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Abstract

A finite element procedure for modeling crystalline nanostructures such as nanowires
is proposed. The size effects exhibited by nano objects are captured by taking into
account a surface energy, following the classical Gurtin Murdoch surface elasticity
theory. An appropriate variational form and a finite element approach are provided
to model and solve relevant problems numerically. We describe a simplified technique
based on projection operators for constructing the surface elements. The method-
ology is completed with a computational procedure based on ab initio calculations
to extract elastic coefficients of general anisotropic surfaces. The FEM continuum
model is validated by comparisons with complete ab initio models of nanowires with
different diameters where size-dependent mechanical properties are observed. The
FEM continuum model can then be used to model similar nanostructures in ranges
of sizes or geometries where analytical or atomistic model are limited. The validated
model is applied to the analysis of size effects in the bending of an AlN nanowire.

Key words: surface stress, size effects, nanowires, ab initio calculations

1 Introduction

Nanosized objects have at least one dimension in the nanometer range, roughly
between 1 to 100 nm. They are intermediate in size between atomistic/molecular
and microscopic/continuum structures. By assembling nanostructural elements,
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it is possible to manufacture nanocomposites or nanodevices with desired prop-
erties and functions. Various types of nanostructural elements like nanowires,
nanotubes, nanorods, nanorings, nanobelts or nanocombs have been synthe-
sized and can serve as building blocks for nanosystems and nanostructures.
In particular, 1D nanostructures such as nanowires have a great potential
for use in nanoscale electronic components, field-effects transistors [2,10], ul-
tra sensitive nanoscale gas sensors [11,69], nanoresonators [3], nanocantilevers
[29], electromechanical oscillator [75], MEMS/NEMS [12,66,21] or microscopy
probes [36]. For example, a nanogenerator which uses ZnO nanowires to con-
vert mechanical energy to electrical energy has been successfully fabricated
[61]. A review of mechanical effects in nanowires can be found in [45].

Nanowires and in general nanostructures are characterized by non zero surface
energy that makes their effective properties size-dependent. Due to a different
local environment, atoms near a free surface or interface have different equi-
librium positions than do atoms in the bulk. Many experiments have reported
such size-dependent behavior [67,13,55,5,7,9,56,28,7,49]. Due to the experi-
mental difficulties related to very small sizes, measured properties for a given
material are scattered and sometimes contradictory. An interesting related
review and discussion can be found in [1].

The most straightforward methods to model nano objects are atomistic sim-
ulations either based on molecular dynamics (MD) or ab initio calculations.
Studies employing MD to analyze size effects in nanostructures can be found
for example in [9,1,47,50,14]. Works employing ab initio can be found e.g. in
[22,63,46,6]. However, for objects characterized by a length larger than a few
nanometers, the number of atoms in the systems becomes prohibitive to carry
out computations. Multiscale numerical methods have been proposed in recent
years (see e.g. [58,23,48,60,42,70] among many others). Though very useful in
many cases, these techniques inherently neglect some effects such as atomistic
scale surface stress due to the fact that ghost, or pad atoms are necessary
at the continuum/ atomistic boundary to ensure energy and force continuity
[44]. An alternative is to construct continuum models augmented with surface
energies related to the nanoscale effects.

Surface free energy is neglected in traditional continuum mechanics because
it is associated with only a few layers of atoms. For objects with dimensions
larger than dozen of nanometers, the ratio between volume and surface is ex-
tremely small. However, for nano-sizes particles, wires and films, this ratio
becomes significant, and so does the effect of surface free energy. The impor-
tance of surface stress has led to important theoretical modeling advances that
has started with the works of Gurtin and Murdoch [26]. In main approaches,
nanosized bodies are generally considered to be made up of a ”bulk” and a
bounding ”surface” in a continuum theory. In [35,15] a framework has been
proposed to incorporate the surface energy into the continuum theory using a
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strain gradient approach, and used to model the size effects in nanobeams. To
explain the size-dependence in their studies, Chen et al. [7] proposed a core-
shell model, where the nanowire is treated as a composite with a shell and a
core structure. This model assumes a Young modulus higher for the shell than
for the bulk. In [15], Dingreville et al. proposed a methodology to model the
size-dependent effective moduli of isolated nanosized elements (particles, wires
and films). Effective properties of composites containing interface stress have
been proposed in Duan et al. [18,19,17,62], Sharma et al. [52,53], and Le Quang
and He [34], among others. For nanoparticles presenting sharp edges and cor-
ners, additional energetic terms related to line integrals can also be included
[72]. This is especially important for 2D objects like graphene sheets [47].
It should be noted that the above-mentioned theoretical works are confined
to systems of simple geometries, while systems with more complex geometries
cannot be solved analytically. To further elucidate the surface elastic effect and
characterize mechanical behaviour of nanosystems, numerical methods such as
the finite element method (FEM) are promising alternatives. Wei et al. [64]
and Tian et al. [59] proposed an FEM technique employing special surface
elements to take into account surface elasticity. Yvonnet et al. [71] introduced
an extended finite element (XFEM) methodology to include surface energy in
nanosystems without any surface mesh requirement neither curvilinear coor-
dinates. In a series of works, see e.g. [41–44], Park and coworkers developed an
alternative continuum framework incorporating surface effects based on a the
surface Cauchy-Born model. It extends the traditional Cauchy-Born theory
[4,57,65,58] by augmenting the continuum bulk energy density with a surface
stress and takes into account nonlinear effects. In [32,33], Javili and Steinmann
introduced formulations for solids with surface energies and related FEM dis-
cretization at finite strains. In [68] a different approach was used, considering
a nanocantilever as an inhomogeneous bulk continuum materials whose local
elastic constant are calculated from atomistic level.

In approaches in which surface properties are involved to model the size ef-
fects, a necessary step is the extraction of surface parameters. Shenoy and
Miller [38,54] proposed a procedure based on MD calculations in the case of
metallic crystals surfaces. Hamilton et al. [27] developed a similar technique to
compute elastic coefficients of Cu (111) surfaces. In [22,63] slab models were
employed to calculate surfaces coefficients via ab initio calculations. More re-
cently, Zhang et al. [72], and Reddy et al. [47] have described methods to com-
pute edges elastic properties in nanowires with sharp edges and in graphene
sheets, respectively.

This work provides a complete procedure for modeling size-dependent mechan-
ical effects in nanowires. Firstly, a continuum variational framework enriched
with surface energy is developed, and a three-dimensional FEMmethodology is
presented to solve the problem numerically. The formulations are similar to the
works of Javili and Steinmann [32,33], though here restricted to stationnary
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and small strains. The main differences lie in the FEM discretization: in the
present work the discrete surface operators are constructed without curvilinear
coordinates, the surface projector operator components are directly embedded
in the matrices. Secondly, a new technique based on ab initio computations is
detailed to determine the surface parameters related to the continuum model.
In an associated paper [39], we discuss in more details the physical phenomena
at the atomistic scale and propose an analytical model of nanowire.

In section 2, we present the enriched continuum model equations and associ-
ated variational forms used within the FEM methodology, provided in section
3. In section 4, the procedure to extract the elastic surface parameters based
on ab initio calculations is described. Validation tests and numerical examples
are provided in section 6. We first compare our continuum model with full AlN
ab initio nanowire models of different sizes. Then the validated model is used
to analyze size effects in the bending analysis of a nanowire.

2 Continuum modelling with surface energy

We consider an open domain Ω ∈ R
3 with a bounding surface Γ. The latter Γ is

composed of two disjoint complementary parts Γu and ΓF where the displace-
ments and forces are prescribed, respectively. To introduce the surface energy
and related size effects, the Gurtin-Murdoch model [26] of surface elasticity is
adopted. The equilibrium equations of the problem are then given by

∇ · σ + b = 0 in Ω, (1)

∇s · σs + σn = 0 on Γ (2)

where σ is the Cauchy stress tensor, b is body force and n is the outward
unit normal vector to Γ. Equation (1) refers to the bulk equilibrium equation,
while Eq. (2) refers to the surface equilibrium (see e.g. [8]). Superscript (.)s

refers to surface quantities or operators. In Eq. (2), ∇s ·T denotes the surface
divergence of a differentiable second-order tensor T and is defined by:

∇s ·T = ∇T : P. (3)

In the above equation, the symbol ”:” denotes double contraction of indices
and P(x) = 1 − n(x) ⊗ n(x) is an orthogonal projection operator describing
the projection on the plane tangent to Γ at x ∈ Γ. The surface strain and
stress tensors are defined by:

σ
s = PσP, ε

s = PεP, (4)
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where ε = 1

2
(∇u+∇uT ) is the linearized strain tensor and u is a displacement

field. It is worth noting that the operator P does not involve any basis change:
the reader has to keep in mind that Ts denotes the projection of T on the
surface Γ. Thus Ts = PTP does not express the components relative to the
basis of the tangent plane to the surface. This projection tensor nicely allows
one to mix bulk and surface quantities in one equation. The surface stress σs

is related to the surface strain by

σ
s =

∂γs
0
(εs)

∂εs
+

∂γs(εs)

∂εs
. (5)

Above, γs(εs
0
) and γs(εs) are specified by

γs
0
(εs) = τ

s : εs, γs(εs) =
1

2
ε
s : Cs : εs. (6)

Physically, γs
0
(εs) is an energy density due to surface residual stress τ s, γs(εs)

is a surface strain density function with C
s denoting a surface elastic tensor.

We do not assume an isotropic surface, i.e. τ s 6= τ sP. A discussion on the
isotropic assumption of surfaces is proposed in [38]. The equations (1-2) are
completed with boundary conditions prescribed on the surface Γu and ΓF as











σn = F̄ on ΓF

u(x) = ū(x) on Γu.
(7)

Finally, it is assumed that the surface adheres to the bulk:

JuK = 0 on Γ. (8)

It is worth noting that this model is a special case of a coherent imperfect
interface [25] between two materials when one of them vanishes, thus the im-
perfect interface becomes a coherent membrane with its own elastic behavior.

To apply this framework to finite element analysis, we provide in the following
the weak form of the equations. It can be derived straightforwardly by taking
the classical weak form and taking into account a term related to the virtual
internal work of the surface [71]. Another way to obtain it is to express the
potential energy of the system and minimize the energy with respect to the
displacement field. Thus, the potential energy of the system is given by:

E = W b(ε) +W s(εs)−W ext. (9)

In the above expression, W b(ε) is the bulk elastic strain energy given by

W b(ε) =
∫

Ω

1

2
ε : Cbulk : εdΩ. (10)
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In (9), W s(εs) is the surface elastic energy provided by

W s(εs) =
∫

Γ

[γs
0
(εs) + γs(εs)] dΓ. (11)

Finally, the work of external forces is expressed by:

W ext =
∫

ΓF

u · F̄dΓ +
∫

Ω

u · bdΩ. (12)

The equilibrium is found by writing the stationarity condition:

DδuE = 0 (13)

where Dvf is the Gâteaux derivative of the functional f in the direction v. It
leads to the weak form suitable for finite element discretization:

Find u ∈ H1(Ω) and u = ū on Γu such as

∫

Ω

ε(u) : Cbulk : ε(δu)dΩ +
∫

Γ

ε
s(u) : Cs : εs(δu)dΓ

=
∫

ΓF

F̄ · δudΓ +
∫

Ω

b · δudΓ−
∫

Γ

τ
s : δεs(δu)dΓ (14)

for all δu ∈ H1

0
(Ω), H1(Ω) and H1

0
(Ω) being the usual Sobolev spaces.

3 Finite element discretization

In the following the Voigt notation is adopted. The vectorial form of the stress
tensor is given by [σ] = {σ11, σ22, σ33, σ23, σ13, σ12} = {σ1, σ2, σ3, σ4, σ5, σ6} and
the strain tensor counterpart is given by [ε] = {ε11, ε22, ε33, 2ε23, 2ε13, 2ε12} =
{ε1, ε2, ε3, ε4, ε5, ε6}. The indices 1, 2 and 3 correspond to the x, y and z

directions, respectively (see figure 1). In this work we consider the nanowire
which is a monocrystal with wurtzite structure, as for example AlN, which
grows with hexagonal cross-sections (see figure 3) and whose bulk elastic tensor
can be expressed by 5 independent constants C

11
, C

33
, C

44
, C

12
and C

13
. The

matrix form Cbulk of the bulk elastic tensor such that [σ] = Cbulk[ε] is given
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Fig. 1. Local basis and finite element model of nanowire with hexagonal cross section.

by:

Cbulk =



































Cb
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Cb
12

Cb
13

0 0 0

Cb
12

Cb
11

Cb
13

0 0 0

Cb
13

Cb
13

Cb
33

0 0 0

0 0 0 Cb
44

0 0

0 0 0 0 Cb
44

0

0 0 0 0 0
Cb

11
−Cb

12

2



































. (15)

To solve the problem by FEM, it is necessary to discretize the weak form (14).
While the bulk terms lead to classical matrix and vector forms, terms related
to surface energy require a specific treatment. The domain is first discretized
into volume elements, as shown in figure 1.

To discretize the surface terms, surface elements are required. In [71], we
proposed a framework avoiding the explicit mesh of surfaces when considering
surface energy by using an XFEM/level-set approach. In this work however,
we adopt the classical FEM framework for the sake of simplicity. Let (e1, e2)
a local orthonormal basis related to the surface such that e1 = t and e2 = z,
with z and t = z × n unit vectors along the main direction of the nanowire
and tangent to the surface Γ (see figure 1).

The surface residual stress can be expressed by:

τ
s = τ s

1
e1 ⊗ e1 + τ s

3
e2 ⊗ e2 = τ s

1
t⊗ t+ τ s

3
z⊗ z. (16)
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Due to the symmetry of the hexagonal nanowire, the six facets are identical
and correspond to the (101̄0) surfaces. Then the surface stress can be related
to surface strain through four independent constants Cs

11
, Cs

13
, Cs

33
and Cs

55

and two residual stress components τ s
1
and τ s

3
:















σs
1

σs
3

σs
5















=















Cs
11

Cs
13

0

Cs
13

Cs
33

0

0 0 Cs
55





























εs
1

εs
3

2εs
5















+















τ s
1

τ s
3

0















. (17)

The elastic tensor is expressed in the local basis as:

C
s = Cs

11
t⊗ t⊗ t⊗ t+ Cs

33
z⊗ z⊗ z⊗ z

+Cs
13
(t⊗ t⊗ z⊗ z+ z⊗ z⊗ t⊗ t)+Cs

55
(t⊗z⊗t⊗z+z⊗t⊗z⊗t)(18)

On substituting the FEM discretization into the weak form (14), and using
the arbitrariness of nodal variations δu, the following discrete system of linear
equations is obtained:

(K+Ks)q = F− Fs (19)

with q being the vector of unknown displacements,

K =
∫

Ω

BTCbulkBdΩ (20)

being the bulk rigidity matrix and

Ks =
∫

Γ

BTMT
pC

sMpBdΓ (21)

being the surface rigidity matrix. In (21) Cs is the matrix form of the tensor
(18) such as [σs] = Cs[εs], with [σs] = {σs

11
, σs

22
, σs

33
, σs

23
, σs

13
, σs

12
} and [εs] =

{εs
11
, εs

22
, εs

33
, 2εs

23
, 2εs

13
, 2εs

12
}. Note that [σs] is different from the left-hand term

in (17) which express the surface stress in the local basis (tangent to the
surface) while [σs] is expressed in the cartesian basis. As Cs is symmetric
(see Eq. (18)), the matrix Ks is also symmetric. The matrix Mp relates the
surface strains to the bulk strains through [εs] = Mp[ε]. Its expression in 3D
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is specified by

Mp =



































P 2

11
P 2

12
P 2

13

P 2

12
P 2

22
P 2

23

P 2

13
P 2

23
P 2

33

2P12P13 2P22P23 2P23P33

2P11P13 2P12P23 2P13P33

2P11P12 2P12P22 2P13P23

P12P13 P11P13 P11P12

P22P23 P12P23 P12P22

P23P33 P13P33 P13P23

(P 2

23
+ P22P33) (P23P13 + P12P33) (P22P13 + P12P23)

(P13P23 + P12P33) (P 2

13
+ P11P33) (P12P13 + P11P23)

(P13P22 + P12P23) (P11P23 + P13P12) (P11P22 + P 2

12
)



































. (22)

To compute (21), we define a set of surface elements Se = {Γe
1
,Γe

2
, ...,Γe

M}
such as

⋂M
i=1

Γe
i = Γ. In the present case, Γe

i are triangular facets. Let SΓ be
the set of tetrahedral elements having a triangular facet in Se (see figure 2)
and Ωe ∈ SΓ. We consider a bulk integration point xe

Ω
∈ Ωe and xe

Γ
∈ Γe a

surface integration point (see figure 2). If linear elements are considered, then
the strain field is constant within each element Ωe. At the interface between
elements the strain field is discontinuous. However, on the boundary we can
extend the strain field to x ∈ Γe:

ε(xe
Γ
) = lim

x
e

Ω
→x

e

Γ

ε(xe
Ω
) = ε(xe

Ω
). (23)

Then

[εs(xe
Γ
)] = B(xe

Ω
)[ue] (24)

with [ue] being the nodal displacement unknowns of Ωe.

We finally obtain the following approximation for Ks:

Ks ≃
∑

e∈SΓ

BT (xe
Ω
)MT

p (x
e
Γ
)Cs(xe

Γ
)Mp(x

e
Γ
)B(xe

Ω
) |Γe| (25)

where |Γe| denotes the area of the triangular element Γe. Remark that inte-
gration points being located inside triangular facets, the unit normal vector
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bulk

G

n G
e

W
e

Fig. 2. integration points for surface elements.

n and tangent projector P are well defined. In this work we exclude the sur-
face energies of both ends surfaces where displacement and external forces are
prescribed. The generalized force vectors are obtained by

F =
∫

ΓF

NT F̄dΓ +
∫

Ω

NTbdΩ (26)

Fs =
∫

Γ

BTMT
p τ

sdΓ, (27)

where N is a classical FEM shape functions matrix. In the following, body
forces are neglected.

4 Extracting coefficients using Quantum Mechanics calculations

4.1 ab initio calculations

In the present work, bulk and surface elastic parameters are extracted through
atomistic ab initio calculations. The above procedure has also been described
in our associated paper [39]. A reason to employ ab initio calculations is to
propose a framework that could be extended to piezoelectricity or coupled
mechanical/chemical phenomena in future studies. Though methods such as
core-shell models [74,37] can be used to introduce polarization within Molecu-
lar Dynamics, the validity of empirical potentials in the vicinity of defects and
free surfaces is delicate. It is also true that ab initio calculations are limited
for finite temperature calculations. However, as the present work is concerned
with the study of surface effects, we want to remove possible artifacts related
to empirical potentials that might lead to unphysical phenomena. Assuming 0
K temperature, elastic parameters are computed by deriving the energy with
respect to the strains prescribed on a chosen unit cell. The total energy of the
system if obtained as the lowest eigenvalue (ground state) of the electronic
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Schrödinger equation for fixed nuclei (Born-Oppenheimer approximation):

Ĥel(r,R)Ψk(r,R) = E(R)Ψel(r,R) (28)

where Ĥel is the electronic Hamiltonian operator, depending on the electrons
positions r, containing nuclear coordinates R as parameters. Ψk is the elec-
tronic wave function and E(R) is the total energy of the system as a function
of nuclear coordinates. The explicit form of the Hamiltonian operator is

Ĥel = − ~
2

2me

∑

i

∇2

i +
∑

α

∑

β

ZαZβe
′2

dαβ

−
∑

α

∑

i

Zαe
′2

dαi
+

∑

j

∑

i>j

e′2

dij
(29)

= (I) + (II) + (III) + (IV ) (30)

where the different terms are related to: (I) electrons kinetic energy, (II) nuclei
α, β repulsion energy, (III) attraction between electrons and nuclei potential
energy and (IV) electrons repulsion potential energy. For zero temperature we
neglect nuclear vibrations. In above equations, ~ = h/(2π), h being Planck’s
constant, α,β denote the indices related to nuclei, me denotes electronic mass,
i,j denote the indices related to electrons and ∇2

i are the Laplacian operators
related to the i-th electron position. The parameter Zα is the charge of nucleus
α, e′ = e/(4πε0)

1/2 with ε0 being the permittivity of vacuum and dαβ is the
distance between two particles. Due to its high dimensionality, iterative and
approximate methods are required to solve the Schrödinger equation such as
Hartree-Fock (HF) or Density Functional Theory (DFT) methods [31].

In the present work we used the CRYSTAL code [16] for all ab initio calcu-
lations. B3LYP KS-DFT method with extra large space integration grid, was
used. Basis set was 86-21G* for Al [40], and 6-31Gd1G for N [24]. We have
chosen the hybrid B3LYP functional because it is known to provide quite ac-
curate energetic properties. As we are interested in elastic behavior, which is
evaluated through energy derivatives, this choice seems appropriate.

4.2 Bulk coefficients

AlN nanowires have wurtzite structure related to the unit cell shown in figure
3 and described by the parameters a = 3.1111 Å, c = 4.9788 Å and u = 0.3828.
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c

a

u.c

a

Fig. 3. Unit cell for wurtzite structure.

Table 1
Bulk elastic parameters (GPa).

Present work Expt.

Cb
11

421.0 410 ± 10.0

Cb
33

405.4 388.5 ± 10.0

Cb
12

133.2 148.5 ± 10.0

Cb
13

100.1 98.9 ± 10.0

Cb
44

129.9 124.6 ± 4.5

Experimental values are provided from [30].

The unit cell volume V is computed as

V = a2
c
√
2

2
(31)

The elastic constants are given by

Cb
ij =

1

V

∂2E

∂εiεj
i, j = 1, 2, ..., 6 (32)

where E = E0 is the total energy per unit cell (ground state energy) and V is
the unit cell volume. The total energy is determined using the DFT method
described above for several values of strains εi prescribed on the cell. When
calculating elastic parameters, we fully relax internal atomistic coordinates
for distorted unit cell. The data are fitted with a quartic polynomial which
is derived to extract elastic constants. The obtained bulk elastic parameters
are provided in Table 1. These results agree well with previous works and
experimental values [39].
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n

z
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n

Fig. 4. Slab models with number of layers n.

4.3 Surface coefficients

To compute surface elastic parameters, a surface (slab) model shown in figure
4 is used, consisting of n layers of atoms in the direction normal to the surface.
Periodic conditions are applied along both other directions.

The possible strains for the slab system are εs
1
, εs

3
and εs

5
which are prescribed

along the z-(3) and t-(1) directions. The upper and lower surfaces normal to n

are free to relax. The total energy of the system is the sum of two components,
the surface energy and the bulk energy. The surface energy has to be isolated
from the total energy. We assume the following model:

Eslab(w) = wEs + (1− w)Eslab(w → 0) (33)

where

w =
2

n
(34)

is the relative weight of the surface for a n-layer slab, as the model depicted
in figure 4 contains two external atomic layers. Defining the elastic constants
as derivatives of the energy with respect to strains, we obtain

Cslab
ij (w) = wCs

ij + (1− w)Cslab
ij (w → 0) (35)

where Cs
ij are the surface elastic properties and Cslab

ij (w → 0) are the limit
values which can be obtained from bulk term by fully relaxing ε2 for fixed ε1
and ε3 and optimizing the energy of the system. It yields [39]:

Cslab
11

(w → 0) =

(

Cb
11

)2 −
(

Cb
12

)2

Cb
11

(36)

Cslab
13

(w → 0) =
Cb

13

(

Cb
11
− Cb

12

)

Cb
11

(37)
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Cslab
33

(w → 0) =
Cb

33
Cb

11
−

(

Cb
13

)2

Cb
11

(38)

Cslab
55

(w → 0) = Cb
44
. (39)

Eq. (35) can be re-arranged as

Cij(w) = w(Cs
ij − Cslab

ij (w → 0)) + Cslab
ij (w → 0). (40)

The procedure consists into computing values of Cij for different values of w
(by increasing the number of layers n) and fitting the obtained curve with a
linear function to identify the slope r = Cs

ij − Cslab
ij (w → 0) and thus Cs

ij. For
the residual stress we have:

τi(w) = wτ si . (41)

In that case τ si are directly obtained from the slope of the linear fit. We define
per-area elastic constants as

Cslab
ij =

1

S

∂2Eslab

∂εi∂εj
(42)

where S = ac is the unit cell area. The total surface energy Eslab is deter-
mined using the DFT method described above for several values of strains ε1,
ε2 and ε5. As for bulk computations, a polynomial fitting was used to extract
the derivatives. The resulting surface parameters are provided for the (101̄0)
AlN wurtzite surfaces in Table 2 (parameters A). In figure 5 the relative dis-
placements in a slab model in free relaxation with n = 9 layers is depicted,
showing the surface effects. Al atoms are denoted by red circles while N atoms
are denoted by blue circles.

5 Remarks

(1) In a previous work [71], a XFEM discretization was introduced to model
the surface effects. In this paper, we have deliberately chosen not to
introduce the XFEM for the sake of simplicity. In the case where a three-
dimensional mesh can be easily constructed for the domain and surface
geometries, the XFEM procedure is not necessary. In that case, a stan-
dard FEM discretization procedure such as the one presented here is
useful, as it allows employing classical FEM softwares. The cases stud-
ied in Yvonnet et al. [71], were more complex, involving microstructures
with random distributions of voids, that justified the use of XFEM. Fur-
thermore, it is worth noting that the present procedure introduced to
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Fig. 5. Displacements of atoms in the slab model under free relaxation (red circles
denote Al atoms, blue circles denote N atoms)

estimate the elastic coefficients via ab initio calculations is independent
from the discretization technique.

(2) In Eq. (9), one alternative would be to integrate the bulk energy over a
domain without the boundary layer occupied by a few atoms. However,
it would lead to several difficulties: a) numerical integration would be
more complicated in elements near the surface; b) the definition of the
surface energy would then be delicate, as it would have to be weighted
with respect to the nanowire diameter. A model with zero thickness has
the advantage of avoiding these issues. However, the results obtained by
directly using the coefficients from slab models are not always satisfac-
tory and require adjusting the parameters. Quantifying error due to the
difference between these two physical systems requires further theoretical
and computational investigations which are beyond the scope of this first
study.

6 Numerical examples

6.1 Validation of the model: nanowire in traction

The aim of this first example is to validate the mechanical continuum model
by comparing it with ab initio calculations. Different atomistic models fully
solved with an ab initio method are constructed with increasing diameters.
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Fig. 6. Atomistic models of nanowires from n = 1 to n = 4

We classify the nanowires according to the number of atomic layers n in the
nanowires (see figure 6). The biggest calculated nanowire corresponds to n = 7
and contains 588 atoms in the unit cell. As both periodic conditions along
z-axis and hexagonal symmetries are taken into account, a reduced model
containing 98 atoms is employed. The cross sections corresponding to n = 1
to n = 4 are depicted in figure 6.

We compute three quantities for both models: (a) the Young modulus Ēzz,
(b) the axial residual strain ε̄0zz, the axial strain of the nanowire in absence of
loading due to surface residual stress τ s and (c) the bulk radial residual strain
ε̄0rr. This last value is defined as the radial strain in absence of loading taken at
the center of a section. While the radial residual strain is not constant within
the section, as seen in the following, it is quite constant in a region near the
center of the section. This provides a comparable quantity for both models
regarding the radial strain, as the diameter variation cannot be defined due
to the complex deformation of the surface.

To compute the Young modulus of the ab initio nanowire model, a strain
along the Z-direction of the nanowire is prescribed while the atoms in the
other directions are free to relax. The energy is then computed by the ab

initio method described above for different strains and used to calculate

Ēabinit
zz =

1

V h

∂2E

∂ε2z
, (43)

V h being the volume of the hexagonal periodic layer. In the case of the
FEM/continuum, we compute the Young’s modulus by blocking the Z- de-
grees of freedom on one hexagonal facet and prescribing a stress distribution
F̄ = σn = σ̄zz (ez ⊗ ez)n on the other end. The problem being linear, the
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Young’s modulus is evaluated as

ĒFEM
zz ≈ σ̄zz

ε̄zz − ε̄0zz
, (44)

where ε̄zz is the strain of the nanowire corresponding to σ̄zz. To reproduce
the simulation conditions of ab initio calculations, where strain is applied to
the system, we carried out another series of tests to estimate the effective
Young modulus. For this purpose, we prescribed macroscopic strains along
z-direction, while allowing relaxation in the radial direction, and computed
the effective energy of the system for each one. The Young modulus was then
obtained by the second-derivative of the effective energy, estimated by finite
differences. An FEM model of a nanowire with hexagonal cross-section, di-
ameter d and length L = 4d is meshed with tetrahedra as shown in figure
1. Different meshes with increasing element densities have been used to test
the convergence of the solution, with 1344, 8905 and 24266 elements, and 361,
2035 and 4815 nodes, respectively.

In the present case, the bulk Young modulus along the z - direction can be
calculated by first relaxing radial strains in the energy expression and then
deriving twice this expression with respect to the axial (z) strain. Thus, we
obtain:

Ēb
zz =

Cb
33
(Cb

11
+ Cb

12
)− 2

(

Cb
13

)2

Cb
11 + Cb

12

. (45)

Using the numerical values of Table I obtained from our ab initio calculations
we find Eb

zz = 369.239 GPa. Setting zero values to the surface parameters, we
find numerically 369.23972 GPa using both methods for the mesh with 24266
elements.

To evaluate ε̄0rr, an element containing the center of the section is selected.
Then the strain tensor in the radial basis ε̃ = RT

εR is computed, R being a
rotation matrix related to the radial basis. For FEM curves, two results are
provided, denoted by Continuum A and Continuum B. The model A employs
the surface parameters obtained directly from the slab calculations, without
any corrections. Model B uses parameters which are optimized so as to fit
the three Ēzz, ε̄

0

zz and ε̄0rr ab initio curves. The initial parameters obtained
from the slab procedure were taken to be initial guess for the optimization
procedure. The obtained surface parameters are reported in Table 2.

Results are presented in figures 7, 8, 9 and 10. The mesh containing 8905
nodes was used to plot the continuous curves.

We can observe from figure 7 that the agreement between the continuum and
ab initio models is good in regards to Young’s modulus, when employing the
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Table 2
Surface elastic parameters (N/m).

Parameters A (obtained from slab calculations) Parameters B (optimized)

Cs
33

= 78.0 Cs
33

= 93.59

Cs
11

= 114.1 Cs
11

= 114.1

Cs
13

= 22.3 Cs
13

= 22.3

Cs
55

= 44.0 Cs
55

= 44.0

τ s
1
= −2.33 τ s

1
= −3.33

τ s
3
= −0.873 τ s

3
= −1.533
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Fig. 7. Effective Young modulus of the nanowire: comparison between continuum
FEM model and ab initio model (prescribed stress).

coefficients obtained from the slab procedure without any modification. The
use of the optimized coefficients gives rise to a slight improvement. Using the
energy method, we obtain slightly better results than using the applied stress,
as shown in figure 8.

In figure 9, we notice a significant discrepancy with respect to the ab in-
tio solution when the continuum model is applied with the coefficients A for
computing ε̄zz. Several sources of errors are possible: a) the slab surface as-
sumes an infinite surface, while the surfaces are actually finite in the hexagonal
nanowire; b) we did not take into account the energy of the edges correspond-
ing to the intersection of the planes containing the facets of the nanowire. As
reported in other works, these energy are in some cases not negligible for small
nanoparticles sizes [73], c) additional couplings between surface and bulk due
to the hexagonal symmetry might occur [39], which cannot be captured by the
present slab model. However, using the optimized coefficients B, a very good
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Fig. 9. Nanowire axial strain in relaxation: comparison between continuum FEM
model and ab initio model

agreement is observed.

In contrast, the agreement for ε̄rr is satisfactory when one uses the slab pa-
rameters A. As expected, the optimized coefficients B lead to an even better
accuracy of the model.

In table 3 we provide the values of Ēzz, ε̄
0

zz and ε̄0rr computed with the con-
tinuum FEM model for different mesh densities to test the convergence of the
solution. A diameter d = 1 nm was chosen, and the surface parameters A were
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Fig. 10. Nnaowire Bulk radial strain in relaxation: comparison between continuum
FEM model and ab initio model

Table 3
Convergence of the computed values versus mesh size.

Nb. elements 1344 8905 24266

Ēzz (GPa) 683.2 651.3 649.4

ε̄0zz 0.002788 0.00280699 0.00280172

ε̄0rr 0.005472 0.004150 0.0039808

used.

From the above results, we conclude that the model has a good accuracy re-
garding the effective properties of the nanowire. In what follows, we examine
the local fields. A continuous displacement field is constructed from the ab

initio discrete atomic displacements. For this purpose, a Delaunay mesh is
constructed on the basis of the atomic coordinates. As the set of atomic cen-
ters does not form a convex hull, the spurious tetrahedra are removed using
a maximum radius criterion (alpha-shape technique [20]). Then the displace-
ment field is interpolated on the basis of linear FEM shape functions related
to the tetrahedra. The absolute value of the continuous radial displacement
solution is computed along the main radius of the nanowire and compared
for both models in figures 11 and 12, corresponding to the nanowires with
diameters d = 1.87 nm (n=4) and d = 3.11 nm (n=6), respectively.

We can notice from figures 11 and 12 that in the bulk region both displacement
fields are in very good agreement, especially when the set of optimized surface
coefficients B is used. However, near the surface, the local fields are poorly
reproduced. This can be partly explained by the fact that both Al and N atoms
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Fig. 11. Radial displacement field along nanowire radial direction (d = 1.87 nm).
Comparison between continuum model and ab initio interpolated atomic displace-
ments.
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Fig. 12. Radial displacement field along nanowire radial direction (d = 3.11 nm).
Comparison between continuum model and ab initio interpolated atomic displace-
ments.

have very different kinematics, as shown in figure 13. On the surface layer, Al
atoms possess a relatively large inward radial displacement as compared to
the Al atoms in the next interior layer and with opposite sign to the N atoms
which have an outward displacement on the surface. This highly heterogeneous
field cannot be captured accurately by the proposed continuum model.

In figure 14 the radial strain field is depicted in nanowires with radii 2 nm, 5

21



n = 2

n = 6

Fig. 13. Displacements in the nanowires in relaxation, ab initio calculations.
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Fig. 14. Deformed configuration and radial strain fields in the nanowire for free
relaxation (magnified 10 times); (a) d = 1 nm; (b) d = 3 nm; (c) d = 100 nm.

nm, and 100 nm in free relaxation, showing the influence of the size effects on
the local strain distribution and amplitudes. The set of surface coefficients B
was used.

In figure 15, configurations of the nanowire in free relaxation are presented,
demonstrating the size effects on the deformed configuration.

6.2 Bending of a nanowire

In this example, the constructed continuum model is employed to study size
effects in bending analysis of a nanowire. This problem is not tractable via ab

initio calculations, as no periodicity can be considered. The boundary condi-
tions are depicted schematically in figure 16. This test is of practical impor-
tance, as this type of loading can be prescribed for example using an atomic
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Fig. 16. Schematic view of the bending problem.

force microscope (AFM) [51]. The nanowire is clamped at its both ends and
subjected to a force distribution F = σyey ⊗eyn, σy = 1e− 8 MPa on a width
l = L/20, as depicted in figure 16. As in previous example, the length of the
nanowire is taken as L = 4d.

To evaluate the influence of surface effects, we compute the transverse stiffness
defined as:

Ks
t =

F

v
=

σyd

5v
(46)

where v is the deflection of the beam. The values are normalized with respect
to the transverse stiffness of the beam Kb

t when the surface effects are ne-
glected. The results are presented in figure 17. The size effects can be clearly
observed. It is noteworthy that the choice of the surface parameters set does
not significantly modify the results. As a conclusion, the coefficients extracted
directly from the proposed slab procedure can be used without any further
data fitting to provide a good approximation of the nanowire response when
complex loading is prescribed.

In figures 18 and 19 the εyy strain component and deformed configuration of
the nanowire is depicted. Figure 19 shows the impact of the surface energy on
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the local strain distribution for small nanowires.

7 Conclusion

A computational modeling framework has been proposed to simulate the re-
sponse of nanowires including free surface effects. The additional surface en-
ergy due to the unbalanced atoms located near the surface are introduced in
the continuum equations using the Gurtin-Murdoch elasticity theory and an
appropriate weak form. A finite Element discretization procedure is described,
where we avoid local basis coordinates in surface elements by employing pro-
jection operators. Finally, the study is completed by a methodology to ex-
tract via ab initio methods the elastic surface parameters. To validate our
approach, a complete ab initio model of AlN nanowire is compared with the
FEM model which uses the elastic properties extracted from surface models.
Very good agreement is observed for different size-dependent properties such
as Young modulus, or residual axial and radial strain. Finally, the model has
been applied to study the size effects in bending analysis of a nanowire to il-
lustrate the potential of the present approach for more complex loading cases,
or when geometries and sizes are not reachable by atomistic simulations. Po-
tential developments of this approach include extension to other materials and
piezoelectrical effects.
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