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Av. Normandie Niemen, FR-13397 Marseille CEDEX 20

One considers an infinite plasma made up of the periodic replication of N electrons coupled by
Coulomb forces in a volume L

3 with a neutralizing ionic background. Using Fourier and Laplace
transforms, a rigorous fundamental equation is derived for the electrostatic potential. A first coarse
graining of this equation reveals the potential to be the sum of the screened Coulomb potentials of
the individual particles. A second coarse graining yields the classical Vlasovian expression includ-
ing initial conditions in Landau contour calculations of Langmuir wave growth or damping. Using
the screened potential, the collisional diffusion coefficient is computed by a convergent expression
including the deflections for all impact parameters. Screening and collisional transport are found to
be two related aspects of the repulsive deflections of electrons. The theory is extended to accom-
modate a correct description of trapping or chaos due to Langmuir waves. In the linear regime, the
amplitude of such a wave is found to be ruled by Landau growth or damping and by spontaneous
emission.

I. INTRODUCTION

From the outset, inspired by gas physics, plasma physicists derived kinetic equations to describe microscopic aspects
of their physics, in particular the Vlasov equation. This trend has been the dominant one till now. However, for
plasmas where transport due to short range interactions is weak, it is possible to work directly with N -body classical
mechanics. As will be recalled in section V, this approach led to a new description of wave-particle interaction making
it more intuitive and unifying particle and wave evolutions, as well as collective and granular physics. This paper
develops this approach further by deriving a rigorous fundamental equation for the electrostatic potential (section II).
It brings further unifications: Debye screening and Landau theory of linear waves (section III), Debye screening and
collisional transport (section IV). Finally the theory is extended to accommodate a correct description of trapping
or chaos due to Langmuir waves, and to generalize to three dimensions a formula giving the time evolution of the
amplitude of a Langmuir wave, unifying Landau growth or damping and spontaneous emission (section V). These
results come with a considerable simplification of the mathematical framework with respect to textbooks, and with
new insights in microscopic plasma physics. The derivations are elementary, and the paper is more oriented toward
concepts and intuitive physics, than toward ready-to-use formulas.

II. FUNDAMENTAL EQUATION FOR THE POTENTIAL

We consider an infinite plasma with spatial periodicity L in three orthogonal directions with coordinates (x, y, z),
which is made up of N electrons in each elementary cube of volume L3. A neutralizing ionic background is assumed
to enable periodic boundary conditions. We are interested in φ(r), the potential created by the N particles at any
point where there is no particle. In the absence of neutralizing background and in infinite space, it would read

φ̃(r) =
∑
j∈S

δφC(r− rj), (1)

where S is the set of integers going from 1 to N ,

δφC(r) = −
e

4πε0∥r∥
. (2)

Given the neutralizing background and the periodic boundary condition, the discrete Fourier transform of φ(r) is
actually readily obtained from the Poisson equation, and is given by φ̃(0) = 0, and for m ̸= 0

φ̃(m) = −
e

ε0k2m

∑
j∈S

exp(−ikm · rj), (3)

where−e is the electron charge, ε0 is the vacuum permittivity, rj is the position of particle j, φ̃(m) =
∫
φ(r) exp(−ikm·

r)d3r, with km = (mx
2π
L ,my

2π
L ,mz

2π
L ), m = (mx,my,mz) is a vector with three integer components, and km = ∥km∥.
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Reciprocally,

φ(r) =
1

L3

∑
m

φ̃(m) exp(ikm · r), (4)

where
∑

m
means the sum over all components of m running from −∞ to +∞.

The dynamics of particle l is defined by Newton’s equation

r̈l =
e

me
∇φl(rl), (5)

where me is the electron mass, φl is the electrostatic potential acting on particle l, i.e. the one created by all other
particles. It is given by Eq. (3) with the supplementary condition j ̸= l. Let

r
(0)
l = rl0 + vlt (6)

be a ballistic approximation of the dynamics of particle l. In the following we consider two instances of this approx-
imation: the one where rl0 and vl are respectively the initial position and velocity of particle l, and the one where

they are slightly shifted from these values by small amplitude Langmuir waves. Let δrl = rl−r
(0)
l . With this notation

and Eq. (4), Eq. (5) yields

δr̈l =
ie

L3me

∑
n

kn φ̃l(n) exp[ikn · (r
(0)
l + δrl)]. (7)

We now introduce the time Laplace-transform which transforms a function f(t) into f̂(ω) =
∫∞

0
f(t) exp(iωt)dt. The

Laplace-transform of Eq. (50) is

ω2δr̂l(ω) = −
ie

L3me

∑
n

kn exp(ikn · rl0) Ψl(φ̂l ;n, ω + ωn,l) + iωδrl(0)− δṙl(0). (8)

where the carets indicate the Laplace transformed versions of the quantities in Eq. (50), ωn,l = kn · vl comes from

the time dependence of r
(0)
l in the exponent of Eq. (50), and the operator Ψl acting on a function g(m, ω) is defined

by

Ψl(g ;n, ·) = g(n, ·) ∗ Tl(n, ·), (9)

where ∗ is the convolution product, and Tl(n, ω) is the Laplace transform of exp(ikn · δrl).
In the following we are interested in cases where the δrl’s are small in some sense. To this end we split φ̃l(m) as

φ̃l(m) = ϕ̃l(m) + ∆φ̃l(m) (10)

where

ϕ̃l(m) =
∑

j∈S;j ̸=l

δϕ̃j(m), (11)

with

δϕ̃j(m) = −
e

ε0k2m
exp(−ikm · r

(0)
j )(1− ikm · δrj), (12)

and

∆φ̃l(m) = −
e

ε0k2m

∑
j∈S;j ̸=l

exp(−ikm · r
(0)
j )Rj(m), (13)

with

Rj(m) = exp(−ikm · δrj)− 1 + ikm · δrj , (14)

which is of order two in δrj . The Laplace transform of Eq. (10) yields

k2
m
φ̂l(m, ω) = k2

m
ϕ̂
(00)
l (m, ω) +

ie

ε0

∑
j∈S;j ̸=l

exp(−ikm · rj0) [km · δr̂j(ω − ωm,j) + iR̂j(m, ω − ωm,j)], (15)
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where R̂j(m, ω) is the Laplace transform of Rj , ϕ̂
(0O)
l (m, ω) is ϕ̂l(m, ω) computed with another δrj = 0 for all j’s,

and ωm,j = km · vj comes from the time dependence of r
(0)
l in the exponent of Eq. (11). Substituting the δr̂j ’s with

their expression provided by Eq. (8) yields

k2
m
φ̂l(m, ω) −

e2

L3meε0

∑
n

km · kn

∑
j∈S;j ̸=l

Ψj(φ̂j ;n, ω + ωn,j − ωm,j)

(ω − ωm,j)2
exp[i(kn − km) · rj0]

= k2
m
ϕ̂
(0)
l (m, ω) −

e

ε0

∑
j∈S;j ̸=l

exp(−ikm · rj0)R̂j(ω − ωm,j), (16)

where ϕ̂
(0)
l (m, ω) is ϕ̂l(m, ω) computed with another δrj = δrj(0) + δṙj(0)t for all j’s.

Summing Eq. (16) over l = 1, ...N and dividing by N − 1, yields

k2
m
φ̂(m, ω) −

e2

L3meε0

∑
n

km · kn

∑
j∈S

Ψj(φ̂ ;n, ω + ωn,j − ωm,j)

(ω − ωm,j)2
exp(i[kn − km] · rj0)

= k2
m
ϕ̂(0)(m, ω) −

e

ε0

∑
j∈S

exp(−ikm · rj0)R̂j(ω − ωm,j) + k2
m
Û ′(m, ω), (17)

with Û ′(m, ω) = 0 as yet, and where ϕ̂(0)(m, ω) is ϕ̂
(0)
l (m, ω) complemented by the missing l-th term. Equation (17)

is of the type E(ω)F̂(ω) = source term, where E(ω) is a linear operator and F̂(ω) is the infinite dimensional vector of
all φ̂(m, ω)’s. It is the fundamental equation of this paper.

III. DEBYE SCREENING AND LANDAU DAMPING

We now specialize Eq. (17) by considering the lowest order contribution of the δrj ’s, which makes the R̂j ’s vanish,
and reduces Ψj(n, ω) to φ̂(n, ω). Here we chose δrl(0) = δṙl(0) = 0, i.e. rl0 and vl are respectively the initial position
and velocity of particle l. We introduce a smooth function f(r,v), the coarse-grained velocity distribution function
at t = 0 such that the distribution

∑
l∈S

• =

∫ ∫
•f(r,v)d3r d3v+W, (18)

where the distribution W yields a negligible contribution when applied to space dependent function which evolve
slowly on the scale of the inter-particle distance; there the spatial integration is performed over the elementary cube
of volume L3, and the velocity integration is over all velocities. This means we are considering a limit where L and
N are large, while keeping constant the density N/L3.
We first apply this coarse-graining to E(ω) only. Then it becomes diagonal, and Eq. (17) becomes

k2Φ̂(k, ω) = k2ϕ̂(0)(k, ω) +
e2

meε0

∑
n

km · kn

∫
Φ̂(n, ω + (kn − km) · v)

(ω − km · v)2
f̃(kn − km,v) d3v+ Û ′, (19)

where Û ′ = 0 as yet, Φ̂ is this approximate and coarse-grained version of ϕ̂, and f̃(k,v) is the spatial Fourier transform
of f . If the initial distribution f is a spatially uniform distribution function f0(v) plus a small perturbation of the

order of Φ, linearizing Eq. (19) in Φ̂ yields

ϵ(m, ω)Φ̂(m, ω) = ϕ̂(0)(m, ω) + Û ′, (20)

where Û ′ = 0 as yet and

ϵ(m, ω) = 1−
e2

meε0

∫
f0(v)

(ω − km · v)2
d3v, (21)

which is the classical dispersion relation for Langmuir waves. A first check of this can be obtained for a cold plasma:

then ϵ(m, ω) = 1−
ω2

p

ω2 where ωp is the plasma frequency. The classical expression involving the gradient of f0 in v is
obtained by a mere integration by parts.
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The contribution of particle j to ϕ̃(0)(m) is δϕ̃
(0)
j (m) = − e

ε0k2
m

exp[−ikm · (rj0 + vjt)]. Its Laplace transform is

δϕ̂
(0)
j (m, ω) = −

ie

ε0k2m

exp(−ikm · rj0)

ω − km · vj
. (22)

The corresponding part of Φ̂(m, ω) is δΦ̂j(m, ω) = δϕ̂
(0)
j (m, ω)/ϵ(m, ω). This turns out to be the screened potential

of particle j as first computed in section II.A of Ref. [1] and later on in [2]. By inverse Fourier-Laplace transform,
after some transient described later in this section, the potential due to particle j becomes the screened Coulomb
potential

δΦj(r) = δΦ(r− rj0 − vjt,vj), (23)

where

δΦ(r,v) = −
e

L3ε0

∑
m

exp(ikm · r)

k2
m
ϵ(m,km · v)

. (24)

Therefore, after this transient, the full potential in the plasma turns out to be the sum of the screened Coulomb
potentials of individual particles located at their ballistic positions. Since ϵ(m,km · v) − 1 ≃ (kmλD)

−2 where λD

is the Debye length, for ∥r∥ ≪ λD, there is no screening, since the main Fourier components in Eq. (24) are such
that km∥r∥ ∼ 1. As was done for the bare potential of Eq. (3), the field acting on a given particle l is obtained by
removing its own divergent contribution δΦl from Φ.
We now apply the coarse-graining to ϕ̃(0)(m, ω) too. As a result of Eq. (11-12), this yields

Φ̃(0)(m) = −
e

ε0k2

∫ ∫
exp[−ikm · (r+ vt)]f(r,v)d3rd3v (25)

whose Laplace transform is

Φ̂(0)(m, ω) = −
ie

ε0k2

∫
f̃(m,v)

ω − km · v
d3v, (26)

which shows this second coarse-graining makes Eq. (20) with Û ′ = 0 to become the expression including initial
conditions in Landau contour calculations of Langmuir wave growth or damping, obtained by linearizing Vlasov
equation and using Fourier-Laplace transform, as described in many textbooks. Therefore in these calculations,
Φ̂(m, ω) turns out to be the coarse-grained version of the actual screened potential in the plasma.
It is worth noting the physical meaning of the linearization performed in this section. It corresponds to the

approximation of the true dynamics by an approximate one ruled by

δr̈l =
e

me
∇ϕl(r

(0)
l + δrl), (27)

where ϕl(r) =
∑

j∈S;j ̸=l δϕj(r) is the inverse Fourier transform of ϕ̃l with

δϕj(r) = −
e

4πε0∥r− r
(0)
j ∥

−
eδrj · (r− r

(0)
j )

4πε0∥r− r
(0)
j ∥3

. (28)

The jth component of the approximate electric field acting over particle l turns out to be due to a particle located

at r
(0)
j instead of rj , and is made up of a Coulombian part and of a dipolar part with a dipole moment −eδrj . The

cross-over between the two contributions occurs for ∥rl − r
(0)
j ∥ on the order of ∥δrj∥, i.e. when the distance between

particle l and the ballistic particle j is equal to the distance between the latter and the true particle j. For larger

values of ∥rl − r
(0)
j ∥, the dipolar component is subdominant. For smaller ones, it is dominant, but with a sign which

is a priori random with respect to the Coulombian one (rl − r
(0)
j is almost independent from δrj). Since the ∥δrj∥’s

are assumed small, the latter case should be rare since it corresponds to a very close encounter between particle l and
the ballistic particle j. As a result the approximate electric field stays dominantly of Coulombian nature, but with a
small mismatch of the charge positions with respect to the actual ones.
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In order to provide a complementary view to Debye screening, we now go back to the mechanical description of
microscopic dynamics with the full Coulomb potential of Eq. (3). In order to compute the dynamics, we use Picard

iteration technique. From Eq. (5), r
(n)
l , the nth iterate of rl, is computed by

r̈
(n)
l =

e

me
∇ϕ

(n−1)
l (r

(n−1)
l ), (29)

where ϕ
(n−1)
l is computed by the inverse Fourier transform of Eq. (3) with the rj ’s substituted with the r

(n−1)
j ’s. The

iteration starts with the ballistic approximation of the dynamics defined by Eq. (6). It is convenient to write Eq.
(29) as

r̈
(n)
l =

∑
j∈S;j ̸=l

r̈
(n)
lj , (30)

with

r̈
(n)
lj = aC(∆r

(n−1)
lj ), (31)

where ∆r
(n−1)
lj = r

(n−1)
l − r

(n−1)
j and

aC(r) = −
e

me
∇δφC(r) =

e2

4πmeε0∥r∥3
r, (32)

with δφC given by Eq. (2). Then r̈
(1)
l =

∑
j∈S;j ̸=l aC(∆r

(0)
lj ) and for n ≥ 2

r̈
(n)
l = r̈

(1)
l +

∑
j∈S;j ̸=l

∇aC(∆r
(0)
lj ) ·∆2

r
(n−1)
lj +O(a3), (33)

where ∆2
r
(n−1)
lj = ∆r

(n−1)
lj −∆r

(0)
lj and a is the order of magnitude of the total Coulombian acceleration. Equation

(33) may be written

r̈
(n)
l =

∑
j∈S;j ̸=l

[(r̈
(1)
lj +M

(n−1)
jl ) + 2∇aC(∆r

(0)
jl ) ·∆

2
r
(n−1)
jl ] +O(a3), (34)

where M
(n−1)
jl is the effect of particle j on particle j mediated by all other particles. It is M

(n−1)
jl =∑

m∈S;l ̸=i,j ∇aC(∆r
(n−1)
mi ) · (δr

(n−1)
mj − δr

(n−1)
ij ) where δr

(n)
pq is the double integral over time of r̈(n)pq vanishing at t = 0.

Since the above screened potential was found by first order perturbation theory, it is felt in the acceleration of particles
computed to second order. This acceleration is provided by Eq. (34) for n = 2. Therefore its term in brackets is
the screened acceleration of particle l due to particle j. As a result, though the summation runs over all particles,
its effective part is only due to particles j typically inside the Debye sphere about particle l. Starting from the third

iterate of Picard technique, the summation of ∇aC(∆r
(0)
jl ) ·∆

2
r
(n−1)
lj is over this Debye sphere, since the ∆2

r
(n−1)
lj ’s

are screened ones. This justifies the use of the screened potential to compute collisional transport in the following
section. It is worth noting that in Eq. (23) it would be better to compute the screened potential at the actual positions
of the particles, since the true screened potential corresponding to n → ∞ diverges exactly like the original Coulomb
one at the actual position of the particles.
The preceding calculation yields the following interpretation of screening. At t = 0 consider a set of randomly

distributed particles. Consider a particle l. At a later time t, it has deflected all particles which made a closest
approach to it with an impact parameter b <

∼ vtht where vth is the thermal velocity. This part of their global
deflection due to particle l reduces the number of particles inside the sphere S(t) of radius vtht about it. Therefore
the effective charge of particle l as seen out of S(t) is reduced: the charge of particle l is screened due to these
deflections. This screening effect increases with t, and thus with the distance to particle l. As a result, the typical
time-scale for screening to set in when starting form random particle positions is the time for a thermal particle to
cross a Debye sphere, i.e. ω−1

p , which sets the duration of the above transitory. Furthermore, screening is a cooperative
dynamical process: it results from the accumulation of independent repulsive deflections with the same qualitative
impact on the effective electric field of particle l (if ions were added, the attractive deflection of charges with opposite
signs would have the same effect). It is a cooperative effect, but not a collective one. As a result, screening and
collisional transport are two aspects of the same two-body repulsive process.
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IV. DEBYE SCREENING AND COLLISIONAL TRANSPORT

We now focus on the case where the particles have random initial positions, i. e. where the plasma has a uniform
density, and for simplicity we consider the plasma to be in thermal equilibrium. Then the dynamics of particles
has no collective aspect, but is ruled by the cumulative effect of two-body deflections. More specifically we choose
random rl0’s, and vanishing δrl(0)’s and δṙl(0)’s, and we assume that at t = 0 all particles are in the same cube of
volume L3. To the contrary each particle has a well defined velocity, in such a way that the overall initial velocity
distribution is close to f . We focus on particle l which is assumed to be close to the center of the cube. In this section
we approximate the true dynamics by that due to the screened Coulombian interactions, i. e. we write

δr̈l =
∑

j∈S;j ̸=l

a(rl − r
(0)
j ,vj), (35)

where

a(r,v) =
e

me
∇δΦ(r,v), (36)

where δΦ(r,v) is given by Eq. (24). We compute particle l deflection in a series of steps. First we use first order
perturbation theory in δΦ, which shows the total deflection to be the sum of the individual deflections due to all
other particles. For an impact parameters much smaller than λD, the deflection due to a particle turns out to be
the perturbative value of the Rutherford deflection due to this particle if it were alone. Therefore we approximate
the former one by the latter one, which provides a natural matching with the Rutherford deflection at small impact
parameters. The deflection for an impact parameter of order λD is given by the Rutherford expression multiplied
by some function of the impact parameter reflecting screening. This yields an analytical expression for deflection
whatever be the impact parameter. This procedure is reminiscent of that in [4], but avoids invoking the cancellation
of three divergent integrals.
We now compute δrl by first order perturbation theory in δΦ, taking the ballistic motion defined by Eq. (6) as

zeroth order approximation. This yields

δṙl1(t) =
∑

j∈S;j ̸=l

δṙlj1(0, t), (37)

where

δṙlj1(t1, t2) =

∫ t2

t1

a[r
(0)
l (t′)− r

(0)
j (t′),vj ]dt

′. (38)

It is convenient to write r
(0)
l (t′) − r

(0)
j (t′) = blj +∆vlj(t

′ − tlj), where tlj is the time of closest approach of the two

ballistic orbits. Then blj = ∥blj∥ is the impact parameter of these two orbits when singled out. The initial random
positions of the particles translate into random values of blj and of tlj . For a given blj , the deflection of particle l
given by Eq. (38) is maximum if tlj is in the interval [0, t], or more precisely for t ≫ ∆tlj ≡ ∆tlj , in the interval
[α∆tlj , t − α∆tlj ], where ∆vlj = ∥∆vlj∥ and α is about a few units. Indeed ∆tlj is the order of magnitude of the
duration of the main contribution of the integral in Eq. (38) to the deflection. This duration is about the inverse of
the plasma frequency for blj ∼ λD and ∆vlj on the order of the the thermal speed.
For the sake of brevity, we compute here just the trace of the diffusion tensor for the particle velocities. To this

end, we perform an average over all the rl0’s to get

⟨δṙ2l1(t)⟩ =
∑

j∈S;j ̸=l

⟨δṙ2lj1(t)⟩, (39)

taking into account Eq. (24), and the fact that the initial positions are independently random, as well as the ri − rj ’s
for i ̸= j. Therefore, though being due to the simultaneous scattering of particle l with the many particles inside
its Debye sphere, ⟨δṙ2l1(t)⟩ turns out to be the sum of individual two-body deflections. Therefore the contribution to
⟨δṙ2l1(t)⟩ of particles with given blj and ∆vlj can be computed as if it would result from successive two-body collisions,
as was done in Ref. [3] and in many textbooks.

For an impact parameter much smaller than λD, the main contribution of a[r
(0)
l (t′)− r

(0)
j (t′),vj ] to the deflection

of particle l comes from times t′ where ∥r
(0)
l (t′) − r

(0)
j (t′)∥ ≪ λD. Therefore a(r,v) takes on its bare Coulombian

value, and ⟨δṙ2l1(t)⟩ is a first order approximation of the effect on particle l of a Rutherford collision with particle j.
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The comparison of this approximate value with the exact one, shows the perturbative calculation to be correct for

blj ≫ λma = e2

2πmeε0∆v2

lj

, the distance of minimum approach of two electrons in a Rutherford collision.

Let particle n make a close approach to particle l, i.e. bln ∼ λma. For such an impact parameter, one must compute
the dynamics by using the exact N -body dynamics

r̈l = aC(rl − rn) +
∑

j∈S;j ̸=l,n

aC(rl − rj), (40)

where aC(r) is the bare Coulombian acceleration. For particle n we write the same equation by exchanging indices
l and n. Since the two particles are at distances much smaller than d = n−1/3 the inter-particle distance, the
accelerations they get from all other particles are almost the same. Therefore, when subtracting the two rigorous
equations of motion, the two summations over j almost cancel yielding

d2(rl − rj)

dt2
= 2aC(rl − rn), (41)

which is the equation describing the Rutherford collision of these two particles in their center of mass frame, in the
absence of all other particles. Since bln ≪ d, the other particles produce a negligible deflection of the center of mass
during the Rutherford collision which has a duration about bln/∆vln. Therefore the deflection of particle l during
this collision is exactly that of a Rutherford two-body collision which was calculated in Ref. [3].
Now, since the deflection of particle l due to particle j as computed by the above perturbation theory is an

approximation of the Rutherford deflection, we may approximate the former one by the latter one, which provides a
natural matching of the theories for blj ∼ λma and for λD ≫ blj ≫ λma.
We must finally deal with impact parameters of the order of λD. Then the deflection due to particle j must be

computed by Eq. (38). For the sake of simplicity, we make the calculation for the case where vj is small, which makes

δΦ(r,v) ≃ δΦ(r,0) which is the Yukawa potential δΦY(r) = − e
4πε0∥r∥

exp(−∥r∥
λD

) (Eq. (18) of Ref. [1]). The first

order correction in km · vj to this approximation is a dipolar potential with an electric dipole moment proportional
to vj . Since a Maxwellian distribution is symmetrical in v, these individual dipolar contributions cancel globally. As
a result the first relevant correction to the Yukawa potential is of second order in km · vj . This should make the
Yukawa approximation a relevant one for a large part of the bulk of the Maxwellian distribution.
In the small deflection limit, the full deflection of particle l due to particle j is provided by

δṙlj1(−∞,+∞) =
e2

4πmeε0
blj

∫ +∞

−∞

[
1

r3(t)
+

1

λDr2(t)
] exp[−

r(t)

λD
]dt, (42)

where r(t) = (b2lj +∆v2ljt
2)1/2. Defining θ = arcsin[∆vljt/r(t)], this equation becomes

δṙlj1(−∞,+∞) = −
2e2

4πmeε0∆vlj

h(blj)

b2lj
blj , (43)

where

h(b) =
1

2

∫ +π/2

−π/2

[cos(θ) +
b

λD
] exp[−

b

λD cos(θ)
] dθ, (44)

During time t ≫ ∆tlj , a volume 2π∆vljtbljδblj of particles with velocity vj and impact parameters between blj

and blj + δblj produce the deflection of particle l given by Eq. (43), and a contribution scaling like
h2(blj)

blj
δblj to

⟨δṙ2l1(t)⟩. Let bmin be such that λD ≫ bmin ≫ λma. The contribution of all impact parameters between bmin and

some bmax is thus scaling like the integral
∫ bmax

bmin

h2(b)/b db. Since for b small h(0) ≃ 1, if bmax ≪ λD, this is the

non-screened contribution of orbits relevant to the above perturbative calculation. Since, by approximating it by
the Rutherford-like result of Ref. [3], this contribution matches that for impact parameters on the order of λma, the
contribution of all impact parameters between λma and some bmax small with respect to λD is thus scaling like the

integral
∫ bmax

λma

1/b db as was computed in Ref. [3]. The matching of this result for b ∼ λD is simply accomplished by

setting a factor h2(b) in the integrand which makes the integral converge for b → ∞. Taking this limit one finds the
Coulomb logarithm ln(λD/λma) of the second Eq. (14) of Ref. [3] becomes ln(λD/λma)+C where C is of order unity.
If the full dependence of the screening on vj were taken into account, the modification of the Coulomb logarithm
would be velocity dependent.
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For the sake of brevity we do not develop here the calculation of the dynamical friction. It requires using second
order perturbation theory, but follows the same lines as those for the diffusion coefficient. However it requires also a

slight generalization of Eq. (36) where r
(0)
j (t) is substituted with r

(0)
j (t) + δrj1(t): the screened potential now has its

divergences closer to the actual position of particles. This is both natural physically and justified on the basis of the
discussion at the end of section III.

V. WAVE-PARTICLE DYNAMICS

In section III, the existence of Langmuir waves is asserted by connection with Landau theory. For an inhomogeneous
plasma, the acceleration of particle l may be split into a homogeneous and a wave part. To this end we still consider
that the rl0’s are random, but we allow for Langmuir waves by allowing for non zero δrj(0)’s and δṙj(0)’s for the
δrj ’s in Eq. (12). Therefore in the formulas of section III, the rj0 and vj ’s are slightly shifted with respect to the
initial rj(0)’s and ṙj(0)’s due to Langmuir waves. When using the linearized versions of Eq. (17) and subsequent
ones in section III, we can split all ϕ’s and Φ’s into a homogeneous part and an independent inhomogeneous one.
Therefore the diffusion coefficient and the dynamical friction estimated by perturbative calculation of the dynamics
up to second order are the sum of the previous collisional contribution and one due to waves, as calculated for instance
in Refs. [5, 7]. For the sake of brevity we do not develop this point here. We rather introduce another path for a
better description of wave-particle dynamics.
Indeed, resonant particles may experience trapping or chaotic dynamics, which imply km · δrl’s of the order of 2π

or larger for wave km’s. To describe such a dynamics it is not appropriate to expand ϕ as was done in Eq. (11-12)
for such particles. However this expansion may still be justified for non resonant particles over times where trapping
and chaos show up for resonant ones. In order to keep the capability to describe the latter effects, we now split the
set of N particles into bulk and tail. The bulk is defined as the set of particles which are not resonant with Langmuir
waves. We then perform the analysis of section II for the Nbulk particles, while keeping the exact contribution of the
Ntail particles to the electrostatic potential. To this end we number the tail particles from 1 to Ntail, the bulk ones
from Ntail + 1 to N , and we call these respective sets of integer Stail and Sbulk. For l ∈ Sbulk, we now substitute Eq.
(11) with

ϕ̃l = U(m) +
∑

j∈Sbulk;j ̸=l

δϕ̃j , (45)

with

U(m) = −
e

ε0k2m

∑
j∈Stail

exp(−ikm · rj), (46)

and we perform the calculation of section II by substituting the previous summations with index running from 1
to N by ones where the index runs over Sbulk, while keeping the exclusion of j = l where indicated. The previous
division by N − 1 preceding Eq. (17) is now a division by Nbulk − 1. This yields Eq. (17) where Û ′(m, ω) now is

Nbulk/(Nbulk − 1) times Û(m, ω), the Laplace transform of U(m).

Let Φ̂bulk(m, ω) be the solution of Eq. (20) for Û ′(m, ω) = 0, and Φ̃bulk(m, t) be its inverse Laplace transform. We

now derive an amplitude equation for Φ̃bulk(m, t) in a way similar to Refs. [6, 7]. Let ωm be such that ϵ(m, ωm) = 0.

Because of the definition of the bulk, this frequency is real. Then Φ̃bulk(m, t) = A exp(−iωmt), where A is a constant,
and

ϕ̂(0)(m, ω) =
iA

ω − ωm

, (47)

according to Eq. (20) with Û ′(m, ω) = 0.

Let Φ̃(m, t) be the inverse Laplace transform of Φ̂(m, ω) and g(m, t) = Φ̃(m, t)/Φ̃bulk(m, t). Therefore Φ̂(m, ω) =
Aĝ(ω − ωm), which together with Eq. (20) and (47) yields

Aϵ(m, ωm + ω′)[ĝ(m, ω′)−
i

ω′
] = Û ′(m, ωm + ω′), (48)

where ω′ = ω − ωm. If Ntail ≪ Nbulk, g(m, t) is a slowly evolving amplitude, and the support of ĝ(m, ω) is narrow

about zero. This justifies Taylor-expanding ϵ(m, ωm+ω′) about ω′ = 0 in Eq. (48), which yields ∂ϵ(m,ωm)
∂ω ω′ to lowest
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order. Setting this in Eq. (48) and performing the inverse Laplace transform finally yields an amplitude equation for

Φ̃(m, t)

∂Φ̃(m, t)

∂t
+ iωmΦ̃(m, t) =

ieNbulk

ε0k2m(Nbulk − 1)∂ϵ(m,ωm)
∂ω

∑
j∈Stail

exp(−ikm · rj). (49)

The self-consistent dynamics of the potential and of the tail particles is ruled by this equation and by the equation of
motion of these particles

r̈j =
ie

L3me

∑
n

kn Φ̃j(n) exp(ikn · rj). (50)

These two sets of equations generalize to 3 dimensions the self-consistent dynamics defined in Refs. [7? ]. For the
sake of brevity, we do not develop here the full generalization of the analysis in these papers; it is lengthy, but rather
trivial. However, since it unifies spontaneous emission and Landau growth and damping, we give the result ruling
the evolution of the amplitude of a Langmuir wave provided by perturbation calculation where the r. h. s. of Eqs.
(49,50) are considered as small of order one. This is natural for Eq. (49) since Ntail ≪ Nbulk, and for Eq. (50) if the

Langmuir waves are small. Let J(m, t) = ⟨Φ̃(m, t)Φ̃(−m, t)⟩, where the average is over the initial positions of the tail
particles (their distribution is assumed spatially uniform). Then a second order calculation yields

dJ(m, t)

dt
= 2γmLJ(m, t) + Sm spont, (51)

where γjL is given by

γmL = αm

dfred
dv

(
ωm

km
;m) (52)

with

αm =
πe2

meε0k2m
∂ϵ(m,ωm)

∂ω

, (53)

and fred(v;m) is the reduced coarse-grained distribution function fred(v;m) =
∫ ∫

f(vk̂m + v⊥) d2v⊥ where k̂m is
the unit vector along km and v⊥ is the component of the velocity perpendicular to km; Sm spont is given by

Sm spont =
2α2

m

πe2kmn
fred(

ωm

km
), (54)

where n is the plasma density. It corresponds to the spontaneous emission of waves by particles and induces an
exponential relaxation of the waves to the thermal level in the case of Landau damping. The second order calculation
for the particles yields the diffusion and friction coefficients of the Fokker-Planck equation ruling the tail dynamics.
This equation corresponds to the classical quasilinear result, plus a dynamical friction term mirroring the spontaneous
emission of waves by particles.

VI. CONCLUSION

This theory brings unification and simplification in basic microscopic plasma physics, and may be useful for peda-
gogical purposes. One might think about trying to apply the above approach to plasmas with more species, or with
a magnetic field, or where particles experience trapping and chaotic dynamics. The first generalization sounds rather
trivial, and the second one is under way, at least in one dimension (see a pedestrian introduction in [8] and more
specific results in [9, 10]).
Furthermore, we used only a very specific part of the fundamental equation (17): the one involving linearization and

coarse-graining. It would be interesting to study the effect of the coupling of Fourier components with both coherent
and incoherent effects. In particular to perform the analysis of the previous section by substituting k2

m
Û ′(m, ω) with

− e
ε0

∑
j∈S exp(−ikm · rj0)R̂j(ω − ωm,j).

[1] S. Gasiorowicz, M. Neuman, R.J. Riddell, Phys. Rev. 101, 922 (1956)



10

[2] N. Rostoker, Phys. Fluids 7, 479 (1964)
[3] M.N. Rosenbluth, W.M. MacDonald, D.L. Judd, Phys. Rev. 107, 1 (1957)
[4] J. Hubbard, Proc. Roy. Soc. (Lond.) A261, 371 (1961)
[5] D.F. Escande, S. Zekri and Y. Elskens, Phys. Plasmas 3 3534 (1996)
[6] M. Antoni, Y. Elskens, D.F. Escande, Phys. Plasmas 5, 841 (1998)
[7] Y. Elskens, D.F. Escande, Microscopic dynamics of plasmas and chaos (IoP Publishing, Bristol, 2003)
[8] D.F. Escande, in Long-range interacting systems, ed. by T. Dauxois, S. Ruffo, L.F. Cugliandolo (Oxford University Press,

Oxford, 2010), p. 469
[9] N. Besse, Y. Elskens, D.F. Escande, P. Bertrand, Plasma Phys. Control. Fusion 53, 025012 (2011)

[10] N. Besse, Y. Elskens, D.F. Escande, P. Bertrand, Proc. 38th EPS Conference on Controlled Fusion and Plasma Physics,
Strasbourg, 2011, P2.009


