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SIMONE: A Realistic Neural Network Simulator to

Reproduce MEA-Based Recordings
Ricardo Escolá, Christophe Pouzat, Antoine Chaffiol, Blaise Yvert, Isabelle E. Magnin, and Régis Guillemaud

Abstract—Contemporary multielectrode arrays (MEAs) used to
record extracellular activity from neural tissues can deliver data
at rates on the order of 100 Mbps. Such rates require efficient data
compression and/or preprocessing algorithms implemented on an
application specific integrated circuit (ASIC) close to the MEA. We
present SIMONE (Statistical sIMulation Of Neuronal networks
Engine), a versatile simulation tool whose parameters can be ei-
ther fixed or defined by a probability distribution. We validated
our tool by simulating data recorded from the first olfactory relay
of an insect. Different key aspects make this tool suitable for testing
the robustness and accuracy of neural signal processing algorithms
(such as the detection, alignment, and classification of spikes). For
instance, most of the parameters can be defined by a probabilistic
distribution, then tens of simulations may be obtained from the
same scenario. This is especially useful when validating the robust-
ness of the processing algorithm. Moreover, the number of active
cells and the exact firing activity of each one of them is perfectly
known, which provides an easy way to test accuracy.

Index Terms—American cockroach, extracellular, inte-
grate-and-fire, multielectrode array (MEA), noise, SIMONE,
simulation, spike detection, SpikeOMatic, spike sorting.
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Distance between neuron and neuron

.

Superscript for excitatory, inhibitory.

Synaptic transmission speed.

Extracellular potential measured by

electrode .

Simulation cadence (i.e., the inverse of

the simulation step).

Mean spontaneous spiking frequency.

Gain for electrode .
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Equivalent synaptic conductance for

neuron (excitatory or inhibitory).

Feedback filter describing the

self-interaction current.

ind Minimal interneuron distance.

Interspike time interval.

Suffix for target electrode.

-dependent spike modulation kernel.

Postsynaptic kernel to modulate the

synaptic weight decay.

Suffix for target neuron.

Gaussian distribution with mean and

standard deviation .

Each subgroup of ( ) presynaptic

neurons.

Probability of synaptic creation between

any pair of neurons.

Probability for a given neuron of being

excitatory or inhibitory.

Leakage resistance.

Distance between neuron and electrode

.

ros Electrodes’ range of sensitivity.

Vector containing the time appearance

instants of spikes fired by neuron ,

previous to time .

Intracellular spike template for neuron .

The th intracellular spike for neuron .

type .

Type of neuron .

Uniform distribution in the interval .

Intracellular potential for neuron .

Inverse threshold potential associated to

presynaptic neurons .

Resting potential (i.e., the potential just

after a spike).

Intracellular threshold potential to trigger

a spike.
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Synaptic weight between postsynaptic

neuron and presynaptic neuron .

Correction factor for amplitude spatial

attenuation.

I. INTRODUCTION

T
HE strain put on multielectrode array (MEA) data acqui-

sition systems has recently increased with the capacity to

manufacture MEAs containing several hundreds of electrodes

[1], [2]. Larger arrays should moreover become available in the

coming years. This current and anticipated augmentation in the

number of recording sites implies an increase in the incoming

amount of data. As each electrode delivers approximately

15 KB per second, a 1000-electrode MEA would require a

120 Mbps1 data path to empty the acquisition buffer. This

is clearly a problem since biomedical-compatible wireless

transmission does not exceed 2 Mbps [3]. One solution to this

problem is the development of an embedded preprocessing

stage able to efficiently compress data and/or extract useful

information from it. An obvious issue when developing such

preprocessing algorithms is the choice of the set of signals used

to validate them. To this end it is customary to rely on different

experimental data sets that depict “many” representative states

of a neural network. However, such an approach presents an

important drawback: one can never be sure of the exact spiking

activity of every single neuron in the tissue (“ground truth data”

[4]). Alternative schemes such as accurate simulations using

Hodgkin–Huxley equations are highly resource-demanding

when the number of simulated neurons is large. On the other

hand, different simulation tools already exist (GENESIS [5]

and NEURON [6], [7] being the most widely used). Those

tools have three main limitations: 1) network architectures are

hand made (large network simulations are hard to setup); 2)

physiological models are deterministic (only one outcome may

be expected for any chosen set of parameters); 3) complicated

biological lingo is often used (making it difficult for nonexperts

to fully understand how to interact with these tools).

Simpler network-level simulations using integrate-and-fire

models [8], [9] are computationally less demanding but do not

model the most preeminent feature of neuronal activity viewed

by extracellular electrodes: the spike waveforms. Furthermore,

remixing experimental data with noise [10]–[12] is a some-

what limited approach because it only covers a reduced set of

simulations, which closely mimick the extracellular recordings

used as reference. Other solutions involving statistical firing

rates are also possible. A very interesting approach is proposed

by Smith and Mtetwa [4] in which the noise and the neural

activity are correlated. In the near future we will broaden our

work towards the comprehension of network dynamics. For

this matter, statistical spike trains are not fully suitable.

To address these issues we propose SIMONE2 (Statistical

sIMulation Of Neuronal networks Engine): a simulation engine

combining low computational cost with the ability to simulate

1 bits per second.

2This software is not freely available for download at the moment. Prospective
users are invited to contact the authors for further information.

spike waveforms [13]. We worked with the environment [14],

an open source version of the well-known language [15]. With

this engine users can: 1) simulate a given network of intercon-

nected neurons according to a fixed or random topology, 2) com-

pute the subthreshold intracellular potential of each neuron with

the classical integrate-and-fire equations while spike waveforms

are generated from templates, and 3) compute the corresponding

extracellular potential recorded by a MEA.

This paper is divided into three parts. Section II, which

includes a description of the physiological and mathematical

models behind SIMONE, along with the experimental methods

performed to collect the in vivo recordings. In Section III, we

compare real and simulated data and provide an example of a

full spike processing chain. Section IV presents the conclusions.

II. METHODS

A. Model Description

The simulation scenario describes a MEA and a neural net-

work. Parameters are entered via the command-line interface

or via a script file. The user can define different distributions,

functions and parameters to describe the desired neural network

and the associated MEA. The overall model may be fully param-

etrized using stochastic functions.

Three acquisition functions are available to accurately depict

the electrode behavior: a time-dependent gain , which

may reproduce small variations in electrode acquisition prop-

erties (such as ageing, artifacts, and gain noise); the range of

sensitivity of the tip (typically 100–140 m range [10]); and the

time-dependent extracellular noise. These functions may evolve

during simulation runtime. Automatic positioning of the elec-

trodes is performed using three parameters: the number of elec-

trodes per dimension (2-D or 3-D), the distance between neigh-

boring electrodes and the coordinates of the first site.

A biological neural network is automatically generated from

user-defined parameters whereby neurons are positioned in a

plane and characterized along with their synaptic connections.

Cells are distributed in a very thin volume. In this paper, we con-

sider an equivalent tissue plane [see Fig. 7(d)]. A 2-D MEA is

placed perpendicular to the cells. A 3-D matrix may also be cre-

ated by the user. Preliminary tools are also provided to simulate

3-D configurations (network MEA).

Our dynamic model3 consists of two coupled stages

(see Fig. 1): 1) intracellular simulation, based on the inte-

grate-and-fire model and 2) extracellular simulation, based on

a modified version of the classic current monopole model.

1) Physiological Model: Neural network features must be

quantified in terms of three basic biological parameters: size,

synaptic propagation speed, and characteristic conductivity.

Moreover, several statistical distributions may also be entered

by the user (otherwise, standard distributions are used). These

laws define the spatial distribution of neurons; the probability

for a neuron to be excitatory (inhibitory otherwise);

the probability of a synapse being established between

any pair of neurons (this is generally dependent on the distance

between neurons and their type) and the synaptic weight; the

statistical distribution of the resistance and the capacitance

3See Nomenclature for a glossary of mathematical symbols and notation.
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Fig. 1. Coupled stages of the dynamic model. (a) Current diagram for the leaky
integrate-and-fire model. Conductance models are not shown. (b) Extracellular
model in the form of a pseudo monopole of current.

in the membrane model; and the threshold, inverse and resting

voltages in the spiking model. Five functions

control the dynamics of each neuron. First, there is a kernel

to modulate the synaptic weight decay (efficiency)

between two connected neurons (i.e., the instantaneous pulse

and time course of postsynaptic currents due to presynaptic

spikes). The time course of a postsynaptic current represents

the probability of neurotransmitter release [16]. A second

kernel modulates spike shapes according to the

interspike interval [17], [12]. A third function models

as the time-dependent self-interaction filter of the neuron

[18]. is a feedback current that increases the amplitude of

the intracellular potential thus the threshold is surpassed more

easily (drastically reducing the interspike interval during a lim-

ited period of time provoking a burst). Other time-dependent

functions reproduce synaptic noise and allow the

user to introduce an artificial stimulation current into the model

.

A gallery of intracellular action potential templates must be

fully designed by the user. If the number of templates is smaller

than the total number of neurons, new templates are automati-

cally created using a random linear combination of a randomly-

chosen pair of spikes. Templates are stored in separate files.

Length, shape and sampling frequency of spike models are se-

lected by the user.

Intracellular simulation is based on the leaky inte-

grate-and-fire model with active conductance [19] [see

Fig. 1(a)]. In the subthreshold domain, the intracellular

potential for a particular neuron is characterized via an

ordinary differential (1), describing the membrane current

as the sum of leakage and input currents

(1)

We use Euler’s method to solve this equation. This is a safe

choice because the membrane time constant in the sub-

threshold regime is typically ten to a hundred times longer than

the quantization step. We put a strong emphasis on modeling

the input currents: presynaptic (excitatory and inhibitory),

artificial (presynaptic stimulation), membrane , noise

, and self-induced (originally described by Paninski

et al. [18]). This approach allows us to depict coherent behav-

iors and gain deeper insight into neuronal dynamics.

Leakage current is associated with

(2)

Feedback current is related to the spiking activity of the target

neuron and it may be used to produce bursting activity and other

firing regimes

(3)

is an artificial stimulation current defined by the user.

It may be used to reproduce a “real” stimulation of the neuron,

as well as spontaneous activity (thus ensuring the continuous

activity of the network).

is a user-defined synaptic noise current used to over-

come the lack of distant presynaptic neurons (not effectively

simulated) which also contributes (weakly) to neuron dynamics.

Positive (or negative) values represent excitatory (or inhibitory)

neurons. The synaptic current is related to presynaptic spiking

activity. The synaptic kernel can be interpreted as “the

time course of a postsynaptic potential evoked by the firing of

a presynaptic neuron” [19]. Synaptic conductivity is governed

by the weighted sum of presynpatic firing rates. Note that

represents the decay shape of each individual synaptic current,

while fixes the correct units and magnitudes

(4)

(5)
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When the intracellular potential reaches the threshold

voltage an intracellular spike is inserted into the wave-

form. For action potentials to be realistic as well, we use a

unique intracellular spike template assigned to each neuron4,

attenuated according to previous firing history [21] in order to

determine the spike to be used at each threshold crossing [see

(6)]. Real action potentials can be easily embedded into the

model while providing a low-cost computational solution. This

is much simpler than a complete Hodgkin and Huxley model

(6)

The output of this stage is the evolution of the intracellular

potential for each neuron.

2) Extracellular Acquisition Model: Extracellular potentials

measured by each electrode are computed from intracellular

voltages. Although a detailed approximation to the source of the

action potential may involve a quadrupolar approximation [22],

for simplicity we use a monopole model [see Fig. 1(b)]. More

accurate estimations could also be made by using an extracel-

lular model based on a 1-D linear source approximation [23]. In

order to be able to test the influence of different types of spatial

attenuation, we introduce a factor . The extracellular voltage

is inversely proportional to the distance between the neuron and

the theoretical electrode raised to the power and directly

proportional to the membrane current. For any given electrode

, the contributions of each neuron are summed at its tip. Using

a slightly modified equation for the current monopole, we end

up with (7). For the ideal monopole model equals zero. We as-

sume each neuron is a small spherical sink5 of (membrane) cur-

rent within a homogeneous environment (the neural tissue) with

conductivity . It is, therefore, represented by a point source of

magnitude in the simulator

(7)

The acquisition model for each electrode is assumed to be

identical and quasi-ideal (they are “ideal” in the sense of their

frequency response: all pass). We know that micro electrodes

input impedance is strongly capacitive. However,

forms a series circuit with the acquisition system

input impedance . Since is several orders of mag-

nitude larger than within the

frequency range of interest (up to 10 kHz), may be

neglected. Moreover, the equivalent gain (electrode-acqui-

sition system couple) is constant within this frequency range.

Modeling of the extracellular noise is straightforward: the user

just needs to input the characteristics of the noise that have

actually been measured. Finally, the simulation step must be

selected. A simple rule of thumb is to select a frequency value

close to the sampling frequency used in the actual experiment.

4Action potentials fired by the same neuron have little dispersion and may be
considered identical [20].

5Current flow lines are directed radially towards the cell.

B. Remarks Concerning the Parametrization Process

1) Parameters: It is clear that a detailed analysis of the effect

and sensitivity of each parameter on the overall model would

largely surpass the length of the present work. However it is im-

portant to note that a simulation mainly revolves around four

important axes, each of which depends on a reduced set of pa-

rameters.

1) Individual firing rate such as spontaneous spiking and

bursts are governed by membrane characteristics, and non-

synaptic input currents , that is, those

currents that are not induced by presynaptic spiking ac-

tivity.

2) Network dynamics and network synchronization are

governed by the parameters related to synaptic connec-

tivity ( , and ) as well as to those

parameters regulating the number of neurons (density and

tissue dimensions).

3) Extracellular spike waveforms perceived by the different

electrodes are influenced by attenuation due to tissue con-

ductance-related properties and dynamic mod-

ulation of spike waveforms . This is particularly

important when testing spike sorting techniques.

4) Signal-to-noise ratio (SNR) is determined by explicit

noise properties and dynamic electrode gain

characteristics .

For a more detailed explanation of the effect of each parameter,

see Table I.

2) How to Test Spike Processing Algorithms: By varying

physiological parameters, one may test network dynamics and

how different processing algorithms respond to certain regimes

and/or to distinct types of cell. Moreover, the user may also try

different electrode configurations and characteristics. One pos-

sible test could be performed by studying how the algorithm

performance evolves with electrode ageing or acquisition noise.

Site separation may also be optimized by studying the accu-

racy of a tetrode-based spike sorting algorithm (or more gen-

erally a -tipped polytrode). In general, the SNR may be modi-

fied at will to easily test the number of false positives and false

negatives due to a given spike detection strategy. Spike shapes

may be distorted to evaluate how well a certain method achieves

source separation. This is all possible because we control the

scenario parameters and the simulation output (for instance the

specific spike “signature” and dynamics for each neuron as well

as noise levels).

C. Experiments

As proof of concept, we simulate a common experiment in-

volving multichannel silicon microprobe arrays (NeuroNexus

Technologies, Ann Arbor, MI) and an insect antennal lobe [24]

using SIMONE. Our insect of study is the American cockroach.

1) American Cockroach Olfactory System: Olfaction plays

a major role in insect reproductive success and survival. In-

sects possess sensitive chemosensory systems that can detect

and discriminate among a huge pool of chemicals. Odors are

detected by olfactory receptor neurons (ORNs) on the antenna.

The axons of ORNs project into the antennal lobe of the brain

where they form synaptic contacts with other neurons in the

specialized neuropilar region, the glomeruli. The invertebrate
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TABLE I
SUMMARY OF MODEL PARAMETERS

antennal lobe serves as the first stage of the central olfactory

processing pathway, and is similar to the vertebrate olfactory

bulb as both possess glomeruli as their characteristic functional

subunits. Within the insect glomerular neuropil, the afferent re-

ceptor axons form synapses with both local interneurons (LNs,

inhibitory) and projection neurons (PNs, excitatory). Then PNs

convey information to higher brain centers in the mushroom

bodies and the lateral protocerebrum.

The American cockroach (Periplaneta americana) is one of

the few insects extensively studied in the context of olfactory

processing. This is mainly due to its extraordinary endurance to

electrophysiological experiments and the easy accessibility to

the antennal lobe.

The antennal lobe of Periplaneta americana is innervated by

receptor neurons from its associated antenna [25].

Around 125 eggshaped glomeruli (100 40 m) [26] are the

site of contact between the ORNs, and around 700 LNs and 250

PNs of the antennal lobe for each deutocerebrum [25], [27].

When the insect antenna is presented with a chemical stim-

ulus, each responsive PN produces a temporally complex phasic

response that generally outlasts the stimulus [28], [29].

The spike trains recorded from the antennal lobe PNs carry

sensory information to higher brain centers, and are of particular

importance to understand the first processing step in olfaction.

2) In Vivo Recordings: Only Periplaneta americana adult

males are used as experimental animals. Cockroaches are reared

5



Fig. 2. Experimental setup [30]. Odors are presented through an olfactory de-
livery system. A main flow of charcoal-filtered and humidified air is continu-
ously delivered through a glass tube (A) in front of the cockroach antennae.
Pasteur pipette (B), containing a filter paper with an olfactory stimulus (black
arrow), is inserted into the main flow glass tube (A). Stimulus from the Pasteur
pipette is controlled by an electrovan.

in an incubator with free access to food and water, at tempera-

ture around 25 C. Cockroaches are cold-anesthetized prior to

the experiment. Wings, legs, and some mouth parts are removed.

Each insect is restrained in an acrylic glass holder, with its head

fixed with dental wax (see Fig. 2). Antennae are protected with

plastic tubes around them. A window of head cuticle is opened,

the tracheae on the anterior face of the brain and the sheath sur-

rounding the antennal lobes are removed. The esophagus is cut

to reduce brain movement. Fresh cockroach saline is superfused

on the brain.

Recordings are made in the antennal lobe using a probe made

of two silicon shanks with 16 recording electrodes6 regrouped

in four tetrodes. The shanks width is around 80 m, the separa-

tion between the midline of the shanks is 150 m, the diagonal

between two consecutive sites of the same tetrode is 25 m,

and the distance between two tetrodes is 150 m. The probe is

gently inserted into the antennal lobe such that the two tetrodes

at the tip of the probe are roughly 100 m below the surface.

Signals are sampled at 12.8 kHz, amplified and band-pass fil-

tered between kHz using an IDAC2000 amplifier and

the Autospike 2000 acquisition program.7

This MEA approach allows us to record many neurons from

each electrode, which implies that the collected data reflect a

mixture of spikes coming from many neurons, so spike sorting

analysis is performed later using SpikeOMatic [20], [31]. More-

over, each neuron can be seen by several electrodes which can

improve the efficiency of spike sorting techniques.

In the Periplaneta americana antennal lobe, preliminary re-

sults (Chaffiol-Pouzat, unpublished data) showed that only PNs

generate “large” action potentials, therefore LNs activity is ne-

glected when sorting spikes in our data.

D. Model Parametrization Strategy

1) Neural Network Parameters: Recorded tissue samples are

assumed to be 250- m-sided square surfaces for a set of four

shanks (one tetrode). Tissue is considered to be homogeneous

6NeuroNexus, US: a2x2-tet-5mm150-150-312.

7Syntech, NL.

and purely resistive (delay-free). To estimate antennal lobe con-

ductivity, we fit the transfer function (7) to attenuate spikes of

approximately 250 V at a distance of 30 m between the cell

and the electrode, and to 40 V at the limit of the range of sen-

sitivity (100 m). For that, a conductivity of 0.04 , with

a heterogeneity correction of 0.5 is needed [see Fig. 5(d)].

This outcome matches nicely with the fact that conductivity of

white matter in the human brain has already been reported to be

around 0.05 S/m [32].

American cockroach antennal lobe cells may be in contact

with each other. Since they have an approximate diameter of

20 m, we can consider that the equivalent spherical sources

that represent neurons are separated from each other (minimal

interneuron distance) by a distance of one diameter (

m).

As stated in Section II-C-1, the contribution of local (in-

hibitory) neurons are several times smaller than those of

projection (excitatory) cells, therefore we may assume the

American cockroach antennal lobe to be formed exclusively

by the excitatory neurons. We also consider the neurons to be

homogeneously distributed. Since each electrode measures the

activity of 4–7 neurons within a 100- m radius8, it is straight-

forward to calculate that neuron (PNs) density is roughly

neurons/ m .

We assume random synaptic probability in the American

cockroach antennal lobe. That is, for every pair of ordered

(presynaptic and postsynaptic) neurons, the probability of

finding a synapse is 50%. In addition, synaptic speed is taken

to be equal and constant for all synapses: 50 m/ms.

Concerning membrane characteristics, we were not able

to find specific data regarding PNs from the antennal lobe

of Periplaneta americana. However, Christensen et al. [33]

have studied 10–15- m-soma diameter neurones cultured

from embryonic cockroach brains. Patch clamp measurements

revealed a typical membrane resistance ( ) and time constant

( ) of 850 M and 20 ms, respectively. In the absence of

further data, we assume that the membrane time constant and

specific resistance (i.e., resistance per unit area M m )

values will be similar for both types of neurons (since they

are independent of the cells’ geometry). Taking a mean cell

somata radius of 6.25 m from Christensen et al. embryonic

cultured neurons, we can extrapolate and values for adult

Periplaneta americana PNs as follows:

(8)

(9)

Typical values for intracellular resting, threshold and synaptic

inverse potentials are considered to be around

mV, mV and 0 mV, respectively. Since the variations

8This has been empirically validated during the last couple of years by the
Laboratoire de Physiologie Cérébrale (Chaffiol-Pouzat, unpublished data).
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Fig. 3. Synaptic kernel . Postsynaptic transient due to a each presynaptic
spike vanishes after 25 ms.

in these three voltages are negligible, and these variations do

not affect the overall dynamics of the network, we shall assume

them to be equal and constant for all neurons.

Synaptic kernel is generally modeled after an expo-

nential decay with time constant [19]. We make an estimation

of using in vivo recordings from embryonic central neurons

in Drosophila, where the effect of presynaptic spikes gradually

vanishes at approximately 15 ms [34]. We can safely estimate

this decay with being 5 ms (one third of the elapsed time),

see Fig. 3. We normalize this function to unity and make the

synaptic weight carry the actual magnitude of the postsy-

naptic effect

(10)

The synaptic weight quantifies the efficiency of a

synapse. As no precise data is available concerning this pa-

rameter for Periplaneta americana, we make a first estimation

based on work published by Stricker and Redman describing

evoked responses of CA1 pyramidal rat cells [35]. For rat cells,

they report that mean peak excitatory postsynaptic current

(EPSC) is around 5 . EPSC may be expressed as the synaptic

current response for a single presynaptic action potential, when

. We can now estimate the mean synaptic weight

to be given by

(11)

(12)

Experiments show that the modulation of the spike waveform

does not depend on the previous spiking history [20]. How-

ever, a dispersion in the amplitude is inherent to acquisition.

Measurements show that amplitude dispersion from the typical

spike template is symmetrically distributed % around the

Fig. 4. Typical -induced spontaneous spiking for neurons 1–5 during a
2-s time window. Dirac-pulse of current produced each spike event. cor-
responds to the typical spontaneous spiking frequency for each neuron. Spike
waveforms are not shown for simplicity.

mean action potential amplitude. This variation does not de-

pend on interspike intervals. Nevertheless, we can “trick” SI-

MONE to modulate spikes using the bursting kernel even

though this function is -dependent. We define as

for every interspike interval. We could choose to in-

clude an -related component, but we rather prefer not to do so,

as bursts are rarely noticed in our recordings. Moreover, since

this is a proof of concept demonstration, we restrict our simula-

tions to simple behaviors (no bursting, no firing rate adaptation,

etc.). For the same reason, the self-interaction current is

neglected: equals 0.

The stimulation current is used to keep the tissue ac-

tive, even when there is no synaptic input. Experiments show

that neurons within the American cockroach antennal lobe spike

spontaneously at frequencies between 4 and 20 Hz. We

shall assume that

1) are uniformly distributed among neurons, between

4–20 Hz;

2) is constant for each neuron but in practice it presents

a little physiological dispersion.

To reproduce this behavior we excite the integrate-and-fire

circuit with a Dirac pulses sequence, with impulses having a

“mean” appearance frequency of . Each pulse makes the

neuron fire once immediately. This causes the neuron to spike

roughly spikes per second, without disturbing its sta-

tionary response. In Fig. 4, we show a typical simulated sponta-

neous spiking activity, induced by , for neurons 1–5 during

a 1-s time window.

We assume that synaptic noise current is due to more

distant loosely-correlated neurons. We chose it to be normally

distributed around 20% of critical input current (the minimal

current needed to spike)

(13)

with a standard deviation of 15 pA. Synaptic noise has the

same distribution for every neuron.

The intracellular spike templates, used in the simulator, are

obtained using twelve real extracellular sorted spikes9 coming

9Spikes are detected and classified using SpikeOMatic [20], [31]. Events as-
signed to the same neuron are averaged to build a single template.
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Fig. 5. Spike templates generation and typical amplitudes. (a) Experimental ex-
tracellular recorded spikes (Fig. 2). (b) Intracellular spike templates given to SI-
MONE as an input parameter. These are estimated from waveforms in Fig. 5(a).
(c) Simulated extracellular spikes generated by each neuron and “recorded” at
a distance of 40 m. (d) Resulting distance-dependent attenuation of the max-
imum spike amplitude provided by SIMONE for S/m and .

from the mentioned experiment. Each extracellular spike is up

sampled, integrated over time and rescaled to have a maximum

at 30 mV and a starting point at mV (corresponding to

intracellular threshold overpassing) (see Fig. 5). A summary of

neural network parameters is displayed in Table I.

2) Extracellular Acquisition Parameters: Electrodes10 are

assumed to be displayed in a parallel-to-the-tissue plane. We

consider a four-tipped Michigan tetrode, where electrodes are

arranged at the corners of a 106- m-sided square. The square

is centered on top of the neural network and separated by a

20- m gap of extracellular tissue [Fig. 7(c)]. Electrodes present

a 100- m range of sensitivity (ros). Moreover, the acquisition

system for every electrode provides unity gain ( equals 1).

Experiments show [20] that extracellular recordings are auto-

correlated at approximately the same frequency as that of spike

waveforms (around 1 kHz). This is due to the synchronization

of small groups of neurons. Overall noise and signal (the events)

are statistically independent and linearly summed.

We extract these characteristics using an autoregressive

model which is fully derived from real data. First, we calcu-

late the autocorrelation of recorded data [see dashed curve in

Fig. 6(a)]. Yule-Walker equations [36] allow us to calculate

the autoregression coefficients and residuals . We use the

Akaike Information Criterion [37] to chose the order (40th) of

the autoregressive model. The residuals distribution (i.e., the

error) is proved to be approximately Gaussian with 0 V mean

10All electrodes are assumed to be identical.

Fig. 6. Comparison tests between real data and simulated signals on electrode
. Real data is acquired according to the protocol described in Section II-C.

Electrode 1 is arbitrarily chosen (all electrodes showed similar results). (a) Au-
tocorrelograms. (b) Power spectral density. (c) Q–Q plot between simulated data
and real data. When datasets have the same distribution the curve is a 45 dark
line. (d) Distribution for residuals (bar plot) from the autoregressive model ap-
plied on real data. Straight line is the Gaussian distribution ( V;

V).

and 15.3 V standard deviation [Fig. 6(d)]. Since extracellular

noise is mostly the noncorrelated portion of the raw

signal, we model it with the random variable [see (14)]. This

extraction method is valid even if the signal of interest has few

or no spikes at all. In such cases, error presents approximately

the same distribution as the raw signal

(14)

Finally, the simulation rate is fixed at 12.8 kHz to mimic

that of the real experiment. A summary of extracellular acquisi-

tion parameters is displayed in Table I.

E. Methods Used To Analyze the Data

We compare two sets of data: 1) real and 2) simulated [elec-

trode 1 in Fig. 7(c)] without any a priori knowledge. Unbiased

(without previous data processing) metrics are used for both

datasets: 1) mean and standard deviation, 2) SNR, 3) quantiles,

4) autocorrelation and power spectral density. The raw signal

is formed by spikes and noise. As stated before, they are inde-

pendent. SNR is the power ratio between a signal (spikes) and

the background (extracellular) noise [see (15)]. Noise may be

extracted for each data series using the residuals of the autore-

gressive model (see Section II-D-2). We estimate signal power

as the square of the root mean square (rms) value for all data
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Fig. 7. Compared signals and simulation scenario. (a) Real spontaneous
response from the American cockroach antennal lobe. (b) 7 s-long simulated
signal. Activity simulated for electrode . Dotted lines in Fig. 7(a) and (b)
shows the mean and the threshold used to estimate the SNR. (c) Automatically
generated neural network. Neurons are placed in a 2-D plane. MEA is placed
at 20 m from the cells. Synapses are not shown. (d) Schematic side view of
simulated scenario.

points above three times the standard deviation of the noise. As

the noise has a Gaussian-shaped distribution, its power is the

square of the standard deviation of the residuals for each dataset

(15)

where is the power.

Finally, we use SpikeOMatic [20] to illustrate how spikes

can be effectively classified. We treat each simulated recording

site individually (Table II). First, we apply a prefiltering stage

to every recording site. For simplicity, we use a low-pass box

filter of length three. The spike detection threshold is fixed at

five times the median absolute deviation of the whole recording.

Both local maxima (positive peaks) and local minima (negative

valleys) are detected. A 2.5-ms-window is cut around single ex-

tremum events. Spikes are aligned in such a way that absolute

maximas (peaks or valleys) are positioned at 1 ms within the ex-

traction window. Principal component analysis [38] is applied

to reduce spike dimensionality (2.5 ms 12.8 kHz means 32

points) to four principal components. Spikes are finally classi-

fied using K-means [39] to identify the neuron that generated

each event (spike sorting). Because each electrode records the

activity of 4–7 neurons, we set an initial value of 5 clusters per

site. This is a good compromise between nonsupervised clus-

tering and accurate isolation of sources. These results are fur-

ther compared against “ground truth data” from SIMONE. To

illustrate some of the key aspects that make SIMONE a useful

tool for validating the algorithms performance, we show: 1) the

TABLE II
PARAMETERS USED IN THE SPIKE DETECTION/SORTING PROCESS

TABLE III
SIGNALS SIMILARITY QUANTIFICATION

output of the detection scheme versus the true spiking activity

and 2) the output of K-means clustering versus the projection

of simulated spikes onto the same PCA space used for detected

data.

III. RESULTS

The tests relying on unbiased metrics show a great degree

of similarity between real and simulated signals, as shown in

Table III. It is remarkable how statistics match since noise has

not been directly measured (see Section II-D-2). Electrodes 3

and 4 ( and ) are less similar to the original signal because

most of the neighboring neurons are close to the limit of the

range of sensitivity. Furthermore, SNR and in those probes

are consistent with the decrease of spiking amplitude.

Quantiles are points taken at regular intervals from the cu-

mulative distribution function of a random variable. The quan-

tile–quantile plot (Q–Q plot) is a data analysis technique for

comparing the distributions of two sets of data. A 45 refer-

ence line is also plotted. If the two sets come from a population

with the same distribution, the points should fall approximately

along this reference line. This test [see Fig. 6(c)] shows that both

datasets are very similar.

Autocorrelation is an important measurement because it gives

us information about the intrinsic dynamics of the signal. Both

simulated and real data present approximately the same autocor-

relation [see Fig. 6(a) and (b)], meaning that their power spectral

densities are also alike (the power spectral density of a signal is

the Fourier transform of its autocorrelation function). Note that

only the autocorrelation is used to estimate the residuals in the

predicted regression of the raw signal. Finding the same autocor-

relation means that the dynamics of the signals are essentially

the same. This is a very encouraging outcome since no informa-

tion has been provided regarding the topology or spiking regime

of the network.

Even though the signals do not have the same amplitude sta-

tistics (which can be easily corrected by adjusting the tissue

conductivity for instance), the SNR and frequency spectrum are

alike. Moreover, we demonstrate that extracellular noise can in-

deed be modeled by a normal distribution. For that we propose

9



Fig. 8. Spike sorting outcome on simulated data. (a) A 1-s sample from the 10-s simulation. Detected spikes are marked with red dots. Actual events time location
is shown below the signal. (b) Extracted spikes (over a 2.5-ms window). They are aligned with their absolute local maxima at 1 ms. (c) PCA projection over the
two principal directions. Colors indicate the result of K-means clustering. (d) Actual events projected over the same PCA space as (c). Each neuron is associated
with a color and events are colored accordingly.

a novel method of estimating noncorrelated noise hidden in ex-

tracellular raw signals. We show that even if spikes represent

a small portion (30% in our case) of raw extracellular record-

ings11, they have a great impact on the overall dynamics of the

signal. Both signals (real and simulated) are presented in Fig. 7.

The difference between real and simulated data is mainly due

to the stochastic positioning of neurons: we may safely assume

that experimental data presents the activity of neurons placed at

midrange from electrodes, rather than close-range (as some of

those from simulated data). The reader may easily notice that

site records some “large” action potentials (these come from

neuron 11).

In the following, we present a qualitative description of the

SpikeOMatic-based analysis to illustrate how SIMONE can in-

deed be used as input to spike processing algorithms. Without

losing generality, we show results only from site due to space

constraints. Following the description of Section II-E, spikes

are detected. Detected events during a reduced period of time

11Authors generally assume “worst case classification complexity scenario”
of 50 spikes/s per electrode [11] for human cortical neural activity. This repre-
sents roughly 15% of the whole signal.

are marked in Fig. 8(a) along with the true spikes12. Note that

most of the spikes are accurately detected. The fact that pre-

cise spiking activity is known can give the user useful infor-

mation concerning the performance of the detection process.

Concerning spike sorting, we analyze the clustering obtained

using K-means. As stated before, the clustering is given an ini-

tial grouping value of 5. The resulting classification may be ob-

served in Fig. 8(c). We use the PCA matrix previously obtained

to project the “actual” spikes [Fig. 8(d)]. In this way, it is easy

to have a preliminary idea about the classification accuracy. For

instance, from this example we observe that there exists a strong

correlation between clusters A, B, and E from Fig. 8(c) and clus-

ters linked to neurons 11, 5, and 2 from Fig. 8(d) respectively.

Cluster C from the first plot actually covers the activity of three

neurons having similar spike templates (4, 7, 12). On the other

hand, cluster D is an artifact resulting from superposed spikes

from different neurons. Events from plot 8(c) not appearing in

Fig. 8(d) correspond to falsely detected spikes. Inversely, those

events appearing only on the second plot indicate missed spikes.

12We only show the first second of simulation but a 10-s simulation is used
in the overall process.
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IV. CONCLUSION

In this paper, we present a novel tool providing a simple

way to simulate realistic MEA-based acquisitions from a fully

defined neuronal network. A fundamental requisite is that

the number of active cells, their position and the exact firing

activity of each of them must be known at all times. Our

simulation paradigm is based on two main axes: a coupled

model describing the network dynamics and the extracellular

transfer model, and a fully statistical parameterization. The

dual-layer model is based on commonly used approximations

(such as the integrate-and-fire dynamics) and experimental

observations. The randomness of the parameters allows for a

great number of simulations to be made starting from the same

defining functions. This is especially useful when validating

the performance of an algorithm under closely related scenari.

We explain how the dual-layer model makes this simulation

engine suitable for testing the robustness and accuracy of spike

processing algorithms (such as the detection, alignment and

sorting of spikes). The majority of data that should eventually

be treated by a data processing system are simulated: a spike

signature for each neuron with time-dependent modulation,

the correlated activity between connected neurons, spike burst

regimes and realistic noise levels. The system also accounts for

acquisition noise and time-dependent degradation of electrode

gain in a simple way.

We have validated our tool by accurately reproducing extra-

cellular recordings from the Periplaneta americana antennal

lobe acquired in vivo in our facilities. First, we apply several

unbiased metrics to compare simulated and real signals. These

metrics were specifically chosen to be independent of any a

priori information (such as the exact spiking dynamics). Then

we show some interesting results that highlight how a spike pro-

cessing algorithm can be analyzed and tested when the “ground

truth data” is perfectly known. We also propose a method to cal-

culate real extracellular noise from the autocorrelation of raw

signals.

Naturally, SIMONE has some limitations, such as the in-

ability to quickly simulate large network synchronization, to

mimick precise tissue response (e.g., to odors by the antennal

lobe), or to reproduce filtering properties of the tissue. But

overall, we show that it provides some very interesting char-

acteristics that make it suitable for testing spike processing

algorithms and describing the activity in small networks.
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