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RECOVERING AN HOMOGENEOUS POLYNOMIAL FROM

MOMENTS OF ITS LEVEL SET

JEAN B. LASSERRE

Abstract. Let K := {x : g(x) ≤ 1} be the compact sub-level set
of some homogeneous polynomial g. Assume that the only knowledge
about K is the degree of g as well as the moments of the Lebesgue mea-
sure on K up to order 2d. Then the vector of coefficients of g is solution
of a simple linear system whose associated matrix is nonsingular. In
other words, the moments up to order 2d of the Lebesgue measure on K

encode all information on the homogeneous polynomial g that defines
K (in fact, only moments of order d and 2d are needed).

1. Introduction

The inverse problem of reconstructing a geometrical object K ⊂ R
n from

the only knowledge of moments of some measure µ whose support is K is a
fundamental problem in both applied and pure mathematics with important
applications in e.g. computer tomography, inverse potentials, signal process-
ing, and statistics and probability, to cite a few. In computer tomography,
for instance, the X-ray images of an object can be used to estimate the mo-
ments of the underlying mass distribution, from which one seeks to recover
the shape of the object that appears on some given images. In gravimetry
applications, the measurements of the gravitational field can be converted
into information concerning the moments, from which one seeks to recover
the shape of the source of the anomaly.

Of course, exact reconstruction of objects K ⊂ R
n is in general impossible

unlessK has very specific properties. For instance, if K is a convex polytope
then exact recovery of all its vertices has been shown to be possible via a
variant of what is known as prony method. Only a rough bound on the
number of vertices is required and relatively few moments suffice for exact
recovery. For more details the interested reader is referred to the recent
contribution of Gravin et al. [2] and the references therein. On the other
hand, Cuyt et al. [1] have shown that approximate recovery of a general
n-dimensional shape is possible by using an interesting property of multi-
dimensional Padé approximants, analogous to the Fourier slice theorem for
the Radon transform.
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Contribution. From previous contributions and their references, it is trans-
parent that exact recovery of an n-dimensional shape is a difficult problem
that can be solved only in a few cases. And so identifying such cases is of
theoretical and practical interest. The goal of this paper is to identify one
such case as we show that exact recovery is possible when K ⊂ R

n is the
(compact) sublevel set {x ∈ R

n : g(x) ≤ 1} associated with an homoge-
neous polynomial g. By exact recovery we mean recovery of all coefficients
of the polynomial g. In fact, exact recovery is not only possible but rather
straightforward as it suffices to solve a linear system with a nonsingular ma-
trix! Moreover, only moments of order d and 2d of the Lebesgue measure on
K are needed. As already mentioned, exact recovery is possible only if K
has very specific properties and indeed, crucial in the proof is a property of
levels sets associated with homogeneous polynomials (and in fact, also true
for level sets of positively homogeneous nonnegative functions).

2. Main result

2.1. Notation and definitions. Let R[x] be the ring of polynomials in the
variables x = (x1, . . . , xn) and let R[x]d be the vector space of polynomials

of degree at most d (whose dimension is s(d) :=
(n+d

n

)

). For every d ∈ N,
let N

n
d := {α ∈ N

n : |α| (=
∑

i αi) = d}, and let vd(x) = (xα), α ∈ N
n, be

the vector of monomials of the canonical basis (xα) of R[x]d. Denote by Sk

the space of k × k real symmetric matrices with scalar product 〈B,C〉 =
trace (BC); also, the notation B � 0 (resp. B ≻ 0) stands for B is positive
semidefinite (resp. positive definite).

A polynomial f ∈ R[x]d is written

x 7→ f(x) =
∑

α∈Nn

fα x
α,

for some vector of coefficients f = (fα) ∈ R
s(d).

A real-valued polynomial g : Rn → R is homogeneous of degree d (d ∈ N)
if g(λx) = λdg(x) for all λ and all x ∈ R. Given g ∈ R[x], denote by G ⊂ R

n

the sublevel set {x : g(x) ≤ 1}.
If g is homogeneous then G is compact only if g is nonnegative on Rn

(and so d is even). Indeed suppose that g(x0) < 0 for some x0 ∈ R
n; then

by homogeneity, g(λx0) < 0 for all λ > 0 and so G contains a half-line and
cannot be compact.

2.2. Main result. The main result is based on the following result of inde-
pendent interest valid for positively homogeneous functions (and not only
homogeneous polynomials). A function f : Rn → R is positively homoge-
neous of degree d ∈ R if f(λx) = λdf(x) for all λ > 0 and all x ∈ R

n.

Lemma 1. Let f : Rn → R be a measurable, positively homogeneous and

nonnegative function of degree 0 < d ∈ R, with bounded level set {x : f(x) ≤
1}. Then for every k ∈ N and α ∈ N

n:



LEVEL SET 3

(2.1)

∫

{x : f(x)≤1}
xα f(x)k dx =

n+ |α|

n+ kd+ |α|

∫

{x : f(x)≤1}
xα dx.

Proof. To prove (2.1) we use an argument already used in Morosov and
Shakirov [3, 4]. With α ∈ N

n, let α̃ := (α2, . . . , αn) ∈ N
n−1 and define

z := (z2, . . . , zn).
Let φ : R+ → R be measurable and consider the integral

∫

Rn
φ(g(x))xαdx.

Using the change of variable x1 = t and xi = tzi for all i = 2, . . . , n, and
invoking homogeneity, one obtains:

∫

Rn

φ(f(x))xα dx =

∫

Rn

φ(tdf(1, z2, . . . , zn)) t
n+|α|−1zα̃ d(t, z)

= d−1

(
∫ ∞

0
u(n+|α|)/d−1φ(u) du

)

×Aα

with Aα =

∫

Rn−1

z−α̃f(1, z)−(n+|α|)/d dz.

Hence the choices t 7→ φ(t) := I[0,1](t) and t 7→ φ(t) := tkI[0,1](t) yield

d

∫

{x : f(x)≤1}
xαdx = Aα

∫ 1

0
u(n+|α|)/d−1 du =

Aαd

n+ |α|

d

∫

{x : f(x)≤1}
f(x)k xαdx = Aα

∫ 1

0
u(n+kd+|α|)/d−1 du =

Aαd

n+ kd+ |α|
,

respectively. And so (2.1) follows. �

With g ∈ R[x]d being an homogeneous polynomial of degree d, consider
now the matrix Md(λ) of moments of order 2d associated with the Lebesgue
measure on G = {x : g(x) ≤ 1}, that is, Md(λ) is a real square matrix with
rows and columns indexed by the monomials xα, α ∈ N

n
d , and with entries

(2.2) Md(λ)[α, β] =

∫

{x : g(x)≤1}
xα+β dx =: λα+β , ∀α, β ∈ N

n
d .

So all entries of Md(λ) are moments of order 2d. Our main result is as
follows:

Theorem 2. Let g ∈ R[x]d be homogeneous of degree d with unknown co-

efficient vector g ∈ R
s(d) and with compact level set G = {x : g(x) ≤ 1}.

Assume that one knows the moments λ = (λα) for the Lebesgue measure on

G, for every α ∈ N
n with |α| = 2d and |α| = d. Then:

(2.3) g =
n+ d

n+ 2d
Md(λ)

−1 λ(d)

where λ(d) = (λα), α ∈ N
n
d , is the vector of all moments of order d.
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Proof. Use (2.1) with k = 1 and |α| = d to obtain
∑

β∈Nn: |β|=2d

gβ λα+β =
n+ d

n+ 2d
λα, ∀ |α| = d,

or in matrix form

Md(λ)g =
n+ d

n+ 2d
λd,

from which the desired result follows if Md(λ) is non singular. But this
follows from the fact that G has nonempty interior. �

There are alternative ways for obtaining g from the moments λ. It suffices
to apply (2.1) for a family F of multi-indices α ∈ N

n whose cardinal |F|

matches the dimension
(n+d−1

d

)

of the vector g.
For instance, with n = 2 and d = 2 (g is a quadratic form with vector of

coefficients g = (g20, g11, g02)), g can also be obtained by:

g =





λ20 λ11 λ02

λ30 λ21 λ12

λ21 λ12 λ30





−1 



n
n+2λ00
n+1
n+3λ10
n+1
n+3λ01



 ,

provided that the above inverse matrix exists.
Similarly, with n = 2 and d = 4 (g is a quartic form with vector of

coefficients g = (g40, g31, g22, g13, g04)), g can also be obtained by

g =













λ40 λ31 λ22 λ13 λ04

λ50 λ41 λ32 λ23 λ14

λ41 λ32 λ23 λ14 λ05

λ60 λ51 λ42 λ33 λ24

λ42 λ33 λ24 λ15 λ06













−1 











n
n+4λ00
n+1
n+5λ10
n+1
n+5λ01
n+2
n+6λ20
n+2
n+6λ02













,

provided that the above inverse matrix exists.
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