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ABSTRACT

This paper is concerned with the finite element analysis of boundary value prob-
lems involving nonlinear magnetic shape memory behavior, as might be encoun-
tered in experimental testing or engineering applications of MSMAs. The presented
investigations mainly focus on two aspects: First, nonlinear magnetostatic analy-
sis, in which the nonlinear magnetic properties of the MSMA are predicted by
the phenomenological internal variable model previously developed by Kiefer and
Lagoudas [1], is utilized to investigate the influence of the demagnetization ef-
fect on the interpretation of experimental measurements. An iterative procedure is
proposed to deduce the true constitutive behavior of MSMAs from experimental
data that typically reflect a sample shape-dependent system response. Secondly,
the common assumption of homogeneous Cauchy stress distribution in the MSMA
sample is tested. This is motivated by the expectation that the influence of magnetic
body forces and body couples caused by field matter interactions may not be neg-
ligible in MSMAs that exhibit blocking stresses of well below 10 MPa. To this end,
inhomogeneous Maxwell stress distributions are first computed in a post-processing
step, based on the magnetic field and magnetization distributions obtained in the
magnetostatic analysis. Since the computed Maxwell stress fields, though allowing
a first estimation of the magnetic force and couple influence, do not satisfy equilib-
rium conditions, a finite element analysis of the coupled field equations is performed
in a second step to complete the study. It is found that highly non-uniform Cauchy
stress distributions result under the influence of magnetic body forces and couples,
with magnitudes of the stress components comparable to externally applied bias
stress levels.
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1. Introduction

Magnetic shape memory alloys have recently drawn considerable research interest
due to their ability to produce magnetic field-induced strains (MFIS) at least one
order of magnitude higher than those of ordinary magnetostrictive materials [2–
9]. The macroscopically observable field-induced strains in MSMA are caused by
the microstructural reorientation of martensitic variants. Since the variants have
different preferred directions of magnetization, applied magnetic fields can be used
to select certain variants over others, which results in the macroscopic shape change.

This unique coupling of mechanical and magnetic properties makes MSMAs in-
teresting materials for smart structures, actuator and sensor applications [10–13].
The most widely investigated magnetic shape memory materials are Ni-Mn-Ga al-
loys [14–17]. Martensitic transformations in Ni2MnGa alloys were first conclusively
reported by Webster et al. [18]. Zasimchuk et al. [19] and Martynov and Koko-
rin [20] performed detailed studies on the crystal structure of martensite in the
Ni2MnGa alloy. Ullakko et al. [21] are credited with first suggesting the possibil-
ity of a magnetic field-controlled shape memory effect in these materials. Other
magnetic shape memory alloys that have been studied include Fe-Pd [2, 8, 22, 23],
Fe-Ni-Co-Ti, Fe-Pt, Co-Ni-Ga, Ni-Mn-Al [24–29] and Co-Ni-Al [30, 31].

Several models have been proposed in the literature that describe the constitutive
response related to the magnetic field-induced variant reorientation. For a detailed
overview of the reported MSMA modeling work the reader is referred to [1, 32] and
the review article by Kiang and Tong [33] as well as the references therein.

The model presented by James and Wuttig [23] is based on a constrained theory
of micromagnetics (see also [34–36]). The terms contributing to the free energy in
their model are the Zeeman energy, the magnetostatic energy and the elastic en-
ergy. O’Handley [4, 37] proposed a 2-D model in which two variants are separated
by a single twin boundary and each variant itself consists of a single magnetic do-
main. Likhachev and Ullakko [38] presented a model which identifies the magnetic
anisotropy energy difference in the two variant twinned-martensite microstructure
as the main driving force for the reorientation process. Hirsinger and Lexcellent
[39, 40] introduced the outline of a non-equilibrium thermodynamics-based model.
Their free energy contains chemical, mechanical, magnetic and thermal contribu-
tions.

Kiefer and Lagoudas formulated a continuum thermodynamics-based phe-
nomenological constitutive model for MSMAs with internal state variables describ-
ing the evolution of the crystallographic and magnetic microstructures. Their ap-
proach is aimed at capturing the hysteretic effects associated with the magnetic
field-induced reorientation of martensitic twins and the resulting loading history
dependence of the material response. Emphasis is also placed on modeling the
nonlinear and stress-level-dependent nature of the magnetic field-induced strain
and magnetization response. The Kiefer and Lagoudas model mainly distinguishes
itself from the Hirsinger and Lexcellent approach by allowing the magnetization
vectors to rotate away from the magnetic easy axes, which leads to much more ac-
curate predictions of the magnetization response. Details of the model development
were reported in [1, 32, 41–43]. Experimental characterization of MSMA response
and the model validation were presented in [44]. The focus of this particular pa-
per was placed on estimating the maximum MSMA actuator work output, both
theoretically and experimentally. Furthermore, the numerical analysis of nonlinear
magnetostatic boundary value problems for MSMAs was described in [45, 46]. More
recently, stability analysis of magnetostatic boundary value problems for MSMAs
was presented in [47].
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Faidley et al. [48] proposed an extension of an earlier version of the Kiefer
and Lagoudas model [41] to predict the reversible strain effect in Ni-Mn-Ga with
collinear field and stress. In their approach internal restoring forces orthogonal
to the applied field are attributed to pinning sites which elastically deform twin
boundaries. Tan and Elahinia [49] utilized the Kiefer and Lagoudas model to study
the dynamic response of MSMA actuators.

Despite these efforts, in the constitutive modeling of nonlinear, dissipative mag-
netic shape memory behavior two major complications have not yet been properly
addressed in the literature and their significance remains unclear. The first is the
influence of non-ellipsoidal specimen geometries on measured and simulated mag-
netization curves, the second is the influence of magnetic body forces and body
couples on the stress distribution within a sample. Both of these issues are the
subject of the work presented in this paper.

The well-known dependence of measured magnetization curves on specimen ge-
ometries is caused by the so-called demagnetization effect. From a modeling stand-
point this effect complicates parameter identification as well as model validation,
since the experimental data represent a sample geometry-dependent system re-
sponse, not the true constitutive response. Typically, the correction of the data is
carried out by making use of demagnetization factors that have been tabularized
for ellipsoids of different aspect ratios. It is clear, however, that this technique loses
its justification for non-uniform magnetization distributions as they typically oc-
cur in non-ellipsoidal specimen ([8]). This paper proposes an iterative procedure
to properly interpret experimental data. The methodology is based on finite ele-
ment solutions of nonlinear magnetostatic boundary value problems for MSMAs,
which provide the necessary shape-dependent relations between applied and inter-
nal magnetic fields.

Furthermore, the validity of the common assumption of a spatially-uniform
Cauchy stress within MSMA samples is tested. More precisely, the influence of
magnetic body forces, magnetic body couples and thus Maxwell stress is typically
assumed to be negligible. There exists theoretical and experimental evidence, how-
ever, that magnetic body forces may have an influence on both twin boundary
motion, see discussion in O’Handley et al. [50], as well as stress-induced marten-
sitic transformation, in Liang et al. [51]. In a first step of the present study, the
Maxwell stress distributions resulting from spatially-varying magnetic body forces
and magnetic body couples are computed in a post-processing manner based on
the solution of the magnetostatic problem. It is found that the resulting Maxwell
stress distributions are highly non-uniform. Encouraged by this observation, a cou-
pled magneto-mechanical finite element analysis is performed to investigate the
influence of Maxwell stress fields on Cauchy stress fields at equilibrium. It should
be pointed out, that strictly speaking, this analysis is only partially coupled, since
the influence of the feed-back of the stress variations to the nonlinear magnetic
properties is neglected. Under this assumption, however, the results show strongly
inhomogeneous distributions of the Cauchy stress with magnitudes of its compo-
nents comparable to externally applied bias stress levels.

The structure of the paper is as follows: In Section 2 a brief summary of the mag-
netostatic problem and the phenomenological internal variable model for MSMAs
developed by Kiefer & Lagoudas is given. Section 3 is concerned with the finite ele-
ment analysis of a specific boundary value problem that is motivated by typical ex-
perimental set-ups. The nonlinear magnetic properties of the MSMA, used as input
to the analysis, are provided by the constitutive model. In Section 4 the influence of
the demagnetization effect on the interpretation of experimental data is analyzed
in detail. In Section 5, Maxwell stress distributions are computed based on the
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results of the magnetostatic analysis. By means of a coupled magneto-mechanical
finite element analysis, non-uniform equilibrium Cauchy stress distributions are
computed in Section 6, which properly account for the spatial non-uniformity of
the Maxwell stress tensor. To conclude the paper, the significance of these findings
for the modeling of MSMA behavior is discussed.

2. A Concise Review of the Magnetostatic Problem and the MSMA
Constitutive Model

In the following section basic concepts of magnetostatics in the presence of magne-
tized matter are summarized to provide the foundation for the analysis of magneto-
static boundary value problems (BVPs) for MSMA materials. For static conditions
in stationary bodies and negligible current density, Maxwell’s equations in R3 are
reduced to [52, 53]

∇·B = 0 , and ∇×H = 0 , (1)

where B is the magnetic induction and H is the magnetic field strength. These
two quantities are related through the constitutive relation B = µ0(H + M), in
which µ0 is the permeability of free space and M is the magnetization of a material
point in a magnetized body, in this case a magnetic shape memory alloy sample.
Equations (1) are subject to the jump conditions

[[B]]·n = 0 , [[H]]×n = 0 , (2)

on all interfaces, if surface currents are negligible. In Equations (2), n denotes the
unit normal to the surface of discontinuity.

Taking advantage of the specific form of Equations (1), the magnetostatic prob-
lem is often reformulated, by deriving the magnetic field strength from a scalar
potential Φm or the magnetic induction from a vector potential Φm. In the
latter case B = ∇×Φm identically satisfies Equation (1a). Using the identity
∇×(∇×Φm) = ∇(∇·Φm) − ∆Φm, and the Coulomb gauge ∇·Φm = 0, Equa-
tion (1b) takes the form

∇×(µ−1
0 ∇×Φm −M) = 0 , or ∆Φm = −µ0∇×M , (3)

which is the vector-valued Poisson equation for the magnetic potential Φm.
For MSMAs the magnetization in Equation (3) is a function of the magnetic field

and the loading history through a set of internal state variables ζ. The relation
M = M(H, ζ) is provided by the constitutive model to be introduced shortly. Here
we assume that the stress inside the material is uniform and remains constant
at each material point before, during and after the reorientation process. At this
point, the magnitudes of the body forces and body couples are assumed to be small
and their contributions in the conservation of linear and angular momentum are
neglected. The validity of this assumption is tested in Sections 5 and 6.

The MSMA constitutive relations to be used in the magnetostatic and later the
magneto-mechanical analysis are provided by the Kiefer and Lagoudas phenomeno-
logical internal variable model [32, 42, 43]. This formulation is based on the Gibbs
free energy function G, in which the Cauchy stress tensor σ and the magnetic
field strength H are the independent state variables. The loading history depen-
dence of the constitutive behavior, caused by dissipation associated with variant
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rearrangement, is introduced through the evolution of internal state variables. The
chosen internal state variables are the variant volume fraction ξ, the magnetic do-
main volume fraction α and the magnetization rotation angles θi(i=1,4). These
variables are motivated by experimentally observed changes [54] in the crystallo-
graphic and magnetic microstructure. An idealized microstructural representation
of twin martensitic phase is given in Figure 1. Two martensitic variants, variant-
1 with volume fraction, ξ, and variant-2 with volume fraction, 1 − ξ, form 90o

magnetic domain walls and each variant contains 180o domain walls. The volume
fractions of 180o magnetic domain wall in variant-1 and variant-2 are represented
in Figure 1 by domain-1 and domain-2 and denoted by α and 1 − α respectively.
The modeling approach is not limited to 2-variant microstructures. In the multi-
variant case additional constraints must be enforced, e.g. sum over ξi=1. For the
considered modeling problems, however, this addtitional complexity is not needed.

Figure 1. Schematic representation of the microstructure showing the coexistence of martensitic variants
and magnetic domains.

The specific form of the Gibbs free energy for the Kiefer and Lagoudas model,
having a typical two-dimensional setting in mind, is given by

G(σ,H , ξ, α, θi, ε
r)=− 1

2ρ
σ : S(ξ)σ − 1

ρ
σ : εr − µ0

ρ
M(ξ, α, θi) ·H

+
1

ρ
f(ξ, α) +Gan(ξ, α, θ) +G0(T0) , (4)

where ρ, S(ξ) are the density and the effective compliance tensor. The free energy
function (4) is comprised of the elastic strain energy, the Zeeman energy, a mixing
term (f), the magnetocrystalline anisotropy energy (Gan), and a reference state
value (G0). The Zeeman aims to align the magnetization with the magnetic field
acting at a material point. The magnetocrystalline anisotropy energy can be viewed
as the energy stored in the material due to the work done by an applied field in
rotating the magnetization away from the magnetic easy axes. The mixing term
accounts for the interaction of variants during the reorientation process.

The internal state variables ξ, α and θi can in general be connected with energy
dissipation. In this phenomenological modeling approach they also account for
loading history dependence of the constitutive response as caused by the thermo-
dynamically irreversible evolution of the microstructure in a homogenized sense.
Experimental results [14] show that the hysteresis for the single variant MSMA
crystal specimen with respect to the magnetic easy axis and hard axis are almost
negligible. This observation was expected for the case of the hard axis magneti-
zation response, since the dominant mechanism, related with the magnetization
rotation θi, is a reversible process. With regard to the easy axis magnetization,
magnetic domain wall motion is the most important mechanism that can be as-
sociated with dissipation. In MSMA, however, the magnetic domain wall motion
appears to be associated with a very small amount of dissipation. The dissipation
in MSMAs is mainly due to variant reorientation mechanism which is caused due
to the change in ξ, allowing to neglect the α dependency of the hardening func-
tion f . The internal variable εr is the generation of reorientation strain due to the
evolution of ξ.

From the free energy expression (4) the magnetization constitutive equation is
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derived in a thermodynamically-consistent manner as

M = − ρ

µ0

∂G

∂H
. (5)

In the following analysis we consider two-dimensional boundary value problems
that resemble typical experimental testing scenarios, see e.g. [44]. In these experi-
ments, the MSMA sample is subjected to a constant compressive mechanical load
along the x-axis and to a magnetic field along the perpendicular y-axis. The ori-
entation of the single crystal specimen is [100] and is aligned with the direction
of the mechanical load. The model through the evolution of α and ξ in general
can capture both evolutions of 180 and 90 degree domain walls. The evolution of
magnetic domains, although accounted for in the general framework, is neglected
in this paper, since it only plays a significant role at low field and stress levels, see
e.g. [43, 50]. To obtain more accurate predictions of the magnetization behavior it
is, however, assumed that the MSMA sample is initially unmagnetized, which cor-
responds to a domain volume fraction value of α = 0.5. This means equal volume
fraction of the magnetic domains, separated by 180o domain walls. Upon initiation
of the forward reorientation process, i.e. from the stress-favored to the magnetic
field-favored variant, it is assumed that all unfavored domains are instantaneously
eliminated and α takes the value of 1. Under these assumptions the reduced form
of the constitutive equations for the magnetization is given by [47]

M =





µ0Msat

2ρK1
Hyey , for ξ = 0 ,

(1− ξ)M sat
√

1− (µ0Msat

2ρK1
Hy)2 ex

+
[
(1− ξ)µ0Msat

2ρK1
Hy +M satξ

]
ey , for ξ ∈ (0, 1)

M sat ey for ξ = 1 .

(6)

Here, ex and ey are the unit vectors along the x and y direction respectively. A
closed-form expression for the evolution of the variant volume fraction during the
forward reorientation process can be derived as [43]

ξ =
1

2
cos

[
F1

(
(µ0M

sat)2

2ρK1
H2
y − µ0M

satHy

)
+ F2 + π

]
+

1

2
. (7)

Specific relations between the constants F1 and F2 and the model parameters M sat,

ρK1, H
s(1,2)
y , H

f(1,2)
y , σ∗ and εr,max, namely the saturation magnetization, the

magnetocrystalline anisotropy constant, the critical field values for the start and
finish of the forward reorientation process, the blocking stress and the maximum
reorientation strain are given in [43]. The model parameters must be identified from
experiments. The specific calibration used in the following simulations is based on
experimental data reported in [44]. The resulting parameter values are listed in
Table 1.

Figure 2. The x and y-components of the predicted magnetization response.
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Table 1. Material parameters calibrated for the Ni51.1Mn24.0Ga24.9 composition tested at a compressive stress

level of −2 MPa [44].

Material Parameters
Quantity Value Unit Quantity Value Unit

ρK1 700.0 kJm−3 µ0H
s(1,2)
y 0.9 T

M sat 742.4 kAm−1 µ0H
f(1,2)
y 1.85 T

εr,max 5.65 % µ0H
s(2,1)
y 0.75 T

σ∗ -2.0 MPa µ0H
f(2,1)
y -0.17 T

The predicted magnetization response curves are plotted in Fig. 2 and may be
explained in the following way. Initially, the sample consists of the stress-favored
variant and two oppositely magnetized domains of equal volume fraction separated
by 180◦ domain walls, such that it is macroscopically unmagnetized. When mag-
netic field is applied along the y-direction, the hard axis of the stress-favored vari-
ant, the magnetization vectors start to rotate in each domain. The x-components
of the magnetization vectors in the adjacent domains cancel each other, while their
y-components add up. Once the critical field for the variant reorientation has been
reached, the field-favored variant nucleates and magnetization curve becomes non-
linear. As pointed out above, it is assumed that unfavorable magnetic domains are
eliminated simultaneously with the activation of the reorientation process due to
comparatively high magnetic field (see also [55, 56]). This results in a sharp increase
of the Mx-component of the predicted magnetization curve. After the reorienta-
tion process is completed, only the single-domain, field-favored variant remains
and the magnetic saturation level is reached with the magnetization vector fully-
aligned along the applied field direction, which coincides with the easy axis of the
field-favored variant.

3. Finite Element Analysis of the Nonlinear Magnetostatic Problem

Based on the field equations and the MSMA constitutive relations derived in the
previous section we can now proceed with the solution of specific nonlinear magne-
tostatic boundary value problems using the finite element method. The numerical
analysis presented in this paper was performed using the COMSOL Multiphysics
finite element software package.

The geometry and boundary conditions of the considered model problem are il-
lustrated in Figure 3. This particular arrangement is motivated by the experimental
set up reported in [44]. The computational domain may be regarded as the gap
between the pole pieces of an electromagnet of dimensions 26mm×26mm×26mm
for which a uniform magnetic field of up to 2 T can be applied. Typical specimen
dimensions are 8 mm × 4 mm × 4 mm, or aspect ratios of 2 : 1 : 1, where the long
axis is the x-direction.

A spatially constant magnetic potential

Φm
x = Φm

y = 0 ; Φm
z = −µ0H

a
yx , (8)
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is applied on all sides of the boundary, such that with Equation (3) it follows

µ0Hx = Bx =
∂Φm

z

∂y
− ∂Φm

y

∂z
= 0 , µ0Hy = By =

∂Φm
x

∂z
− ∂Φm

z

∂x
= µ0H

a
y ,

µ0Hz = Bz =
∂Φm

y

∂x
− ∂Φm

x

∂y
= 0 , (9)

i.e. the desired homogeneous magnetic field in the computational domain in the
absence of the specimen. The presence of the magnetizable sample, of course,
perturbs the homogeneity of the applied field.

Figure 3. Domain geometry, mesh and boundary conditions for the magnetostatic problem.

The following comments must be made regarding the usage of the magnetization
data in the magnetostatic analysis:

(1) The stress is assumed to be uniaxial, at a constant level and spatially
homogeneous, since magnetic body forces and magnetic body couples are
neglected. The only coupling between the mechanical and the magnetostatic
problem at this point is given by the stress level dependence of the magnetic
properties. Thus for each stress level the magnetostatic analysis has to be
performed in a separate computation.

(2) The magnetic field, and thus the magnetization, on the other hand vary
spatially inside the rectangular specimen. The magnetic properties pre-
dicted by the constitutive model are evaluated at every integration point
in the finite element mesh. Since the magnetization nonlinearly depends on
the magnetic field, the magnetostatic problem is highly nonlinear. COM-
SOL Multiphysics provides an appropriate iterative nonlinear solver. The
parametric version of this solver was used such that the magnetic field dis-
tribution could be computed, while scaling the applied magnetic field from
0 T to 2 T.

(3) Although a magnetic potential difference was applied to represent a ho-
mogeneous external field whose x-component is zero, see Equation (9), the
magnetic field in the MSMA specimen is non-uniform and exhibits a non-
zero x-component, particularly at the corners of the sample. The consti-
tutive dependency M(Hx) is assumed to be small and thus neglected, see
Equations (6).

(4) The hysteretic nature of the constitutive response is not addressed in the
magnetostatic analysis at this point. To be precise, the hysteresis is not
neglected, but the analysis is only carried out for monotonous loading from
0 T to 2 T, not for the removal of the magnetic field.

Numerical results of the finite element analysis are plotted in Figure 4 in terms of
the distribution of the y-component of the magnetic field for the exemplary applied
magnetic induction level of 2 T.

Figure 4. Distribution of Hy in the computational domain at the applied magnetic field of µ0Ha
y =2.0 T.

It is observed that indeed, due to the non-ellipsoidal shape of the specimen, the
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magnetic field and thus the magnetization are non-uniform inside the specimen
although a constant magnetic induction is applied at the boundary of the com-
putational domain. The presence of the magnetized specimen clearly perturbs the
magnetic field in the free space surrounding the sample. From this distribution one
can for example obtain information to which extent a Hall probe reading, used to
measure the applied field, can be expected to be influenced by the sample’s mag-
netic field. The distribution at 2.0 T, at which essentially all of the material has
been magnetized to saturation along the y-axis, is symmetric with respect to both
axes of the coordinate system.

It again must be emphasized that in the magnetostatic problem the magneti-
zation is allowed to change locally and its value is determined by evaluating the
magnetization curve for the magnetic field acting at the particular point. The in-
ternal mechanism which leads to the macroscopic magnetization response, namely
the evolution of the martensitic variants, the magnetic domains and the magneti-
zation rotation angles as predicted by the constitutive model have been discussed
earlier. Such a modeling approach assumes that there exists a separation of scales
such that at each point in the continuum, the MSMA sample, there exist a smaller
length scale at which a sufficient number of martensitic twins and magnetic do-
mains coexist such that average quantities like the magnetization can be defined
for each point. The contributions of the variant and magnetic domains are then
taken into account phenomenologically in a homogenized sense and are no longer
”visible” on the continuum scale. It is still a matter of discussion whether this
approach is fully justified for MSMA single crystals.

Figure 5. (a) Distribution of the magnetic field and (b) magnetization within the specimen at the applied
magnetic field of µ0Ha

y=1.3 T.

To take a closer look at the local solution, the variation of the computed mag-
netic field within the MSMA sample is plotted in Figure 5 for a specific applied field
level. In Figure 6 the variation of the magnetic field and the magnetization across
the specimen are plotted for different locations. Note that at the left (y = −2) and
right (y = 2) sides of the specimen the jump in the magnetic field balances the
jump of the magnetization in the transition from free space into the magnetized
material. The magnetic induction component By=µ0(Hy +My), which is the nor-
mal component of the magnetic induction on these interfaces, thus stays constant,
so that the jump condition specified in Equation (2a) is properly satisfied.

Figure 6. (a) Distribution of the y-components of the magnetic field and (b) the magnetization across
the specimen and its immediate vicinity at different levels of x, as indicated in Figure 5, at the applied
magnetic induction level of 1.3 T.

4. Influence of the Demagnetization Effect on the Interpretation of
Experiments

From the theory of magnetostatics it is well-known, that the magnetic field caused
by the magnetization of the material opposes the direction of magnetization. It
is therefore called the demagnetizing or self field. This demagnetization effect can
also clearly be observed in the plots of Figure 6. Furthermore, as a consequence of
the interface conditions of Equations (2), the demagnetization field in a uniformly
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magnetized ellipsoidal sample is always uniform, while it is non-uniform in a non-
ellipsoidal sample. Permanent magnets, by definition, exhibit substantial remnant
macroscopic magnetization at zero applied field and, within certain limits, the mag-
netization of the magnetic sample does not depend on the applied magnetic field
[57]. For magnetostatic problems involving only permanent magnets the Poisson
equation (3) is linear and the principle of superposition holds. Thus, if additionally
an external magnetic field Ha is applied, the total magnetic field is then given by

H = Ha + Hd . (10)

General integral representations of the solution of the magnetostatic problem de-
fined by Equation (3) exist, see e.g. [52, 58]. For uniformly magnetized bodies the
magnetization vector can be taken outside the integral expressions for the magnetic
field strength [58, 59], such that

Hd(r) = −


 1

4π

∫∫

∂Ωm

r− r′

|r− r′|3 ⊗ n′ dA′




︸ ︷︷ ︸
=:D

M = −DM . (11)

Therein r is the position at which H is evaluated in R3 and r′ the location of a
point on the surface ∂Ωm, with unit outward normal n′, of the region Ωm occu-
pied by the magnetized body. By applying the divergence theorem, an equivalent
volume integral representation of Equation (11) can be obtained. D is the de-
magnetization tensor, which only depends on the geometry of the body and can
be computed by evaluating the bracketed integral expression in Equation (11).
For a spatially uniformly magnetized body the demagnetization field can thus be
computed by simply multiplying the magnetization with an appropriate demagne-
tization factor. Such factors have been tabularized for ellipsoids of many different
aspect ratios [57, 60, 61]. This procedure is analogous to using Eshelby tensors in
elasticity theory to determine the strain field inside ellipsoidal inclusions [62, 63].
The demagnetization tensor has the following properties: i) it is independent of
position inside an ellipsoidal body; ii) it is diagonal if its eigenvectors are aligned
with the symmetry axes of the body; iii) its trace is 1, if evaluated inside the body.
The demagnetization factor for a sphere is therefore 1/3 in any direction. For a
prismatic cylinder with square or circular cross-section the axial and transverse
demagnetization factors are related by Dt = 1/2(1 −Da), see [64].

The magnetic field inside a uniformly magnetized sample of non-ellipsoidal shape
is always non-uniform. The demagnetization tensor in this case depends on the po-
sition inside the sample. It is customary to define average demagnetization tensors
for samples of arbitrary shape, sometimes referred to as magnetometric demagne-
tization tensors [64, 65], in the following manner

〈D〉 :=
1

Ωm

∫

Ωm

D(r) dV . (12)

The average demagnetization field can then be written, for uniform magnetization
M as

〈Hd〉 = −〈D〉M . (13)

Numerical solution schemes have been developed to determine the demagnetiza-
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tion factors for uniformly magnetized bodies of arbitrary shape. They have been
computed and documented for many standard geometries, such as prismatic bars
with different cross-sectional shapes [59, 64, 65].

By definition the demagnetization factor loses its meaning for bodies with
non-uniform magnetization. Thus, the exact demagnetization field inside a
non-ellipsoidal body, whose magnetization is induced by an external magnetic field
and therefore not uniform unless complete saturation is reached at high fields, can
not be computed with the help of demagnetization factors. In this case, which
is always encountered in experiments unless ellipsoidal specimen are used, an
explicit numerical solution of the magnetostatic boundary value problem has to be
obtained. For MSMAs the problem is complicated by the fact that the magnetic
properties are nonlinear, hysteretic and stress level dependent. Furthermore, the
shape of the sample changes due to the magnetic field-induced strain. This effect,
however, is expected to be small and is neglected within the small strain theory.

On the basis of the magnetostatic analysis presented above, it is now possible
to derive an iterative procedure in which the computed load-dependent relation
between the applied field and the internal field is utilized to reinterpret the experi-
mental data by accounting for the demagnetization effect. This must be understood
as the inverse problem of identifying the model parameters such that the simula-
tion results in the applied magnetic field vs. magnetization curve are measured in
the experiment for a specific sample geometry.

The first magnetostatic simulation is typically performed using the model pa-
rameters obtained from a parameter identification based on the uncorrected data.
In these magnetostatic simulations, which, except for the assumption of a given
constant stress level, are decoupled from the mechanical equations, the material
properties are taken into account in terms of a nonlinear magnetization curve.
Thus the relation between the internal and applied field computed in one run of
the analysis can only serve to find a first correction of the experimental data. Thus
the nonlinear magnetization data, which was originally known in terms of the con-
stant applied field, is now known in terms of the average internal magnetic field
with the accuracy of the first iteration. Then the model parameters are re-identified
based on the corrected data and the analysis is repeated with the output of first
iteration as next input. The simulation result can once again be used to correct
the magnetization curve. By following this procedure, the relation between the
applied field and the internal field is computed more accurately in each iteration
step. For our example, the original and corrected magnetization curves resulting
from this iterative procedure are depicted in Figure 7 for the considered specimen
with 2:1 length to width ratio. For conciseness, only the correction of the average
magnetization 〈My〉-component is presented here (Figure 7).

Figure 7. Magnetization data iteratively corrected for demagnetization. Specimen aspect ratio 2:1.

The corrected procedure may also be interpreted as keeping the same data for the
magnetization axes, while rescaling the magnetic field axis by means of the relation
between the average internal and applied field at each iteration. One observes the
relatively fast convergence of the solution. After six iterations the difference to the
solution of the previous iteration is small enough to conclude that the solution has
converged. The magnetization curve of iteration six can thus be considered the
”true” magnetization response, which is independent of the specimen geometry.
The original data on the other hand is the magnetization behavior that would be
measured in an experiment using a prismatic sample of this aspect ratio. In an
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experiment that uses a sample of the same material, but different aspect ratio a
different curve would be measured.

A parametric study has been performed to investigate the sample shape de-
pendence of the demagnetization effect for the prismatic specimen with nonlinear
magnetic properties. In Figure 8 the corrected magnetization data has been plotted
for four different aspect ratios of the prismatic specimen. The corresponding cor-
rections of the magnetic field-induced strain data have been plotted in Figure 9. It
is clearly observed that the influence of the specimen aspect ratio on the difference
between the apparent material behavior and the true constitutive response is very
significant and must therefore be addressed when using data for model calibration.
Once the MFIS data has been corrected for demagnetization, the model parameters
can be calibrated correctly.1

Figure 8. Influence of specimen aspect ratios on the correction of the magnetization data.

Figure 9. Influence of specimen aspect ratios on the correction of the magnetic field-induced strain data.

One of the stated goals of this analysis is to compare the differences in the
demagnetization correction by the demagnetization factor method and the finite
element analysis. The first method is based on the relation

〈Hy〉 = Ha
y + 〈Hd

y 〉 = Ha
y − 〈Dyy〉My , (14)

which follows from Equations (12), (10) and (13). This procedure of course assumes
that the magnetization in the sample is uniform. Shield acknowledges in [8] that the
demagnetization factor method can therefore only lead to approximations of the
demagnetization effect in the prismatic samples typically used in MSMA testing.
Nonetheless, this method is often used due to its simplicity or lack of alternatives.
However, it is not clear beforehand what kind of error one might expect from
making this approximation. With the developed simulation capabilities this error
can now be quantified.

Since a literature value was not available for this particular geometry, the factor
of 〈Dyy〉=0.65 was computed using a two-dimensional magnetostatic finite element
simulation for a permanent magnet sample, i.e. with spatially uniform and field-
independent magnetization My = 〈My〉, of rectangular geometry with a 2:1 aspect
ratio placed in a free space domain. This technique has proven to yield very accurate
demagnetization factors for other geometries for which literature data was available
[4, 64]. The different correction methods are compared in Figure 10.

Figure 10. Comparison of the corrections using the demagnetization factor method and nonlinear FE-
analysis. Specimen aspect ratio 2:1.

These observations suggest that by using the demagnetization factor method,
which is based on the assumption of uniform magnetization in the specimen, one
obtains essentially the same result as performing the FE-analysis of the nonlinear
magnetostatic problem with non-uniform magnetization, if average field variables

1The specific results presented here are based on solutions of 2-D boundary value problems and can thus
only be used for a qualitative assessment. The procedure is the same for 3-D problems, which, however,
are computationally much more involved.
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are considered. This conclusion can be misleading, however, since it only holds
for average quantities. But as evident from Figure 5 and Figure 6, there exists a
significant variation in the local magnetization. To further quantify this variation,
Figure 11 displays local values of the magnetic field at several points in the speci-
men as a function of the applied field. For problems in which the knowledge of the
local magnetic field and magnetization is important, one can not avoid solving the
magnetostatic problem explicitly. This is certainly the case for magneto-mechanical
boundary value problems involving more complicated, technologically-relevant ge-
ometries, e.g. MSMA components in actuators applications.

Figure 11. Position dependence of the magnetization response within the rectangular specimen.

5. Post-Processing Computation of Maxwell Stress Distributions

The second major focus of this paper is to employ the FE-analysis in the investiga-
tion of possible stress inhomogeneities in the MSMA sample due to magnetic body
forces and body couples. A first estimate of the influence of this effect can be ob-
tained by computing the Maxwell stress distribution in a post-processing manner
using the relation [66]

σM = µ0H⊗H + µ0H⊗M− 1

2
µ0(H·H)I , (15)

The Maxwell stress tensor, by definition, accounts for the magnetic body forces
and couples in the following manner

∇ · σM = ρfm = µ0(∇H)M , (16)

skw(σM ) = −ρLm = −skw(µ0M⊗H) . (17)

The body couple vector ρlm is the dual vector of ρLm such that Lma = lm × a

Figure 12. The x and y-components of the corrected magnetization curves used in the Fe-analysis.

for any vector a. We investigate the distributions of the magnetic body force, body
couple and Maxwell stress based on the numerical solution of the magnetostatic
problem at the exemplary applied magnetic induction value of µ0〈Hy〉 = 1 T. We
chose this load level because, as evident from Figure 12, it is close to the end of
the reorientation region, where the intensity of the magnetic field is high.

(a)(b)

Figure 13. (a) Field-induced martensitic volume fraction and (b) normalized magnetization vector distri-
bution at µ0〈Hy〉 = 1 T.
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A contour plot of the field-favored variant volume fraction ξ is depicted in Fig-
ure 13(a). The legend shows that ξ ranges from 0.93 to 1.0, such that at this load
level the reorientation process is either finished or near completion at every point in
the sample. Correspondingly, the normalized magnetization vectors of Figure 13(b)
are aligned with the applied field direction.

(a)(b)

Figure 14. (a) σMxx and (b) σMyy-component distribution of the Maxwell stress (MPa) at µ0〈Hy〉 = 1 T.

The four planar components of the non-symmetric Maxwell stress at the con-
sidered load level are shown in Figs. 14 and 16. Highly non-uniform distributions
of the Maxwell stress components are observed, which through Equation 15 are
directly correlated with the spatially inhomogeneous magnetic field and magneti-
zation field. Specific values of the Maxwell stress components are listed in Table 2
for the representative locations P0 to P8 indicated in Figure15.

Table 2. Maxwell stresses (MPa) at µ0〈Hy〉 = 1 T.

P0 P1 P2 P3 P4 P5 P6 P7 P8

σMxx -0.336 -0.444 -0.416 -0.329 -0.416 -0.444 -0.416 -0.329 -0.416
σMyy 1.011 1.227 1.178 0.996 1.178 1.227 1.178 0.996 1.178

σMxy -0.036 0.004 -0.163 -0.032 0.173 0.005 -0.163 -0.032 0.173

σMyx 0.000 0.003 -0.085 0.001 0.090 0.002 -0.085 0.001 0.090

Figure 15. Location of nine representative points at which the numerical solution is explored in detail.
Here Ω represents material domain

Note that the σMxx component is purely compressive in nature. Furthermore, mag-
nitudes of nearly 21% of the applied traction of −2MPa are observed. This implies
that this component could potentially influence the formation of the stress-favored
variant significantly. The σMyy -component on the other hand is tensile, which, how-
ever, would enhance the tendency to hinder the forward reorientation process.

(a)(b)

Figure 16. (a) σMxy and (b) σMyx-component distribution of Maxwell stress (MPa) at µ0〈Hy〉 = 1 T.

(a)(b)

Figure 17. (a) Magnetic body couple at µ0〈Hy〉 = 1 T and (b) orientation of magnetization and magnetic
field vectors.
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According to Equation (17b), the σMxy and σMyx components displayed in Figure 16
are directly correlated with the magnetic body couple. The computed body couple
component values are given in Table 3 for the selected points. If we consider point
P2, for example, the value of the magnetic moment is 0.039 Nmm/mm3 and it acts
clockwise. The shear stress components at this point are σMxy = −0.163 MPa and

σMyx = −0.085 MPa, see Table 2, and they contribute to balance the magnetic body
couple.

Table 3. Out of plane body couple vector (Nmm/mm3) at µ0〈Hy〉 = 1T. The positive sign means anti-clockwise

and the negative negative sign means clockwise direction.

P0 P1 P2 P3 P4 P5 P6 P7 P8

ρLm 0.018 -0.001 0.039 0.021 -0.041 -0.001 0.039 0.02 0.041

Figure 17(a) shows the non-uniform variation of the magnetic body couple at
µ0〈Hy〉 = 1 T. The magnitude of the body couple is observed to have higher values
near the corners of the sample as compared to its center. This may be explained by
the fact that the body couple vector is computed from the cross product between
the magnetic field and magnetization vectors, such that high values result close to
the corners, where the magnetic field intensifies and larger relative angles between
these vectors occur. This is also illustrated in Figure 17(b). Here, the two sets of
arrows at each point represent magnetization vectors (light arrows) and magnetic
field vectors (dark arrows), respectively. It should be noted, that the magnetic field
vector changes orientation from the corner region C1 to C2, see Figure 17(a). Due
to the point-symmetric nature of the numerical solution, an opposite trend of the
sign change is observed between regions C3 to C4. The shear stress components
show a similar trend in their spatial distributions.

The intensity of the body force on the other hand depends on the gradient of
the magnetic field. Spatial distributions of the body force components are plotted
in Figure 18 and corresponding numerical values for points P0 to P8 are given in
Table 4. Since the gradient of magnetic field is high near the sample corners, the
body force are large in these regions. Their magnitude decreases near the center of
the specimen, where the magnetic field distribution is relatively uniform.

(a)(b)

Figure 18. (a) ρfmx and (b) ρfmy component distributions (N/mm3) at µ0〈Hy〉 = 1 T.

Table 4. Body force values (N/mm3) at µ0〈Hy〉 = 1 T.

P0 P1 P2 P3 P4 P5 P6 P7 P8

ρfmx -0.001 -0.080 -0.077 0.005 0.078 0.080 0.077 -0.005 -0.080
ρfmy 0.000 0.000 -0.046 -0.012 -0.045 0.000 0.046 0.012 0.045

6. Finite Element Analysis of the Magneto-Mechanically-Coupled Field
Equations for MSMA

The results in the previous section show that the intensity of the Maxwell stress
components is significant compared to the applied tractions. This observation moti-
vates us to solve a coupled magneto-mechanical problem to investigate the influence
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of the magnetic body forces and body couples on the Cauchy stress in an equilib-
rium configuration. The magnetic boundary conditions are the same as described
for the magnetostatic problem. The mechanical boundary conditions of the prob-
lem are illustrated in Figure 19, where tx and ty denote the mechanical traction
on the boundaries along the x- and the y-directions, respectively. The compressive
traction along the x-direction is imposed by constraining the vertical displacement
U of the ∂Ω3 surface and by applying a mechanical load P = 2 MPa on the ∂Ω1

surface. We fixed the point R to eliminate rigid body motion in the finite element
analysis.

Figure 19. Imposed mechanical boundary conditions. Ω is the material domain and ∂Ω its boundary.

In addition to the field equations of the magnetostatic problem described in
Section 2, the magneto-mechanical problem is described by the conservation of
linear momentum and the conservation of angular momentum for the magnetic
continuum [66, 67]

∇·σ + ρf + ρfm = 0 in Ω , (18a)

skwσ = ρLm in Ω . (18b)

The expressions for the Maxwell stress tensor, the magnetic body force and the
magnetic body couple were given in Equations (15), (16) and (17). By defining the
total stress tensor as σt := σ + σM , the mechanical equilibrium equations may
also be re-written in the more convenient form

∇ · σt + ρf = 0 , and skwσt = 0 , in Ω . (19)

A detailed derivation of the magneto-mechanical boundary conditions is given in
the appendix.

The presence of the magnetic body couple causes the Cauchy stress tensor to be
non-symmetric. The Cauchy stress may be decomposed in the following manner,
see e.g. [66, 67],

σ = σMT − µ0(H⊗M) , (20)

where σMT is a symmetric tensor that can be interpreted as the mechanical part of
the Cauchy stress tensor. We then modify the proposed Gibbs free energy function
(4) by assuming a dependence on σMT , rather then the non-symmetric Cauchy
stress σ. The modified expression is given by

G(σMT ,H , ξ, α, θi, ε
r) =− 1

2ρ
σMT : SσMT − 1

ρ
σMT : εr − µ0

ρ
M ·H

+
1

ρ
f(ξ, α) +Gan(ξ, α, θ) +G0(T0) .

(21)

The constitutive equation for the total infinitesimal strain tensor then follows as

ε = −ρ ∂G

∂σMT
= SσMT + εr , (22)
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or the inverse relation

σMT = C : εe = C : (ε− εr) . (23)

The newly introduced variables are the elasticity tensor C and the reorientation
tensor Λ. The latter determines the direction in which the reorientation strain
develops according to εr = Λξ and its specific form for the considered two-
dimensional problem is given in Table 5. It should be noted that the constitutive
relation for the magnetization remains unchanged.

Using the decomposition of the Cauchy stress (20) in Equation (18a), the con-
servation of linear momentum for the magnetic continuum under static conditions
and negligible non-magnetic body forces may be written as

∇·(σMT − µ0H⊗M) + ρfm = 0 . (24)

This expression can be simplified as follows

∇·σMT + [ρfm −∇·(µ0H⊗M)] = 0 ,

∇·σMT + [µ0(∇H)M− (µ0H(∇·M) + µ0(∇H)M)] = 0 ,

∇·σMT + [−µ0H(∇·M)] = 0 . (25)

Table 5 summarizes the coupled problem consisting of the magneto-mechanical
field equations, the constitutive relations and boundary conditions. In addition to
the material parameters used in the nonlinear magnetostatic analysis, isotropic
mechanical properties of the martensitic phase are assumed for simplicity, with a
Young’s modulus of 2.0 GPa and a Poisson’s ratio of 0.3 (cf. [68], [17]).

It should be emphasized that the problem solved in the finite element analysis
as defined in Table 5 is only partially coupled, since the stress dependence of the
magnetic response, although captured in the general formulation of the constitutive
model, has been neglected. This is usually valid since all tests are preformed at a
constant stress level. In the considered case the coupling thus only exists through
the presence of magnetic body forces and couples in the mechanical equilibrium
equations. Numerical solutions of the coupled problem in terms of the distributions
of the magnetic field variables are therefore identical to those of the uncoupled mag-
netostatic problem presented in the previous section. Nonetheless, this approach
is expected to yield much more realistic solutions for the Maxwell stress distribu-
tions, because they now satisfy mechanical equilibrium. Furthermore, the spatial
variation of the Cauchy stress field under the influence of magnetic body forces and
body couples can now be computed, which was the main objective of the numerical
analysis.

The computed Cauchy stress field components are shown in the iso-line plots of
Figure 20 for the applied magnetic induction level of µ0〈Hy〉 = 1 T. It is observed
that the Cauchy stress distribution is, as expected, also strongly non-uniform in the
specimen. Detailed numerical data of these components at the nine representative
points P0 to P8 are given in the Table 6.

Note that the deviation of the axial Cauchy stress σxx from the typically assumed
homogeneous stress of −2.0MPa is substantial. The local relative difference of these
values is listed in Table 7. The results show that the change in magnitude can be
up to 80 %. The maximum compressive stress value of −3.58 MPa occurs at the
center of the specimen. The value of the stress gradually increases from the center
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Table 5. Summary of the field equations, constitutive equations and boundary conditions.

Maxwell Equations:

∆Φm = −µ0∇×M .

Conservation of Linear and Angular Momentum:

∇·σMT − µ0H(∇·M) = 0 , skw(σMT ) = 0 .

Constitutive Equations:

My = My(Hy), Mx = Mx(Hy) (Response of Figure (12))

σMT = C : (ε− εr) ∈ Sym

with ε = 1
2(∇u +∇uT ) , εr = Λξ and

Λ = εr,max




1 0 0
0 −1 0
0 0 0


 .

Boundary Conditions:

[[B]] · n = 0, [[H ]]× n = 0 ,

[[
σ + σM

]]
·n = 0 or

=⇒ σMTn = ta + µ0

2 (M·n)2n + µ0(H⊗M)n .

(a)(b)

Figure 20. (a) σxx and (b) σyy-component distribution of the Cauchy stress tensor (MPa) at an applied
magnetic induction level of µ0〈Hy〉 = 1 T.

Table 6. Cauchy stress values (MPa) at an applied induction level of 1 T.

P0 P1 P2 P3 P4 P5 P6 P7 P8

σxx -3.58 -2.31 -2.25 -2.30 -2.15 -2.32 -2.25 -2.32 -2.17
σyy -0.39 -0.08 -0.10 -0.22 -0.11 -0.07 -0.11 -0.22 -0.11

towards the left and right edges, where the sign changes from negative to positive.
Note also that the horizontal component σyy is non-zero and attains values of
almost −0.53 MPa as observed in Figure 20(b). It is compressive in most of the
sample, except regions A and B indicated in Figure 20(b), where it exhibits positive
values. Except for the concentrations near the corners, the magnitude of the σyy
component is high around the center, where it reaches the compressive stress of
largest magnitude with −0.39 MPa, and then decreases towards the edges.

Table 7. Percentage difference in the computed local Cauchy stresses and a homogeneous stress level of −2.0MPa

at an applied induction of 1 T.

P0 P1 P2 P3 P4 P5 P6 P7 P8

σxx 79.0 15.5 12.5 15.0 7.5 16.0 12.5 16.0 8.5

It is interesting to realize that if magnetic body forces and couples are taken
into account, the traction boundary conditions are also influenced by the magnetic
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(a)(b)

Figure 21. Variation of the mechanical traction components on ∂Ω2 and ∂Ω4 at µ0〈Hy〉 = 1 T (a) x-
components and (b) y-components.

field variables. The traction ta is related to the Cauchy’s formula by σn = ta.
When Maxwell stress is considered along with the Cauchy stress, an additional
magneto-traction is generated. The combined traction can be calculated [69] from
the jump condition

[[
σ+σM

]]
n = 0. Since the mechanical part σMT of the Cauchy

stress is linked with the total strain through the constitutive equation (23), we
switched our reference stress σ to the symmetric mechanical stress σMT to solve the
coupled problem. Due to this switching, the traction boundary condition modified
by t̃ = σMTn, which is related to ta through the expression (A13). We can write

t̃∂Ω1
= (−2 + µ0MxHx +

µ0

2
M2
x)ex + µ0MxHyey , (26a)

t̃∂Ω2
= µ0MyHxex + (µ0MyHy +

µ0

2
M2
y )ey , (26b)

t̃∂Ω3
= −µ0MxHyey , (26c)

t̃∂Ω4
= −µ0MyHxex + (−MyHy −

µ0

2
M2
y )ey . (26d)

It should be noted that the x-component of the traction in Eq. (26c) on ∂Ω3 is not
imposed since the displacement boundary condition is given. At µ0〈Hy〉 = 1 T the
variant reorientation process is almost complete and the Mx component is almost
zero, as we explained in the previous section. So, the traction on the boundary
segments ∂Ω1 and ∂Ω3 are t̃x,∂Ω1

≈ −2 MPa and t̃y,∂Ω3
≈ 0 MPa, respectively.

The variation of the x-component of t̃ on ∂Ω2 and ∂Ω4 is plotted in Fig. 21(a). It
ranges from −0.6 MPa to 0.6 MPa and the two curves coincide at each end point
due to point-symmetric behavior of Hx. The variation of the y-component t̃ on
the segments ∂Ω2 and ∂Ω4 is displayed in Fig. 21(b). In this case its magnitude
exceeds 1.0 MPa.

7. Conclusions

In this paper magnetostatic and magneto-mechanically-coupled finite element anal-
ysis involving nonlinear magnetic shape memory behavior was presented. To the
authors’ knowledge simulations of this kind have not been reported elsewhere in
the literature. Based on this analysis two important effects that substantially in-
fluence the constitutive modeling of MSMAs have been addressed. First, it was
shown that magnetostatic computations could be used to properly account for the
shape-dependent demagnetization effect which complicates the model parameter
identification from experimental data. It was pointed out that this must be un-
derstood as the inverse problem of finding the model parameters such that the
simulation results in the applied magnetic field vs. magnetization curve measured
in the experiment for a specific sample geometry. An iterative procedure was estab-
lished for which in each iteration step the magnetostatic boundary value problem
was solved to obtain the relation between the applied and internal magnetic fields
needed to correct the data. Furthermore, a parametric study of the specimen as-
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pect ratio dependence on the demagnetization effect was presented. It was found
that, although the demagnetization effect varies with aspect ratio, it has significant
influence on the measured magnetization curves for any aspect ratio and must cer-
tainly be accounted for. In case only average quantities are of interest, it was shown
that the commonly applied demagnetization factor methodology yields sufficiently
accurate results, provided, of course, the factor is available for the considered ge-
ometry. If, however, the local distribution of the field quantities in non-ellipsoidal
specimen must be investigated, for example, to identify possible magnetic field and
stress peaks or to investigate the influence of cracks, inclusions or other inhomo-
geneities, this can only be achieved via the numerical solution of coupled boundary
value problems as presented in this paper.

The second main effort of the presented work was concerned with the investiga-
tion of the significance of magnetic body forces and body couples and whether or
not these can be neglected in the modeling of MSMAs. In a first estimate of this
influence, highly non-uniform distributions of the magnetic body force and couple
and consequently the Maxwell stress field were computed from the nonlinear mag-
netostatic finite element analysis in a post-processing manner. In a second step, an
extended analysis based on the numerical solution of the magneto-mechanically-
coupled problem then revealed that the magnetic body force and body couple cause
an inhomogeneous Cauchy stress field, whose components are comparable to the
typically applied stresses. This suggests that, considering current blocking stress
levels, the influence of body forces should not be neglected.

From the analysis presented in this paper further challenges emerge for possible
future work. Most importantly, the proposed methodology should be implemented
for three-dimensional simulations and fully-coupled FE-analysis. The later would
involve accounting for the change in the magnetization response with changes in
the stress level, which are captured in the Kiefer & Lagoudas constitutive model,
but have been so far neglected in the boundary value problem computations. An
interesting question that then arises is whether the phenomenological model equa-
tions should be based on the Cauchy stress or rather the total stress tensor as an
independent state variable and which of these quantities is actually measured in
experiments.
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APPENDIX

Appendix A. Magneto Mechanical Boundary Conditions

We seek to prove that if

[[
σ + σM

]]
n = 0 , (A1)

then

σMTn = ta + µ0(H⊗M)n +
µ0

2
(M · n)2n , (A2)
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where σn = ta. Therein, n is the outward unit normal to the boundary ∂Ω and[[
A
]]

:= A+ − A− is the jump operator, where A+ and A− represent the values of
A on either side of the discontinuity surface. From Ampère’s law, we can conclude
that [[Ht]] = 0, i.e. Eq. 2(b), where the superscript t represents the tangential
direction. It then follows H = Hn + Ht = (H · n)n + Ht and

[[
H
]]

=
[[
Hn
]]

+
[[
Ht
]]

=
[[
Hn
]]

= (
[[
H
]]
· n)n . (A3)

Using the constitutive relation H = 1
µ0

B−M in Eq. (A3) and Eq. (2a) we find

[[
H
]]

= (
1

µ0

[[
B
]]
· n−

[[
M
]]
· n)n

= −(
[[
M
]]
· n)n

= −[(M+ −M−) · n]n

= (M · n)n . (A4)

Here we have used the fact that M+ = 0 and M− = M. Note that Eq. (15) can
be rewritten as σM = H⊗B− µ0

2 (H ·H)I. It follows that

[[
σM

]]
n =

[[
H⊗B

]]
n− µ0

2

[[
(H ·H)I

]]
n (A5)

= (H+ ⊗B+ −H− ⊗B−)n− µ0

2
(H+ ·H+ −H− ·H−)n.

The first term in Eq. (A5), using
[[
B
]]
·n = (B+ ·n)− (B− ·n) = 0, may be written

as

(H+ ⊗B+ −H− ⊗B−)n = (B+ · n)H+ − (B− · n)H−

= (B+ · n)(H+ −H−)

= (B+ · n)
[[
H
]]

(A6)

From Eq. (2b) it is clear that
[[
Ht
]]

=
[[
n×H

]]
= 0 and consequently

[[
Ht ·Ht

]]
= 0

implies (cf. [69]),

|n×H+|2 = |n×H−|2 (A7)

Using the identity (a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c), we can write

(n×H+) · (n×H+) = (n · n)(H+ ·H+)− (H+ · n)2 . (A8)

Similarly,

(n×H−) · (n×H−) = (n · n)(H− ·H−)− (H− · n)2 . (A9)

From Eqs. (A7), (A8) and (A9), we conclude

|H+|2 − (H+ · n)2 = |H−|2 − (H− · n)2 . (A10)
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which means
[[
H ·H

]]
=
[[
(H · n)2

]]
. Now with Eq. (A10) we can write the second

term on the right hand side of Eq. (A5) in the following form

µ0

2
[H+ ·H+ −H− ·H−]n =

µ0

2
[(H+ · n)2 − (H− · n)2]n

=
µ0

2
[(H+ −H−) · n][(H+ + H−) · n]n .

Considering that (H+−H−) ·n =
[[
H
]]
·n and (H+ + H−) ·n = [( 1

µ0
B+−M+) +

( 1
µ0

B−−M−)] ·n = [ 1
µ0

B+ + 1
µ0

B−−M−] ·n, with B+ ·n = B− ·n due to Eq. (2a)

and Eq. (A4), it follows

µ0

2
[H+ ·H+ −H− ·H−]n =

µ0

2

[[
H
]]
· n[

2

µ0
(B+ −M) · n]n

= (B+ · n)(
[[
H
]]
· n)n− µ0

2
(M · n)(

[[
H
]]
· n)n

= (B+ · n)
[[
H
]]
− µ0

2
(M · n)

[[
H
]]

= (B+ · n)
[[
H
]]
− µ0

2
(M · n)2n . (A11)

Substitution of Eqs. (A6) and (A11) into Eq. (A5) yields

[[
σM

]]
n =

µ0

2
(M · n)2n . (A12)

In consequence, with Eq. (20), we obtain

[[
σ + σM

]]
n =

[[
σ
]]
n +

[[
σm
]]
n

= (σ+ − σ−)n +
[[
σm
]]
n

= ta − σn +
µ0

2
(M · n)2n

= ta − σMTn + µ0(H⊗M)n +
µ0

2
(M · n)2n .

Finally, Eq. (A1) yields the boundary condition in the following form

σMTn = ta + µ0(H⊗M)n + µ0

2 (M · n)2n (A13)
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