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Introduction

Magnetic shape memory alloys have recently drawn considerable research interest due to their ability to produce magnetic field-induced strains (MFIS) at least one order of magnitude higher than those of ordinary magnetostrictive materials [2][3][4][5][6][7][8][9]. The macroscopically observable field-induced strains in MSMA are caused by the microstructural reorientation of martensitic variants. Since the variants have different preferred directions of magnetization, applied magnetic fields can be used to select certain variants over others, which results in the macroscopic shape change.

This unique coupling of mechanical and magnetic properties makes MSMAs interesting materials for smart structures, actuator and sensor applications [10][START_REF] Tellinen | Proceedings of the 8th International Conference ACTUATOR 2002[END_REF][START_REF] Sarawate | [END_REF][13]. The most widely investigated magnetic shape memory materials are Ni-Mn-Ga alloys [14][15][16][17]. Martensitic transformations in Ni 2 MnGa alloys were first conclusively reported by Webster et al. [18]. Zasimchuk et al. [19] and Martynov and Kokorin [20] performed detailed studies on the crystal structure of martensite in the Ni 2 MnGa alloy. Ullakko et al. [21] are credited with first suggesting the possibility of a magnetic field-controlled shape memory effect in these materials. Other magnetic shape memory alloys that have been studied include Fe-Pd [2,8,22,23], Fe-Ni-Co-Ti, Fe-Pt, Co-Ni-Ga, Ni-Mn-Al [START_REF] Murray | Proceedings of SPIE[END_REF][START_REF] Fujita | [END_REF][26][27][28][START_REF] Sozinov | Proceedings of SPIE, Symposium on Smart Structures and Materials[END_REF] and Co-Ni-Al [START_REF] Karaca | [END_REF]31].

Several models have been proposed in the literature that describe the constitutive response related to the magnetic field-induced variant reorientation. For a detailed overview of the reported MSMA modeling work the reader is referred to [1,[START_REF] Kiefer | A Phenomenological Constitutive Model for Magnetic Shape Memory Alloys[END_REF] and the review article by Kiang and Tong [START_REF] Kiang | [END_REF] as well as the references therein.

The model presented by James and Wuttig [23] is based on a constrained theory of micromagnetics (see also [34][35][36]). The terms contributing to the free energy in their model are the Zeeman energy, the magnetostatic energy and the elastic energy. O'Handley [4,37] proposed a 2-D model in which two variants are separated by a single twin boundary and each variant itself consists of a single magnetic domain. Likhachev and Ullakko [38] presented a model which identifies the magnetic anisotropy energy difference in the two variant twinned-martensite microstructure as the main driving force for the reorientation process. Hirsinger and Lexcellent [39,40] introduced the outline of a non-equilibrium thermodynamics-based model. Their free energy contains chemical, mechanical, magnetic and thermal contributions.

Kiefer and Lagoudas formulated a continuum thermodynamics-based phenomenological constitutive model for MSMAs with internal state variables describing the evolution of the crystallographic and magnetic microstructures. Their approach is aimed at capturing the hysteretic effects associated with the magnetic field-induced reorientation of martensitic twins and the resulting loading history dependence of the material response. Emphasis is also placed on modeling the nonlinear and stress-level-dependent nature of the magnetic field-induced strain and magnetization response. The Kiefer and Lagoudas model mainly distinguishes itself from the Hirsinger and Lexcellent approach by allowing the magnetization vectors to rotate away from the magnetic easy axes, which leads to much more accurate predictions of the magnetization response. Details of the model development were reported in [1,[START_REF] Kiefer | A Phenomenological Constitutive Model for Magnetic Shape Memory Alloys[END_REF][START_REF] Kiefer | Proceedings of SPIE: Smart Structures and Materials[END_REF][START_REF] Kiefer | Modeling of Magnetic SMAs, in Introduction to Modeling and Engineering Applications of Shape Memory Alloys[END_REF][START_REF] Kiefer | [END_REF]. Experimental characterization of MSMA response and the model validation were presented in [44]. The focus of this particular paper was placed on estimating the maximum MSMA actuator work output, both theoretically and experimentally. Furthermore, the numerical analysis of nonlinear magnetostatic boundary value problems for MSMAs was described in [START_REF] Kiefer | Proceedings of SPIE: Smart Structures and Materials[END_REF][START_REF] Lagoudas | Proceedings of ASME, International Mechanical Engineering Congress and Exposition[END_REF]. More recently, stability analysis of magnetostatic boundary value problems for MSMAs was presented in [START_REF] Haldar | [END_REF].

Faidley et al. [START_REF] Faidley | Proceedings of SPIE, Smart Structures and Materials: Active Materials: Behavior and Mechanics[END_REF] proposed an extension of an earlier version of the Kiefer and Lagoudas model [START_REF] Kiefer | Proceedings of SPIE: Smart Structures and Materials[END_REF] to predict the reversible strain effect in Ni-Mn-Ga with collinear field and stress. In their approach internal restoring forces orthogonal to the applied field are attributed to pinning sites which elastically deform twin boundaries. Tan and Elahinia [START_REF] Tan | [END_REF] utilized the Kiefer and Lagoudas model to study the dynamic response of MSMA actuators.

Despite these efforts, in the constitutive modeling of nonlinear, dissipative magnetic shape memory behavior two major complications have not yet been properly addressed in the literature and their significance remains unclear. The first is the influence of non-ellipsoidal specimen geometries on measured and simulated magnetization curves, the second is the influence of magnetic body forces and body couples on the stress distribution within a sample. Both of these issues are the subject of the work presented in this paper.

The well-known dependence of measured magnetization curves on specimen geometries is caused by the so-called demagnetization effect. From a modeling standpoint this effect complicates parameter identification as well as model validation, since the experimental data represent a sample geometry-dependent system response, not the true constitutive response. Typically, the correction of the data is carried out by making use of demagnetization factors that have been tabularized for ellipsoids of different aspect ratios. It is clear, however, that this technique loses its justification for non-uniform magnetization distributions as they typically occur in non-ellipsoidal specimen ( [8]). This paper proposes an iterative procedure to properly interpret experimental data. The methodology is based on finite element solutions of nonlinear magnetostatic boundary value problems for MSMAs, which provide the necessary shape-dependent relations between applied and internal magnetic fields.

Furthermore, the validity of the common assumption of a spatially-uniform Cauchy stress within MSMA samples is tested. More precisely, the influence of magnetic body forces, magnetic body couples and thus Maxwell stress is typically assumed to be negligible. There exists theoretical and experimental evidence, however, that magnetic body forces may have an influence on both twin boundary motion, see discussion in O'Handley et al. [START_REF] O'handley | Proceedings of SPIE[END_REF], as well as stress-induced martensitic transformation, in Liang et al. [START_REF] Liang | [END_REF]. In a first step of the present study, the Maxwell stress distributions resulting from spatially-varying magnetic body forces and magnetic body couples are computed in a post-processing manner based on the solution of the magnetostatic problem. It is found that the resulting Maxwell stress distributions are highly non-uniform. Encouraged by this observation, a coupled magneto-mechanical finite element analysis is performed to investigate the influence of Maxwell stress fields on Cauchy stress fields at equilibrium. It should be pointed out, that strictly speaking, this analysis is only partially coupled, since the influence of the feed-back of the stress variations to the nonlinear magnetic properties is neglected. Under this assumption, however, the results show strongly inhomogeneous distributions of the Cauchy stress with magnitudes of its components comparable to externally applied bias stress levels.

The structure of the paper is as follows: In Section 2 a brief summary of the magnetostatic problem and the phenomenological internal variable model for MSMAs developed by Kiefer & Lagoudas is given. Section 3 is concerned with the finite element analysis of a specific boundary value problem that is motivated by typical experimental set-ups. The nonlinear magnetic properties of the MSMA, used as input to the analysis, are provided by the constitutive model. In Section 4 the influence of the demagnetization effect on the interpretation of experimental data is analyzed in detail. In Section 5, Maxwell stress distributions are computed based on the results of the magnetostatic analysis. By means of a coupled magneto-mechanical finite element analysis, non-uniform equilibrium Cauchy stress distributions are computed in Section 6, which properly account for the spatial non-uniformity of the Maxwell stress tensor. To conclude the paper, the significance of these findings for the modeling of MSMA behavior is discussed.

A Concise Review of the Magnetostatic Problem and the MSMA Constitutive Model

In the following section basic concepts of magnetostatics in the presence of magnetized matter are summarized to provide the foundation for the analysis of magnetostatic boundary value problems (BVPs) for MSMA materials. For static conditions in stationary bodies and negligible current density, Maxwell's equations in R 3 are reduced to [START_REF] Jackson | Classical Electrodynamics[END_REF][START_REF] Woodson | Electromechanical Dynamics, Part I: Discrete Systems[END_REF] ∇•B = 0 , and

∇×H = 0 , ( 1 
)
where B is the magnetic induction and H is the magnetic field strength. These two quantities are related through the constitutive relation B = µ 0 (H + M), in which µ 0 is the permeability of free space and M is the magnetization of a material point in a magnetized body, in this case a magnetic shape memory alloy sample.

Equations ( 1) are subject to the jump conditions

[[B]]•n = 0 , [[H]]×n = 0 , (2) 
on all interfaces, if surface currents are negligible. In Equations (2), n denotes the unit normal to the surface of discontinuity. Taking advantage of the specific form of Equations ( 1), the magnetostatic problem is often reformulated, by deriving the magnetic field strength from a scalar potential Φ m or the magnetic induction from a vector potential Φ m . In the latter case B = ∇ × Φ m identically satisfies Equation (1a). Using the identity ∇ × (∇ × Φ m ) = ∇(∇ • Φ m ) -∆Φ m , and the Coulomb gauge ∇ • Φ m = 0, Equation (1b) takes the form

∇×(µ -1 0 ∇×Φ m -M) = 0 , or ∆Φ m = -µ 0 ∇×M , (3) 
which is the vector-valued Poisson equation for the magnetic potential Φ m . For MSMAs the magnetization in Equation ( 3) is a function of the magnetic field and the loading history through a set of internal state variables ζ. The relation M = M(H, ζ) is provided by the constitutive model to be introduced shortly. Here we assume that the stress inside the material is uniform and remains constant at each material point before, during and after the reorientation process. At this point, the magnitudes of the body forces and body couples are assumed to be small and their contributions in the conservation of linear and angular momentum are neglected. The validity of this assumption is tested in Sections 5 and 6.

The MSMA constitutive relations to be used in the magnetostatic and later the magneto-mechanical analysis are provided by the Kiefer and Lagoudas phenomenological internal variable model [START_REF] Kiefer | A Phenomenological Constitutive Model for Magnetic Shape Memory Alloys[END_REF][START_REF] Kiefer | Modeling of Magnetic SMAs, in Introduction to Modeling and Engineering Applications of Shape Memory Alloys[END_REF][START_REF] Kiefer | [END_REF]. This formulation is based on the Gibbs free energy function G, in which the Cauchy stress tensor σ and the magnetic field strength H are the independent state variables. The loading history dependence of the constitutive behavior, caused by dissipation associated with variant rearrangement, is introduced through the evolution of internal state variables. The chosen internal state variables are the variant volume fraction ξ, the magnetic domain volume fraction α and the magnetization rotation angles θ i (i=1,4). These variables are motivated by experimentally observed changes [START_REF] Sullivan | [END_REF] in the crystallographic and magnetic microstructure. An idealized microstructural representation of twin martensitic phase is given in Figure 1. Two martensitic variants, variant-1 with volume fraction, ξ, and variant-2 with volume fraction, 1ξ, form 90 o magnetic domain walls and each variant contains 180 o domain walls. The volume fractions of 180 o magnetic domain wall in variant-1 and variant-2 are represented in Figure 1 by domain-1 and domain-2 and denoted by α and 1α respectively. The modeling approach is not limited to 2-variant microstructures. In the multivariant case additional constraints must be enforced, e.g. sum over ξ i =1. For the considered modeling problems, however, this addtitional complexity is not needed. The specific form of the Gibbs free energy for the Kiefer and Lagoudas model, having a typical two-dimensional setting in mind, is given by

G(σ, H, ξ, α, θ i , ε r )=- 1 2ρ σ : S(ξ)σ - 1 ρ σ : ε r - µ 0 ρ M (ξ, α, θ i ) • H + 1 ρ f (ξ, α) + G an (ξ, α, θ) + G 0 (T 0 ) , (4) 
where ρ, S(ξ) are the density and the effective compliance tensor. The free energy function ( 4) is comprised of the elastic strain energy, the Zeeman energy, a mixing term (f ), the magnetocrystalline anisotropy energy (G an ), and a reference state value (G 0 ). The Zeeman aims to align the magnetization with the magnetic field acting at a material point. The magnetocrystalline anisotropy energy can be viewed as the energy stored in the material due to the work done by an applied field in rotating the magnetization away from the magnetic easy axes. The mixing term accounts for the interaction of variants during the reorientation process. The internal state variables ξ, α and θ i can in general be connected with energy dissipation. In this phenomenological modeling approach they also account for loading history dependence of the constitutive response as caused by the thermodynamically irreversible evolution of the microstructure in a homogenized sense. Experimental results [14] show that the hysteresis for the single variant MSMA crystal specimen with respect to the magnetic easy axis and hard axis are almost negligible. This observation was expected for the case of the hard axis magnetization response, since the dominant mechanism, related with the magnetization rotation θ i , is a reversible process. With regard to the easy axis magnetization, magnetic domain wall motion is the most important mechanism that can be associated with dissipation. In MSMA, however, the magnetic domain wall motion appears to be associated with a very small amount of dissipation. The dissipation in MSMAs is mainly due to variant reorientation mechanism which is caused due to the change in ξ, allowing to neglect the α dependency of the hardening function f . The internal variable ε r is the generation of reorientation strain due to the evolution of ξ.

From the free energy expression (4) the magnetization constitutive equation is derived in a thermodynamically-consistent manner as

M = - ρ µ 0 ∂G ∂H . (5) 
In the following analysis we consider two-dimensional boundary value problems that resemble typical experimental testing scenarios, see e.g. [44]. In these experiments, the MSMA sample is subjected to a constant compressive mechanical load along the x-axis and to a magnetic field along the perpendicular y-axis. The orientation of the single crystal specimen is [100] and is aligned with the direction of the mechanical load. The model through the evolution of α and ξ in general can capture both evolutions of 180 and 90 degree domain walls. The evolution of magnetic domains, although accounted for in the general framework, is neglected in this paper, since it only plays a significant role at low field and stress levels, see e.g. [START_REF] Kiefer | [END_REF][START_REF] O'handley | Proceedings of SPIE[END_REF]. To obtain more accurate predictions of the magnetization behavior it is, however, assumed that the MSMA sample is initially unmagnetized, which corresponds to a domain volume fraction value of α = 0.5. This means equal volume fraction of the magnetic domains, separated by 180 o domain walls. Upon initiation of the forward reorientation process, i.e. from the stress-favored to the magnetic field-favored variant, it is assumed that all unfavored domains are instantaneously eliminated and α takes the value of 1. Under these assumptions the reduced form of the constitutive equations for the magnetization is given by [47]

M =                        µ0M sat 2ρK1 H y e y , for ξ = 0 , (1 -ξ)M sat 1 -( µ0M sat 2ρK1 H y ) 2 e x + (1 -ξ) µ0M sat 2ρK1 H y + M sat ξ e y , for ξ ∈ (0, 1)
M sat e y for ξ = 1 .

Here, e x and e y are the unit vectors along the x and y direction respectively. A closed-form expression for the evolution of the variant volume fraction during the forward reorientation process can be derived as [START_REF] Kiefer | [END_REF] 

ξ = 1 2 cos F 1 (µ 0 M sat ) 2 2ρK 1 H 2 y -µ 0 M sat H y + F 2 + π + 1 2 . ( 7 
)
Specific relations between the constants F 1 and F 2 and the model parameters

M sat , ρK 1 , H s(1,2) y , H f (1,2) y
, σ * and ε r,max , namely the saturation magnetization, the magnetocrystalline anisotropy constant, the critical field values for the start and finish of the forward reorientation process, the blocking stress and the maximum reorientation strain are given in [START_REF] Kiefer | [END_REF]. The model parameters must be identified from experiments. The specific calibration used in the following simulations is based on experimental data reported in [44]. The resulting parameter values are listed in Table 1. Table 1. Material parameters calibrated for the Ni51.1Mn24.0Ga24.9 composition tested at a compressive stress level of -2 MPa [44].

Material Parameters Quantity Value Unit

Quantity Value Unit

ρK 1 700.0 kJm -3 µ 0 H s(1,2) y 0.9 T M sat 742.4 kAm -1 µ 0 H f (1,2) y 1.85 T ε r,max 5.65 % µ 0 H s(2,1) y 0.75 T σ * -2.0 MPa µ 0 H f (2,1) y -0.17 T
The predicted magnetization response curves are plotted in Fig. 2 and may be explained in the following way. Initially, the sample consists of the stress-favored variant and two oppositely magnetized domains of equal volume fraction separated by 180 • domain walls, such that it is macroscopically unmagnetized. When magnetic field is applied along the y-direction, the hard axis of the stress-favored variant, the magnetization vectors start to rotate in each domain. The x-components of the magnetization vectors in the adjacent domains cancel each other, while their y-components add up. Once the critical field for the variant reorientation has been reached, the field-favored variant nucleates and magnetization curve becomes nonlinear. As pointed out above, it is assumed that unfavorable magnetic domains are eliminated simultaneously with the activation of the reorientation process due to comparatively high magnetic field (see also [START_REF] O'handley | Proceedings of SPIE, Symposium on Smart Structures and Materials[END_REF][START_REF] Tickle | Ferromagnetic Shape Memory Materials[END_REF]). This results in a sharp increase of the M x -component of the predicted magnetization curve. After the reorientation process is completed, only the single-domain, field-favored variant remains and the magnetic saturation level is reached with the magnetization vector fullyaligned along the applied field direction, which coincides with the easy axis of the field-favored variant.

Finite Element Analysis of the Nonlinear Magnetostatic Problem

Based on the field equations and the MSMA constitutive relations derived in the previous section we can now proceed with the solution of specific nonlinear magnetostatic boundary value problems using the finite element method. The numerical analysis presented in this paper was performed using the COMSOL Multiphysics finite element software package.

The geometry and boundary conditions of the considered model problem are illustrated in Figure 3. This particular arrangement is motivated by the experimental set up reported in [44]. The computational domain may be regarded as the gap between the pole pieces of an electromagnet of dimensions 26 mm × 26 mm × 26 mm for which a uniform magnetic field of up to 2 T can be applied. Typical specimen dimensions are 8 mm × 4 mm × 4 mm, or aspect ratios of 2 : 1 : 1, where the long axis is the x-direction.

A spatially constant magnetic potential is applied on all sides of the boundary, such that with Equation (3) it follows

Φ m x = Φ m y = 0 ; Φ m z = -µ 0 H a y x , (8) 
µ 0 H x = B x = ∂Φ m z ∂y - ∂Φ m y ∂z = 0 , µ 0 H y = B y = ∂Φ m x ∂z - ∂Φ m z ∂x = µ 0 H a y , µ 0 H z = B z = ∂Φ m y ∂x - ∂Φ m x ∂y = 0 , (9) 
i.e. the desired homogeneous magnetic field in the computational domain in the absence of the specimen. The presence of the magnetizable sample, of course, perturbs the homogeneity of the applied field. The following comments must be made regarding the usage of the magnetization data in the magnetostatic analysis:

(1) The stress is assumed to be uniaxial, at a constant level and spatially homogeneous, since magnetic body forces and magnetic body couples are neglected. The only coupling between the mechanical and the magnetostatic problem at this point is given by the stress level dependence of the magnetic properties. Thus for each stress level the magnetostatic analysis has to be performed in a separate computation. (2) The magnetic field, and thus the magnetization, on the other hand vary spatially inside the rectangular specimen. The magnetic properties predicted by the constitutive model are evaluated at every integration point in the finite element mesh. Since the magnetization nonlinearly depends on the magnetic field, the magnetostatic problem is highly nonlinear. COM-SOL Multiphysics provides an appropriate iterative nonlinear solver. The parametric version of this solver was used such that the magnetic field distribution could be computed, while scaling the applied magnetic field from 0 T to 2 T. (3) Although a magnetic potential difference was applied to represent a homogeneous external field whose x-component is zero, see Equation ( 9), the magnetic field in the MSMA specimen is non-uniform and exhibits a nonzero x-component, particularly at the corners of the sample. The constitutive dependency M(H x ) is assumed to be small and thus neglected, see Equations ( 6). ( 4) The hysteretic nature of the constitutive response is not addressed in the magnetostatic analysis at this point. To be precise, the hysteresis is not neglected, but the analysis is only carried out for monotonous loading from 0 T to 2 T, not for the removal of the magnetic field.

Numerical results of the finite element analysis are plotted in Figure 4 in terms of the distribution of the y-component of the magnetic field for the exemplary applied magnetic induction level of 2 T. It is observed that indeed, due to the non-ellipsoidal shape of the specimen, the magnetic field and thus the magnetization are non-uniform inside the specimen although a constant magnetic induction is applied at the boundary of the computational domain. The presence of the magnetized specimen clearly perturbs the magnetic field in the free space surrounding the sample. From this distribution one can for example obtain information to which extent a Hall probe reading, used to measure the applied field, can be expected to be influenced by the sample's magnetic field. The distribution at 2.0 T, at which essentially all of the material has been magnetized to saturation along the y-axis, is symmetric with respect to both axes of the coordinate system. It again must be emphasized that in the magnetostatic problem the magnetization is allowed to change locally and its value is determined by evaluating the magnetization curve for the magnetic field acting at the particular point. The internal mechanism which leads to the macroscopic magnetization response, namely the evolution of the martensitic variants, the magnetic domains and the magnetization rotation angles as predicted by the constitutive model have been discussed earlier. Such a modeling approach assumes that there exists a separation of scales such that at each point in the continuum, the MSMA sample, there exist a smaller length scale at which a sufficient number of martensitic twins and magnetic domains coexist such that average quantities like the magnetization can be defined for each point. The contributions of the variant and magnetic domains are then taken into account phenomenologically in a homogenized sense and are no longer "visible" on the continuum scale. It is still a matter of discussion whether this approach is fully justified for MSMA single crystals. To take a closer look at the local solution, the variation of the computed magnetic field within the MSMA sample is plotted in Figure 5 for a specific applied field level. In Figure 6 the variation of the magnetic field and the magnetization across the specimen are plotted for different locations. Note that at the left (y = -2) and right (y = 2) sides of the specimen the jump in the magnetic field balances the jump of the magnetization in the transition from free space into the magnetized material. The magnetic induction component B y = µ 0 (H y + M y ), which is the normal component of the magnetic induction on these interfaces, thus stays constant, so that the jump condition specified in Equation (2a) is properly satisfied. 

Influence of the Demagnetization Effect on the Interpretation of Experiments

From the theory of magnetostatics it is well-known, that the magnetic field caused by the magnetization of the material opposes the direction of magnetization. It is therefore called the demagnetizing or self field. This demagnetization effect can also clearly be observed in the plots of Figure 6. Furthermore, as a consequence of the interface conditions of Equations ( 2), the demagnetization field in a uniformly magnetized ellipsoidal sample is always uniform, while it is non-uniform in a nonellipsoidal sample. Permanent magnets, by definition, exhibit substantial remnant macroscopic magnetization at zero applied field and, within certain limits, the magnetization of the magnetic sample does not depend on the applied magnetic field [START_REF] Cullity | Introduction to Magnetic Materials[END_REF]. For magnetostatic problems involving only permanent magnets the Poisson equation ( 3) is linear and the principle of superposition holds. Thus, if additionally an external magnetic field H a is applied, the total magnetic field is then given by

H = H a + H d . ( 10 
)
General integral representations of the solution of the magnetostatic problem defined by Equation (3) exist, see e.g. [START_REF] Jackson | Classical Electrodynamics[END_REF][START_REF] Bertram | Theory of Magnetic Recording[END_REF]. For uniformly magnetized bodies the magnetization vector can be taken outside the integral expressions for the magnetic field strength [START_REF] Bertram | Theory of Magnetic Recording[END_REF][START_REF] Schlömann | [END_REF], such that

H d (r) = -   1 4π ∂Ω m r -r |r -r | 3 ⊗ n dA   =:D M = -DM . ( 11 
)
Therein r is the position at which H is evaluated in R 3 and r the location of a point on the surface ∂Ω m , with unit outward normal n , of the region Ω m occupied by the magnetized body. By applying the divergence theorem, an equivalent volume integral representation of Equation ( 11) can be obtained. D is the demagnetization tensor, which only depends on the geometry of the body and can be computed by evaluating the bracketed integral expression in Equation [START_REF] Tellinen | Proceedings of the 8th International Conference ACTUATOR 2002[END_REF].

For a spatially uniformly magnetized body the demagnetization field can thus be computed by simply multiplying the magnetization with an appropriate demagnetization factor. Such factors have been tabularized for ellipsoids of many different aspect ratios [START_REF] Cullity | Introduction to Magnetic Materials[END_REF][START_REF] O'handley | Modern Magnetic Materials[END_REF][START_REF] Bozorth | Ferromagnetism[END_REF]. This procedure is analogous to using Eshelby tensors in elasticity theory to determine the strain field inside ellipsoidal inclusions [START_REF] Eshelby | [END_REF][START_REF] Mura | Micromechanics of Defects in Solids, 2nd revised , Mechanics of Elastic and Inelastic Solids[END_REF].

The demagnetization tensor has the following properties: i) it is independent of position inside an ellipsoidal body; ii) it is diagonal if its eigenvectors are aligned with the symmetry axes of the body; iii) its trace is 1, if evaluated inside the body.

The demagnetization factor for a sphere is therefore 1/3 in any direction. For a prismatic cylinder with square or circular cross-section the axial and transverse demagnetization factors are related by D t = 1/2(1 -D a ), see [START_REF] Moskowitz | [END_REF].

The magnetic field inside a uniformly magnetized sample of non-ellipsoidal shape is always non-uniform. The demagnetization tensor in this case depends on the position inside the sample. It is customary to define average demagnetization tensors for samples of arbitrary shape, sometimes referred to as magnetometric demagnetization tensors [START_REF] Moskowitz | [END_REF]65], in the following manner

D := 1 Ω m Ω m D(r) dV . ( 12 
)
The average demagnetization field can then be written, for uniform magnetization M as tion factors for uniformly magnetized bodies of arbitrary shape. They have been computed and documented for many standard geometries, such as prismatic bars with different cross-sectional shapes [START_REF] Schlömann | [END_REF][START_REF] Moskowitz | [END_REF]65]. By definition the demagnetization factor loses its meaning for bodies with non-uniform magnetization. Thus, the exact demagnetization field inside a non-ellipsoidal body, whose magnetization is induced by an external magnetic field and therefore not uniform unless complete saturation is reached at high fields, can not be computed with the help of demagnetization factors. In this case, which is always encountered in experiments unless ellipsoidal specimen are used, an explicit numerical solution of the magnetostatic boundary value problem has to be obtained. For MSMAs the problem is complicated by the fact that the magnetic properties are nonlinear, hysteretic and stress level dependent. Furthermore, the shape of the sample changes due to the magnetic field-induced strain. This effect, however, is expected to be small and is neglected within the small strain theory.

H d = -D M . (13) 
On the basis of the magnetostatic analysis presented above, it is now possible to derive an iterative procedure in which the computed load-dependent relation between the applied field and the internal field is utilized to reinterpret the experimental data by accounting for the demagnetization effect. This must be understood as the inverse problem of identifying the model parameters such that the simulation results in the applied magnetic field vs. magnetization curve are measured in the experiment for a specific sample geometry.

The first magnetostatic simulation is typically performed using the model parameters obtained from a parameter identification based on the uncorrected data. In these magnetostatic simulations, which, except for the assumption of a given constant stress level, are decoupled from the mechanical equations, the material properties are taken into account in terms of a nonlinear magnetization curve. Thus the relation between the internal and applied field computed in one run of the analysis can only serve to find a first correction of the experimental data. Thus the nonlinear magnetization data, which was originally known in terms of the constant applied field, is now known in terms of the average internal magnetic field with the accuracy of the first iteration. Then the model parameters are re-identified based on the corrected data and the analysis is repeated with the output of first iteration as next input. The simulation result can once again be used to correct the magnetization curve. By following this procedure, the relation between the applied field and the internal field is computed more accurately in each iteration step. For our example, the original and corrected magnetization curves resulting from this iterative procedure are depicted in Figure 7 for the considered specimen with 2:1 length to width ratio. For conciseness, only the correction of the average magnetization M y -component is presented here (Figure 7). The corrected procedure may also be interpreted as keeping the same data for the magnetization axes, while rescaling the magnetic field axis by means of the relation between the average internal and applied field at each iteration. One observes the relatively fast convergence of the solution. After six iterations the difference to the solution of the previous iteration is small enough to conclude that the solution has converged. The magnetization curve of iteration six can thus be considered the "true" magnetization response, which is independent of the specimen geometry. The original data on the other hand is the magnetization behavior that would be measured in an experiment using a prismatic sample of this aspect ratio. In an experiment that uses a sample of the same material, but different aspect ratio a different curve would be measured. A parametric study has been performed to investigate the sample shape dependence of the demagnetization effect for the prismatic specimen with nonlinear magnetic properties. In Figure 8 the corrected magnetization data has been plotted for four different aspect ratios of the prismatic specimen. The corresponding corrections of the magnetic field-induced strain data have been plotted in Figure 9. It is clearly observed that the influence of the specimen aspect ratio on the difference between the apparent material behavior and the true constitutive response is very significant and must therefore be addressed when using data for model calibration. Once the MFIS data has been corrected for demagnetization, the model parameters can be calibrated correctly. 1Figure 8. Influence of specimen aspect ratios on the correction of the magnetization data. Figure 9. Influence of specimen aspect ratios on the correction of the magnetic field-induced strain data.

One of the stated goals of this analysis is to compare the differences in the demagnetization correction by the demagnetization factor method and the finite element analysis. The first method is based on the relation

H y = H a y + H d y = H a y -D yy M y , (14) 
which follows from Equations ( 12), ( 10) and ( 13). This procedure of course assumes that the magnetization in the sample is uniform. Shield acknowledges in [8] that the demagnetization factor method can therefore only lead to approximations of the demagnetization effect in the prismatic samples typically used in MSMA testing. Nonetheless, this method is often used due to its simplicity or lack of alternatives. However, it is not clear beforehand what kind of error one might expect from making this approximation. With the developed simulation capabilities this error can now be quantified. Since a literature value was not available for this particular geometry, the factor of D yy = 0.65 was computed using a two-dimensional magnetostatic finite element simulation for a permanent magnet sample, i.e. with spatially uniform and fieldindependent magnetization M y = M y , of rectangular geometry with a 2:1 aspect ratio placed in a free space domain. This technique has proven to yield very accurate demagnetization factors for other geometries for which literature data was available [4,[START_REF] Moskowitz | [END_REF]. The different correction methods are compared in Figure 10. These observations suggest that by using the demagnetization factor method, which is based on the assumption of uniform magnetization in the specimen, one obtains essentially the same result as performing the FE-analysis of the nonlinear magnetostatic problem with non-uniform magnetization, if average field variables are considered. This conclusion can be misleading, however, since it only holds for average quantities. But as evident from Figure 5 and Figure 6, there exists a significant variation in the local magnetization. To further quantify this variation, Figure 11 displays local values of the magnetic field at several points in the specimen as a function of the applied field. For problems in which the knowledge of the local magnetic field and magnetization is important, one can not avoid solving the magnetostatic problem explicitly. This is certainly the case for magneto-mechanical boundary value problems involving more complicated, technologically-relevant geometries, e.g. MSMA components in actuators applications. 

Post-Processing Computation of Maxwell Stress Distributions

The second major focus of this paper is to employ the FE-analysis in the investigation of possible stress inhomogeneities in the MSMA sample due to magnetic body forces and body couples. A first estimate of the influence of this effect can be obtained by computing the Maxwell stress distribution in a post-processing manner using the relation [START_REF] Hutter | Field Matter Interactions in Thermoelastic Solids[END_REF] σ

M = µ 0 H ⊗ H + µ 0 H ⊗ M - 1 2 µ 0 (H•H)I , (15) 
The Maxwell stress tensor, by definition, accounts for the magnetic body forces and couples in the following manner

∇ • σ M = ρf m = µ 0 (∇H)M , (16) 
skw

(σ M ) = -ρL m = -skw(µ 0 M ⊗ H) . ( 17 
)
The body couple vector ρl m is the dual vector of ρL m such that L m a = l m × a for any vector a. We investigate the distributions of the magnetic body force, body couple and Maxwell stress based on the numerical solution of the magnetostatic problem at the exemplary applied magnetic induction value of µ 0 H y = 1 T. We chose this load level because, as evident from Figure 12, it is close to the end of the reorientation region, where the intensity of the magnetic field is high. A contour plot of the field-favored variant volume fraction ξ is depicted in Figure 13(a). The legend shows that ξ ranges from 0.93 to 1.0, such that at this load level the reorientation process is either finished or near completion at every point in the sample. Correspondingly, the normalized magnetization vectors of Figure 13(b) are aligned with the applied field direction. The four planar components of the non-symmetric Maxwell stress at the considered load level are shown in Figs. 14 and16. Highly non-uniform distributions of the Maxwell stress components are observed, which through Equation 15are directly correlated with the spatially inhomogeneous magnetic field and magnetization field. Specific values of the Maxwell stress components are listed in Table 2 for the representative locations P 0 to P 8 indicated in Figure15. Here Ω represents material domain Note that the σ M xx component is purely compressive in nature. Furthermore, magnitudes of nearly 21% of the applied traction of -2 MPa are observed. This implies that this component could potentially influence the formation of the stress-favored variant significantly. The σ M yy -component on the other hand is tensile, which, however, would enhance the tendency to hinder the forward reorientation process. According to Equation (17b), the σ M xy and σ M yx components displayed in Figure 16 are directly correlated with the magnetic body couple. The computed body couple component values are given in Table 3 for the selected points. If we consider point P 2 , for example, the value of the magnetic moment is 0.039 Nmm/mm 3 and it acts clockwise. The shear stress components at this point are σ M xy = -0.163 MPa and σ M yx = -0.085 MPa, see Table 2, and they contribute to balance the magnetic body couple.

Table 3. Out of plane body couple vector (Nmm/mm 3 ) at µ0 Hy = 1 T. The positive sign means anti-clockwise and the negative negative sign means clockwise direction. P 0 P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 ρL m 0.018 -0.001 0.039 0.021 -0.041 -0.001 0.039 0.02 0.041 Figure 17(a) shows the non-uniform variation of the magnetic body couple at µ 0 H y = 1 T. The magnitude of the body couple is observed to have higher values near the corners of the sample as compared to its center. This may be explained by the fact that the body couple vector is computed from the cross product between the magnetic field and magnetization vectors, such that high values result close to the corners, where the magnetic field intensifies and larger relative angles between these vectors occur. This is also illustrated in Figure 17(b). Here, the two sets of arrows at each point represent magnetization vectors (light arrows) and magnetic field vectors (dark arrows), respectively. It should be noted, that the magnetic field vector changes orientation from the corner region C 1 to C 2 , see Figure 17(a). Due to the point-symmetric nature of the numerical solution, an opposite trend of the sign change is observed between regions C 3 to C 4 . The shear stress components show a similar trend in their spatial distributions.

The intensity of the body force on the other hand depends on the gradient of the magnetic field. Spatial distributions of the body force components are plotted in Figure 18 and corresponding numerical values for points P 0 to P 8 are given in Table 4. Since the gradient of magnetic field is high near the sample corners, the body force are large in these regions. Their magnitude decreases near the center of the specimen, where the magnetic field distribution is relatively uniform. x -0.001 -0.080 -0.077 0.005 0.078 0.080 0.077 -0.005 -0.080 ρf m y 0.000 0.000 -0.046 -0.012 -0.045 0.000 0.046 0.012 0.045

Finite Element Analysis of the Magneto-Mechanically-Coupled Field

Equations for MSMA

The results in the previous section show that the intensity of the Maxwell stress components is significant compared to the applied tractions. This observation motivates us to solve a coupled magneto-mechanical problem to investigate the influence of the magnetic body forces and body couples on the Cauchy stress in an equilibrium configuration. The magnetic boundary conditions are the same as described for the magnetostatic problem. The mechanical boundary conditions of the problem are illustrated in Figure 19, where t x and t y denote the mechanical traction on the boundaries along the x-and the y-directions, respectively. The compressive traction along the x-direction is imposed by constraining the vertical displacement U of the ∂Ω 3 surface and by applying a mechanical load P = 2 MPa on the ∂Ω 1 surface. We fixed the point R to eliminate rigid body motion in the finite element analysis.

Figure 19. Imposed mechanical boundary conditions. Ω is the material domain and ∂Ω its boundary.

In addition to the field equations of the magnetostatic problem described in Section 2, the magneto-mechanical problem is described by the conservation of linear momentum and the conservation of angular momentum for the magnetic continuum [START_REF] Hutter | Field Matter Interactions in Thermoelastic Solids[END_REF][START_REF] Eringen | Electrodynamics of Continua I -Foundations and Solid Media[END_REF] 

∇•σ + ρf + ρf m = 0 in Ω , (18a) skwσ 
= ρL m in Ω . (18b) 
The expressions for the Maxwell stress tensor, the magnetic body force and the magnetic body couple were given in Equations ( 15), ( 16) and (17). By defining the total stress tensor as σ t := σ + σ M , the mechanical equilibrium equations may also be re-written in the more convenient form

∇ • σ t + ρf = 0 , and skwσ t = 0 , in Ω . (19) 
A detailed derivation of the magneto-mechanical boundary conditions is given in the appendix. The presence of the magnetic body couple causes the Cauchy stress tensor to be non-symmetric. The Cauchy stress may be decomposed in the following manner, see e.g. [START_REF] Hutter | Field Matter Interactions in Thermoelastic Solids[END_REF][START_REF] Eringen | Electrodynamics of Continua I -Foundations and Solid Media[END_REF],

σ = σ M T -µ 0 (H ⊗ M) , (20) 
where σ M T is a symmetric tensor that can be interpreted as the mechanical part of the Cauchy stress tensor. We then modify the proposed Gibbs free energy function ( 4) by assuming a dependence on σ M T , rather then the non-symmetric Cauchy stress σ. The modified expression is given by

G(σ M T , H, ξ, α, θ i , ε r ) = - 1 2ρ σ M T : Sσ M T - 1 ρ σ M T : ε r - µ 0 ρ M • H + 1 ρ f (ξ, α) + G an (ξ, α, θ) + G 0 (T 0 ) . (21) 
The constitutive equation for the total infinitesimal strain tensor then follows as or the inverse relation

ε = -ρ ∂G ∂σ M T = Sσ M T + ε r , (22) 
σ M T = C : ε e = C : (ε -ε r ) . (23) 
The newly introduced variables are the elasticity tensor C and the reorientation tensor Λ. The latter determines the direction in which the reorientation strain develops according to ε r = Λξ and its specific form for the considered twodimensional problem is given in Table 5. It should be noted that the constitutive relation for the magnetization remains unchanged.

Using the decomposition of the Cauchy stress (20) in Equation (18a), the conservation of linear momentum for the magnetic continuum under static conditions and negligible non-magnetic body forces may be written as

∇•(σ M T -µ 0 H ⊗ M) + ρf m = 0 . (24) 
This expression can be simplified as follows

∇•σ M T + [ρf m -∇•(µ 0 H ⊗ M)] = 0 , ∇•σ M T + [µ 0 (∇H)M -(µ 0 H(∇•M) + µ 0 (∇H)M)] = 0 , ∇•σ M T + [-µ 0 H(∇•M)] = 0 . (25) 
Table 5 summarizes the coupled problem consisting of the magneto-mechanical field equations, the constitutive relations and boundary conditions. In addition to the material parameters used in the nonlinear magnetostatic analysis, isotropic mechanical properties of the martensitic phase are assumed for simplicity, with a Young's modulus of 2.0 GPa and a Poisson's ratio of 0.3 (cf. [START_REF] Murray | [END_REF], [17]).

It should be emphasized that the problem solved in the finite element analysis as defined in Table 5 is only partially coupled, since the stress dependence of the magnetic response, although captured in the general formulation of the constitutive model, has been neglected. This is usually valid since all tests are preformed at a constant stress level. In the considered case the coupling thus only exists through the presence of magnetic body forces and couples in the mechanical equilibrium equations. Numerical solutions of the coupled problem in terms of the distributions of the magnetic field variables are therefore identical to those of the uncoupled magnetostatic problem presented in the previous section. Nonetheless, this approach is expected to yield much more realistic solutions for the Maxwell stress distributions, because they now satisfy mechanical equilibrium. Furthermore, the spatial variation of the Cauchy stress field under the influence of magnetic body forces and body couples can now be computed, which was the main objective of the numerical analysis.

The computed Cauchy stress field components are shown in the iso-line plots of Figure 20 for the applied magnetic induction level of µ 0 H y = 1 T. It is observed that the Cauchy stress distribution is, as expected, also strongly non-uniform in the specimen. Detailed numerical data of these components at the nine representative points P 0 to P 8 are given in the Table 6.

Note that the deviation of the axial Cauchy stress σ xx from the typically assumed homogeneous stress of -2.0MPa is substantial. The local relative difference of these values is listed in Table 7. The results show that the change in magnitude can be up to 80 %. The maximum compressive stress value of -3.58 MPa occurs at the center of the specimen. The value of the stress gradually increases from the center Maxwell Equations:

∆Φ m = -µ 0 ∇×M .
Conservation of Linear and Angular Momentum:

∇•σ M T -µ 0 H(∇•M) = 0 , skw(σ M T ) = 0 .
Constitutive Equations:

M y = M y (H y ), M x = M x (H y ) (Response of Figure (12)) σ M T = C : (ε -ε r ) ∈ Sym with ε = 1 2 (∇u + ∇u T ) , ε r = Λξ and Λ = ε r,max   1 0 0 0 -1 0 0 0 0   .
Boundary Conditions: field variables. The traction t a is related to the Cauchy's formula by σn = t a . When Maxwell stress is considered along with the Cauchy stress, an additional magneto-traction is generated. The combined traction can be calculated [69] from the jump condition σ + σ M n = 0. Since the mechanical part σ M T of the Cauchy stress is linked with the total strain through the constitutive equation ( 23), we switched our reference stress σ to the symmetric mechanical stress σ M T to solve the coupled problem. Due to this switching, the traction boundary condition modified by t = σ M T n, which is related to t a through the expression (A13). We can write

[[B]] • n = 0, [[H]] × n = 0 , σ + σ M •n = 0 or =⇒ σ M T n = t a + µ0 2 (M•n) 2 n + µ 0 (H ⊗ M)n .
t∂Ω1 = (-2 + µ 0 M x H x + µ 0 2 M 2 x )e x + µ 0 M x H y e y , (26a) 
t∂Ω2 = µ 0 M y H x e x + (µ 0 M y H y + µ 0 2 M 2 y )e y , (26b) t∂Ω3 
= -µ 0 M x H y e y , (26c) t∂Ω4 
= -µ 0 M y H x e x + (-M y H y - µ 0 2 M 2 y )e y . (26d) 
It should be noted that the x-component of the traction in Eq. (26c) on ∂Ω 3 is not imposed since the displacement boundary condition is given. At µ 0 H y = 1 T the variant reorientation process is almost complete and the M x component is almost zero, as we explained in the previous section. So, the traction on the boundary segments ∂Ω 1 and ∂Ω 3 are tx,∂Ω1 ≈ -2 MPa and ty,∂Ω3 ≈ 0 MPa, respectively. The variation of the x-component of t on ∂Ω 2 and ∂Ω 4 is plotted in Fig. 21(a). It ranges from -0.6 MPa to 0.6 MPa and the two curves coincide at each end point due to point-symmetric behavior of H x . The variation of the y-component t on the segments ∂Ω 2 and ∂Ω 4 is displayed in Fig. 21(b). In this case its magnitude exceeds 1.0 MPa.

Conclusions

In this paper magnetostatic and magneto-mechanically-coupled finite element analysis involving nonlinear magnetic shape memory behavior was presented. To the authors' knowledge simulations of this kind have not been reported elsewhere in the literature. Based on this analysis two important effects that substantially influence the constitutive modeling of MSMAs have been addressed. First, it was shown that magnetostatic computations could be used to properly account for the shape-dependent demagnetization effect which complicates the model parameter identification from experimental data. It was pointed out that this must be understood as the inverse problem of finding the model parameters such that the simulation results in the applied magnetic field vs. magnetization curve measured in the experiment for a specific sample geometry. An iterative procedure was established for which in each iteration step the magnetostatic boundary value problem was solved to obtain the relation between the applied and internal magnetic fields needed to correct the data. Furthermore, a parametric study of the specimen as- pect ratio dependence on the demagnetization effect was presented. It was found that, although the demagnetization effect varies with aspect ratio, it has significant influence on the measured magnetization curves for any aspect ratio and must certainly be accounted for. In case only average quantities are of interest, it was shown that the commonly applied demagnetization factor methodology yields sufficiently accurate results, provided, of course, the factor is available for the considered geometry. If, however, the local distribution of the field quantities in non-ellipsoidal specimen must be investigated, for example, to identify possible magnetic field and stress peaks or to investigate the influence of cracks, inclusions or other inhomogeneities, this can only be achieved via the numerical solution of coupled boundary value problems as presented in this paper.

The second main effort of the presented work was concerned with the investigation of the significance of magnetic body forces and body couples and whether or not these can be neglected in the modeling of MSMAs. In a first estimate of this influence, highly non-uniform distributions of the magnetic body force and couple and consequently the Maxwell stress field were computed from the nonlinear magnetostatic finite element analysis in a post-processing manner. In a second step, an extended analysis based on the numerical solution of the magneto-mechanicallycoupled problem then revealed that the magnetic body force and body couple cause an inhomogeneous Cauchy stress field, whose components are comparable to the typically applied stresses. This suggests that, considering current blocking stress levels, the influence of body forces should not be neglected.

From the analysis presented in this paper further challenges emerge for possible future work. Most importantly, the proposed methodology should be implemented for three-dimensional simulations and fully-coupled FE-analysis. The later would involve accounting for the change in the magnetization response with changes in the stress level, which are captured in the Kiefer & Lagoudas constitutive model, but have been so far neglected in the boundary value problem computations. An interesting question that then arises is whether the phenomenological model equations should be based on the Cauchy stress or rather the total stress tensor as an independent state variable and which of these quantities is actually measured in experiments. 
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Figure 1 .

 1 Figure 1. Schematic representation of the microstructure showing the coexistence of martensitic variants and magnetic domains.

Figure 2 .

 2 Figure 2. The x and y-components of the predicted magnetization response.

Figure 3 .

 3 Figure 3. Domain geometry, mesh and boundary conditions for the magnetostatic problem.

Figure 4 .

 4 Figure 4. Distribution of Hy in the computational domain at the applied magnetic field of µ 0 H a y = 2.0 T.
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Figure 5 .

 5 Figure 5. (a) Distribution of the magnetic field and (b) magnetization within the specimen at the applied magnetic field of µ 0 H a y = 1.3 T.

Figure 6 .

 6 Figure 6. (a) Distribution of the y-components of the magnetic field and (b) the magnetization across the specimen and its immediate vicinity at different levels of x, as indicated in Figure5, at the applied magnetic induction level of 1.3 T.
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  Numerical solution schemes have been developed to determine the demagnetiza-

Figure 7 .

 7 Figure 7. Magnetization data iteratively corrected for demagnetization. Specimen aspect ratio 2:1.

Figure 10 .

 10 Figure 10. Comparison of the corrections using the demagnetization factor method and nonlinear FEanalysis. Specimen aspect ratio 2:1.

Figure 11 .

 11 Figure 11. Position dependence of the magnetization response within the rectangular specimen.

Figure 12 .

 12 Figure 12. The x and y-components of the corrected magnetization curves used in the Fe-analysis.

Figure 13 .

 13 Figure 13. (a) Field-induced martensitic volume fraction and (b) normalized magnetization vector distribution at µ 0 Hy = 1 T.

Figure 14 .

 14 Figure 14. (a) σ M xx and (b) σ M yy -component distribution of the Maxwell stress (MPa) at µ 0 Hy = 1 T.

Figure 15 .

 15 Figure 15. Location of nine representative points at which the numerical solution is explored in detail.Here Ω represents material domain

Figure 16 .Figure 17 .

 1617 Figure 16. (a) σ M xy and (b) σ M yx -component distribution of Maxwell stress (MPa) at µ 0 Hy = 1 T.

Figure 18 .

 18 Figure 18. (a) ρf m x and (b) ρf m y component distributions (N/mm 3 ) at µ 0 Hy = 1 T.

Figure 20 .

 20 Figure 20. (a) σxx and (b) σyy-component distribution of the Cauchy stress tensor (MPa) at an applied magnetic induction level of µ 0 Hy = 1 T.

  σ yy -0.39 -0.08 -0.10 -0.22 -0.11 -0.07 -0.11 -0.22 -0.11 towards the left and right edges, where the sign changes from negative to positive. Note also that the horizontal component σ yy is non-zero and attains values of almost -0.53 MPa as observed in Figure20(b). It is compressive in most of the sample, except regions A and B indicated in Figure20(b), where it exhibits positive values. Except for the concentrations near the corners, the magnitude of the σ yy component is high around the center, where it reaches the compressive stress of largest magnitude with -0.39 MPa, and then decreases towards the edges.

Figure 21 .

 21 Figure 21. Variation of the mechanical traction components on ∂Ω 2 and ∂Ω 4 at µ 0 Hy = 1 T (a) xcomponents and (b) y-components.
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Table 2 .

 2 Maxwell stresses (MPa) at µ0 Hy = 1 T.

		P 0	P 1	P 2	P 3	P 4	P 5	P 6	P 7	P 8
	σ M xx σ M yy σ M xy σ M yx	-0.336 -0.444 -0.416 -0.329 -0.416 -0.444 -0.416 -0.329 -0.416 1.011 1.227 1.178 0.996 1.178 1.227 1.178 0.996 1.178 -0.036 0.004 -0.163 -0.032 0.173 0.005 -0.163 -0.032 0.173 0.000 0.003 -0.085 0.001 0.090 0.002 -0.085 0.001 0.090

Table 4 .

 4 Body force values (N/mm 3 ) at µ0 Hy = 1 T.

	ρf m	P 0	P 1	P 2	P 3	P 4	P 5	P 6	P 7	P 8

Table 5 .

 5 Summary of the field equations, constitutive equations and boundary conditions.

Table 6 .

 6 Cauchy stress values (MPa) at an applied induction level of 1 T.

	P 0	P 1	P 2	P 3	P 4	P 5	P 6	P 7	P 8
	σ xx -3.58 -2.31 -2.25 -2.30 -2.15 -2.32 -2.25 -2.32 -2.17

Table 7 .

 7 Percentage difference in the computed local Cauchy stresses and a homogeneous stress level of -2.0MPa at an applied induction of 1 T.

	P 0	P 1	P 2	P 3	P 4	P 5	P 6	P 7	P 8
	σ xx 79.								
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The specific results presented here are based on solutions of

2-D boundary value problems and can thus only be used for a qualitative assessment. The procedure is the same for 3-D problems, which, however, are computationally much more involved.
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APPENDIX Appendix A. Magneto Mechanical Boundary Conditions

We seek to prove that if

where σn = t a . Therein, n is the outward unit normal to the boundary ∂Ω and A := A + -A -is the jump operator, where A + and A -represent the values of A on either side of the discontinuity surface. From Ampère's law, we can conclude that [[H t ]] = 0, i.e. Eq. 2(b), where the superscript t represents the tangential direction. It then follows

Using the constitutive relation H = 1 µ0 B -M in Eq. (A3) and Eq. (2a) we find

Here we have used the fact that M + = 0 and M -= M. Note that Eq. ( 15) can be rewritten as

The first term in Eq. (A5), using

, may be written as

From Eq. (2b) it is clear that H t = n × H = 0 and consequently H t • H t = 0 implies (cf. [69]),

From Eqs. (A7), (A8) and (A9), we conclude

which means H • H = (H • n) 2 . Now with Eq. (A10) we can write the second term on the right hand side of Eq. (A5) in the following form

• n due to Eq. (2a) and Eq. (A4), it follows

Substitution of Eqs. (A6) and (A11) into Eq. (A5) yields

In consequence, with Eq. ( 20), we obtain

Finally, Eq. (A1) yields the boundary condition in the following form