CONCLUSION

In the present paper we have given a detailed description
of a non-iterative version of the USSR algorithm that runs in
linearithmic time. The fact that the spatial correlation matrices
are derived directly from the panning angles and the STPSDs,

and no longer from the clustered data, renders the algorithm
less complex and more efficient at the same time. This was
verified with both objective and subjective quality metrics.3

The equal-power (∼ loudness) constraint, which is inherent
in the newly derived PCMV beamformer, guarantees that
the recovered replica of the original source signals feature
the same (approximated) STPSDs and are perceptually more
similar in timbre to the latter.

In conclusion, the provided framework and the used notation
permit the mixture signal to be processed either frame by
frame or as a whole. But besides that, the proposed algorithm
could be applied to convolutional and/or time-variant mixture
models, which is an outlook on future work. Another area of
interest is to extract spatial images of stereophonic sources,
that is to separate the sources without changing their spatial
location. It is also thinkable to combine multiple constraints,
if the mixture signal has more than two channels.

APPENDIX

Based on the signal model from Section III-B, the MMSE
beamformer for an arbitrary frequency subband and for the
duration of an arbitrary time segment can be reformulated as

wMMSE
io = σ2

iR
−1
x ai

=
σ2
i

detRx
adjRxai

=
σ2
i

detRx

d∑
l=1

σ2
l adj

(
ala

T
l

)
ai

=
σ2
i

detRx

d∑
l=1

%ilσ
2
lQal, (40)

where detRx is the determinant and adjRx is respectively
the adjugate of Rx. Moreover, %il = det [ ai al ] = aT

l Qai,
with Q =

[
0 1
−1 0

]
. detRx further unfolds to

detRx =

d∑
u=1

σ2
ua1u

d∑
v=1

%uvσ
2
va2v

=

d∑
u=1

σ2
u

d∑
v=u

%2
uvσ

2
v . (41)

The beamformer gain along the direction of the ith source is

gMMSE
io =

(
wMMSE
io

)T
ai

(40)
=

σ2
i

detRx

d∑
l=1

%ilσ
2
l a

T
l Qai︸ ︷︷ ︸
%il

(41)
=

σ2
i

∑d
l=1 %

2
ilσ

2
l∑d

u=1 σ
2
u

∑d
v=u %

2
uvσ

2
v

. (42)

In the ill-posed case, that is for d > 2, it can be noted that 0 6
%2
il, %

2
uv < 1, and since σ2

l , σ
2
v > 0, the following inequalities

3Download the sound clips from http://www.labri.fr/~gorlow/lcsf/
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Fig. 4. Signal-to-interference ratios and target-related perceptual scores (left column) complemented by the median, the 25th and 75th percentiles, and outliers
(right column) for an excerpt from “The Terrorist” by DJ Vadim.
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Fig. 5. Signal-to-interference ratios and target-related perceptual scores (left column) complemented by the median, the 25th and 75th percentiles, and outliers
(right column) for an excerpt from “Lisztomania” by Phoenix.

hold true:
d∑
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ilσ

2
l <
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2
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(43)

The beamformer gain in (42) hence simplifies to

gMMSE
io

(43)
6
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Equation (44) underlines that just as the classical Wiener filter,
the MMSE beamformer will attenuate the output signal at the
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Fig. 8. Mean opinion scores and 95-% confidence intervals for the two music excerpts (left column) and the overall grades for the algorithms under test
(right column).

attempt to minimize the error at TF points with a poor SIR.
At worst, the attenuation may leave an audible spectral gap.
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