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Introduction and overview

In some contexts (for example, in Monte-Carlo, or quasi-Monte-Carlo sensitiv-

ity analysis), it is necessary to compute the solution uµ of some partial differ-

ential equation (PDE) depending on an input parameter vector µ (dependence

can be obviously through the PDE coefficients, and also through the domain

on which the equation is posed, or through initial/boundary data), for a large

number (say, thousands) values of µ. When no analytical solution of the PDE is

known, one has to use computationally-intensive numerical methods – such as

finite elements or finite differences – to approximate the solution of the PDE.

This leads to complex computer codes, which can take several hours to run –

for a single value of µ. In this case, one easily sees that simply calling the nu-

merical code for each required value of µ – one-by-one – is not practicable at

all ; and that we need to use a computationally cheaper code giving a surrogate

solution euµ (also called metamodel) from a value of µ. More specifically, we

split our computation in two phases:

• an offline phase, where we make a reasonable number of calls to the

expensive code in order to "learn" about the solutions of the PDE ;

• an online phase, where, given some value of µ, we use the information

collected during the offline phase to produce a good approximation of

the solution of the PDE for this specific value of µ, faster than if we had

no information at all.

This strategy is efficient if the fixed additional cost of data collection during

the offline phase (done once for every value of µ) is dominated by a strong

reduction in the marginal cost (i.e., per value of µ) when one replaces the

original, expensive numerical code by the cheaper "online" code.

In this report, we describe a procedure, named reduced basis approximation

(RB), specifying the offline and online phases. The key to RB approximation

is to look for (during the online phase) a surrogate euµ solution of the PDE as

a linear combination of functions from a linearly-independent family (called

the reduced basis) that has to be wisely chosen during the offline phase. For

the resulting problem to be well-posed, one has to somewhat weaken the PDE,

using a Galerkin-like method. An advantage of using such a procedure is that

one can quantify the loss of information made when replacing the expensive

numerical solution uµ by euµ, using an a posteriori fastly-computed error bound
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ǫµ so that

||uµ− euµ|| ≤ ǫµ

for some functional norm || · ||.

The report is organised as follows: in a first part, we present the necessary

assumptions on the PDE for RB to be applicable to ; for the sake of simplicity, we

restrict ourselves to the case of coercive, linear and "affinely parametrized" (we

will explain what this means) PDEs, but it should be noted there are extensions

to RB which somewhat relax some of these assumptions ; in a second part,

we describe the core of the RB approximation, that are the offline and online

phases of computation of the surrogate euµ ; in a third part, we give a procedure

to compute the error bound ǫµ ; in a fourth part, we show two different ways

(greedy and POD) to choose the reduced basis family ; in a fifth and final part,

we address the question of using RB to approximate outputs of the solution,

that are (scalar) functionals of uµ.

1 Notations and assumptions

Our main reference for sections 1 to 3 is [5].

As said earlier, we denote by µ ∈ P ⊂ Rp our parameter vector.

Our unknown is a function uµ — depending on µ, besides the usual (e.g. time

and space) variables — belonging to some function space X , satisfying a µ-

parametrized linear partial differential equation, which can be written under a

variational (a.k.a. weak) form:

aµ(uµ, v) = fµ(v) ∀v ∈ X (1)

where aµ is a µ-dependent (continuous) bilinear form on X , and f is a (con-

tinuous) linear form on X .

We further assume that our PDE is affinely parametrized, that is:

• fµ ≡ f is µ-independent;

• and aµ can be written as a sum of Q bilinear forms:

aµ(w, v) =

Q∑

q=1

Θq(µ)aq(w, v)

where:
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– aq are µ-independent bilinear forms on X ;

– Θq are arbitrary functions on P , capturing all dependence in µ ;

since these functions are to be evaluated many times during the

online phase, we shall require these functions to be fast-computed.

2 Reduced basis approximation

2.1 Opportunity for a RB approximation

The function space X is typically a Sobolev space; such spaces, due to their

infinite-dimensional nature, are not amenable to numerical computations. In

order to discretize equation (1) and get an approximation of the actual mathe-

matical solution, one can set X to some finite-element space (e.g., P1) and use

(1) to get a linear system of equations satisfied by the coefficients of uµ in a

basis of X . In the sequel, X will always stand for such a space. This means

that the reduced basis solution we are to compute is an approximation to the

discrete numerical solution, and thus we rely on (and assume) the fact that the

latter is a good approximation to the analytical solution. A good treatment of

finite element discretizations can be found in [7].

The computational cost required to compute this approximation is an increas-

ing function of the dimension of the chosen discrete function space, and un-

fortunately, it has to be very large for the approximation to be accurate. One

explanation for this fact is that those spaces are "too general", that is, they con-

tain too many different functions and so we need to deal with a large number

of degrees of freedom for our unknown.

On the other hand, we expect that two solutions of (1), for two different values

of µ, will exhibit common "features". We could "encode" those features into a

space eX , spanned by some (µ-independent) functions ζ1,ζ2, . . . ,ζN ∈ X , and

replace X by eX in (1). The family {ζ1, . . . ,ζN} is called the reduced basis. For

a sufficiently regular-in-µ problem, we expect that taking N << dim X will

still give – for a well-choosed reduced basis – an accurate enough solution, yet

providing substantial computational economy.

2.2 Offline and online procedures

We suppose, for now, that we are given a reduced basis {ζ1, . . . ,ζN} of linearly

independent functions in X (discussion about choice of this basis can be found
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in section 4). We set eX = Span{ζ1, . . . ,ζN}.

Given µ ∈ P , we look for euµ as a function belonging to eX , thus :

euµ =
N∑

n=1

cn(µ)ζn (2)

where the unknowns are cn(µ) ∈ R, n= 1, . . . , N .

These unknowns are to be found by imposing that euµ satisfy a relaxed version

of (1); instead of verifying (1) for every v ∈ X , euµ satisfies (1) for every v ∈ eX :

aµ(euµ, v) = f (v) ∀v ∈ eX (3)

Since eX ⊂ X , (3) is weaker than (1). This standard technique is known as

Galerkin projection.

Substituting (2) into (3), and setting v = ζp (p = 1, . . . , N) gives that the

cn(µ)’s satisfy the following system of N linear equations:

N∑

n=1




Q∑

q=1

Θq(µ)aq(ζn,ζp)


 cn(µ) = f (ζp) ∀p = 1, . . . , N (4)

This justifies the following offline/online procedure for the computation of euµ:

• in the offline phase:

– we choose a reduced basis {ζ1, . . . ,ζN } (more details about this

choice later)

– we assemble, and store, Q matrices of size N × N :

aq =
�

aq(ζn,ζp)
�

p,n=1,...,N

and the N -sized vector:

f=
�

f (ζp)
�

p=1...N

• in the online phase, being given a value of µ:

– we assemble the N × N matrix:

a(µ) =

Q∑

q=1

Θq(µ)aq
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– our vector of unknowns c(µ) =
�
cn(µ)

�
n=1...N is given by :

c(µ) =
�
a(µ)

�−1
f

where the matrix inversion solves the system (4),

– and so we get:

euµ =
N∑

n=1

cn(µ)ζn

The complexity of the online phase is as follows: assembling of a(µ) takes

O(QN2) operations. Its inversion takes O(N3) operations (one should note

that a(µ) has no reason to be a sparse matrix – it is not, indeed). So the

coefficients of euµ with respect to the reduced basis can be computed in less

than O(QN2+ N3) operations.

It is important to note that this complexity is independent of dim X . Thus online

computation time is independent of the "quality" of the underlying reference

numerical approximation, which can be as good as wanted without impacting

marginal cost. We notice that we neglected the cost of evaluations of Θq(µ),

hence the hypothesis of fast-evaluation of Θq we have made. We also notice

that online complexity (in computational time and in storage requirements) is

proportional to Q, the number of terms in the affine decomposition of aµ; for

our procedure to be efficient, Q should therefore be kept orders of magnitude

smaller than dim X .

3 Error bound

3.1 Derivation of the error bound

In this section, we design an error bound ǫµ so that:

||uµ− euµ|| ≤ ǫµ

for all µ ∈ P .

We should note once again that, thanks to our assumption about the quality

of the underlying approximation, we measure only the error between the ref-

erence, expensive numerical solution u and our surrogate eu ; error between u

and the analytical solution is neglected.

We endow X with an Hilbert structure: an inner product < ·, · > on X × X
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yielding a norm || · || on X . We need a crucial assumption about the bilinear

form aµ describing our PDE: the α(µ) defined by:

α(µ) = inf
w∈X

sup
v∈X

aµ(w, v)

||w||||v||

has to be strictly positive: α(µ)> 0 ∀µ ∈ P .

The quantity α(µ) is known as Babuška’s "inf-sup" stability constant. The inf-

sup stability hypothesis α(µ)> 0 is a sufficient condition for well-posedness of

the underlying variational problem (1) (Babuška-Brezzi condition).

In the sequel, we suppose that aµ is symmetric. The inf-sup stability hypoth-

esis is then equivalent to the coercivity of aµ (and the well-posedness of the

variational problem comes from Lax-Milgram), and we have:

α(µ) = inf
w∈X

aµ(w, w)

||w||2

Let’s move on to the error bound. First we remember that:

aµ(uµ, v) = fµ(v) ∀v ∈ X

Subtracting aµ(euµ, v) from both sides of this equation, we get, thanks to bilin-

earity of aµ:

aµ(uµ − euµ, v) = fµ(v)− aµ(euµ, v) ∀v ∈ X

So:

aµ(eµ, v) = rµ(v) ∀v ∈ X (5)

if we set:

eµ = uµ − euµ

rµ(v) = f (v)− aµ(euµ, v)

(eµ is known as the error, and rµ as the residual form).

Introducing α(µ), we have the following inequality:

aµ(eµ, eµ)≥ α(µ)||eµ||
2

We also have:

||rµ(v)|| ≤ ||rµ||X ′||v||
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where

||rµ||X ′ = sup
v∈X ||v||=1

rµ(v)

is the dual norm of the residual.

Thanks to these inequalities, and (5) with v = eµ, we get:

α(µ)||eµ||
2 ≤ ||rµ||X ′||eµ||

and so, thanks to our stability assumption:

||eµ|| = ||uµ− euµ|| ≤
||rµ||X ′

α(µ)
(6)

So we have:

ǫµ =
||rµ||X ′

α(µ)

In order to practically exploit the error bound (6), it remains to explain how

to efficiently work out ||rµ|| and α(µ). This question is addressed in the two

following sections.

3.2 Dual norm of the residual ||rµ||X ′

Riesz representation theorem ensures that there exist yµ ∈ X so that

< yµ, v >= rµ(v) ∀v ∈ X (7)

Moreover, computing yµ is sufficient because of the additional property:

||rµ||X ′ = ||yµ||

Equation (7) can be rewritten, thanks to the definition of rµ and the affine

decomposition of aµ:

< yµ, v >= f (v)−

Q∑

q=1

Θq(µ)aq(euµ, v) ∀v ∈ X

and so, making use of the reduced basis decomposition of euµ (equation (2)):

< yµ, v >= f (v)−

Q∑

q=1

N∑

n=1

cn(µ)aq(ζn, v) ∀v ∈ X
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This equation can be viewed as a linear variational problem whose unknown is

yµ ∈ X . By Duhamel superposition principle, yµ can be written as:

yµ = γ−

Q∑

q=1

N∑

n=1

Θq(µ)cn(µ)Γqn (8)

where γ ∈ X , and Γqn ∈ X (q = 1, . . . ,Q, n= 1, . . . , N) satisfy:

< γ, v >= f (v) ∀v ∈ X (9)

< Γqn, v >= aq(ζn, v) ∀v ∈ X (10)

Law of cosines applied to (8) gives:

||yµ||
2 = ||γ||2− 2

Q∑

q=1

N∑

n=1

Θq(µ)cn(µ)< γ,Γqn >

+

Q∑

q=1

Q∑

q′=1

N∑

n=1

N∑

n′=1

Θq(µ)cn(µ)Θq′(µ)cn′(µ)< Γqn,Γq′n′ > (11)

Equation (11) will be our key to an offline/online procedure for computing

||rµ||X ′. Each of those phases should be done after the phases of computation

of eu(µ) described in section 2.2. The procedures read:

• in the offline phase:

– we solve the QN + 1 linear variational problems (9) and (10) for γ

and Γqn (q = 1, . . . ,Q, n= 1, . . . , N) ;

– we compute and store 1+QN + (QN)2 inner products:

< γ,γ >, < γ,Γqn >, < Γqn,Γq′n′ >

(q,q′ = 1, . . . ,Q, n, n′ = 1, . . . , N)

• in the online phase, we compute ||rµ||X ′ = ||yµ|| using equation (11).

We note that the vectors γ and Γqn computed during offline phase are not saved

for the online phase, we store only 1+QN + (QN)2 scalars. Thus in the online

phase, the actual vector yµ is never formed. Doing so would make complexity

of the online phase depend on dim X ; this is something we would like to avoid.
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3.3 Stability constant α(µ)

We now turn to the problem about estimating α(µ).

Recall that

α(µ) = inf
v∈X ||v||=1

aµ(v, v)

α(µ) is thus the optimal value of a minimization problem posed on X . The

objective function in this problem is a quadratic form, we seek to minimize on

the unit sphere. It is a well-known fact that α(µ) is the smallest eigenvalue of a

(symmetric) matrix associated to the quadratic form aµ(·, ·). Indeed, if for all v

and w in X : aµ(v, w) = vT Mµw and if < v, w >= vTΩw for symmetric matrices

Mµ and Ω, then α(µ) is the smallest λ ∈ R so that equation :

Mµv = λΩv

admits a nonzero solution v.

Due to the high-dimensionality of X , it would be too expensive to solve this

(generalized) eigenproblem online, for each value of µ. However, we expect

that affine decomposition of aµ will provide us with an efficient offline/online

procedure for estimating α(µ). By estimating here we mean finding a lower

bound for α(µ), because the form of the error estimator (6) shows us we only

need such a lower bound:

eα(µ)≤ α(µ)

because we have therefore:

||u− eu|| ≤
||r||X ′

eα(µ)

3.3.1 An easy case

We should first address the case where Θq(µ)≥ 0 ∀q = 1, . . . ,Q,∀µ ∈ P .
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If this condition is met, then for any µ ∈ P ,µ ∈ P :

Q∑

q=1

Θq(µ)aq(u, v) ≥

Q∑

q=1

Θq(µ)

Θq(µ)
Θq(µ)aq(u, v)

≥

¨
inf

q′=1,...,Q

Θq(µ)

Θq(µ)

« Q∑

q=1

Θq(µ)aq(u, v)

≥

¨
inf

q′=1,...,Q

Θq(µ)

Θq(µ)

«
α(µ)||u||||v||

This leads us to the following offline/online procedure for eα(µ):

• Offline:

– choose a "nominal" value µ ∈ P for whichΘq(µ) 6= 0 ∀q = 1, . . . ,Q ;

– compute and store α(µ) by solving an eigenproblem on X .

• Online, given a value of µ, take

eα(µ) =
¨

inf
q=1,...,Q

Θq(µ)

Θq(µ)

«
α(µ)

This procedure is simple and efficient, with a dim X -independent online stage.

However, if our positivity hypothesis on Θq is violated, we have to resort to a

more complex method, which we describe below.

3.3.2 The general case: successive constraints method (SCM)

The successive constraints method (SCM) is presented in [3].

α(µ) can be rewritten

α(µ) = inf
w∈X ,||w||=1

aµ(w, w)

We further note that:

α(µ) = inf
w∈X ,||w||=1





Q∑

q=1

Θq(µ)aq(w, w)



 = inf

y∈Y





Q∑

q=1

Θq(µ)yq



 (12)
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where:

Y =
¦
(y1, . . . , yq) ∈ RQ st. ∃w ∈ X , ||w|| = 1 and yq = aq(w, w)∀q = 1, . . . ,Q

©

To obtain a lower bound on α(µ), we should replace Y by a eY ⊇ Y ; in other

words, we should relax the constraints on the optimization problem (12).

To define eY , we begin by noticing that Y is bounded: let:

σ−q = inf
w∈X ,||w||=1

aq(w, w), σ+q = sup
w∈X ,||w|||=1

aq(w, w), B =

Q∏

q=1

[σ−q ;σ+q ].

Now let y = (y1, . . . , yQ) ∈ Y and let w satisfying the properties in the defini-

tion of Y . For every µ′ ∈ P , we have:

∑

q

Θq(µ
′)yq =

∑

q

Θq(µ
′)aq(w, w)

≥ inf
w′∈X ,||w′||=1

∑

q

Θq(µ′)aq(w
′, w′)

= α(µ′)

So far we have:

Y ⊂



y ∈B |

Q∑

q=1

Θq(µ
′)yq ≥ α(µ

′) ∀µ′ ∈ P





The right-hand side of this inclusion would be a good candidate for eY ; however

it is defined by an infinite number of µ-independent constraints (each for one

µ′ ∈ P ). We should relax one more time these constraints in order to get a

finite number of (now, µ-dependent) constraints. We take:

eY =



y ∈B |

Q∑

q=1

Θq(µ
′)yq ≥ α(µ

′) ∀µ′ ∈ SM (µ,C )





Where M ∈ N, C is a finite subset ofP and SM (µ,C ) is the set of the M points

in C that are closest (with respect to some metric) to µ.

So our SCM offline/online procedure is:

• offline:
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– choose M ; choose C (we postpone discussion about the choice of

C until the next subsection) ;

– for each µ′ ∈ C , compute and store α(µ′) by solving an eigenprob-

lem on X ; compute and store σ−q and σ+q the same way, for each

q = 1, . . . ,Q.

• online: solve optimization problem:

eα(µ) = inf
y=(y1 ,...,yQ)∈ eY





Q∑

q=1

Θq(µ)yq





The online optimization problem is what is called a linear programming prob-

lem: the goal is to minimize a linear function under a finite number of linear

inequalities constraints. In our case there are Q variables and Q+M constraints.

There exist efficient algorithms, such as the simplex algorithm (see [6] for in-

stance), which solve such optimization problems under (on average) polyno-

mial complexity with respect to the number of variables and number of con-

straints, even if they can be exponential in the worst cases. The key here, once

again, is that online complexity is still independent of dim X .

A last remark we can do on the algorithm is about the trade-off in the choice of

M : whatever M is, we always get a certified bound on α(µ), but increasing M

will improve sharpness of this bound, at the expense of an increase in online

computation time.

Choice of C

We will use a so-called greedy procedure for choosing the finite subset C ⊂

P . Roughly speaking, a decision algorithm is said to be greedy if he makes

the best possible choice at each step. This strategy does not always yield a

globally optimal decision but often gives a good solution for cases in direct

global optimization would be unpractical.

For our greedy choice of C , we will start with C = {µ1}, with an arbitrarily

chosen µ1 ∈ P . Then, at each step of the algorithm, we are going to add a

point in C that gives the best possible expected improvement in the precision

of our bound eα(µ).
Thus we get the following procedure for choice of C :
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1. choose M ;

2. initialize C = {µ1} with some arbitrary µ1 ∈ P ;

3. choose a finite-sized sample set Ξ⊂P ;

4. repeat:

• add

µ∗ = argmax
µ∈Ξ

α(µ)− eα(µ)

to C (here eα(µ) stands for the SCM lower bound computed using

the "current" C )

The repeat loop can be stopped either when #C has reached a maximal value,

or when max
µ∈Ξ

α(µ)− eα(µ) is less than a desired precision.

The greedy algorithm written below would require computation of α(µ) for

#Ξ× (1+ 2+ . . .+ (#C − 1)) values of µ. If one choose a large Ξ set, the cost

of the choice of C might be too prohibitive. Rather, one could consider a cheap

upper bound eαup(µ) for α(µ) and replace α(µ)− eα(µ) by the relative surrogate

sharpness estimator:
eαup(µ)− eα(µ)
eαup(µ)

.

This cheap upper bound could be built using the following: let us define:

eY up = {y∗(µk), k = 1, . . . , K}

where

{µ1, . . . ,µK} = C

and

y∗(µk) = arginf
y∈Y





Q∑

q=1

Θq(µk)yq



 (k = 1, . . . , K)

We can define:

eαup(µ) = inf
y∈ eY up





Q∑

q=1

Θq(µ)yq





which satisfies eαup(µ)≥ α(µ) because eY up ⊂ Y .

Using eαup(µ) as a surrogate for α(µ) reduces fixed complexity of the greedy

algorithm to K = #C eigenproblems on X (for computation of the y∗(µk)) and
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#Ξ trivial minimizations per step over reasonably-sized, finite, eY up.

4 Choice of a reduced basis

In this section, we present two methods for choosing our reduced basis {ζ1, . . . ,ζN }.

These two methods have different offline complexities and lead to different

bases. Both nicely fit into our reduced basis framework, and can benefit from

the same procedure for error estimation, detailed in section 3.

4.1 Greedy procedure

The greedy procedure is treated in [5].

The following algorithm is based on the same heuristic than the one described

earlier for choosing C in the SCM: at each step of the algorithm, we put one

new function in the reduced basis; this function is the solution uµ∗ of the PDE

for a specific value of the parameter choosed so as to give the best expected

improvement in the online error bound, i.e. the value of the parameter for

which we make the greatest (estimated) error when using "current" reduced

basis.

The greedy algorithm for choice of the reduced basis is the following: given

N ∈ N, the desired final size of the reduced basis,

• Choose a finite-sized, random, large Ξ⊂P sample of parameters.

• Choose µ∗1 ∈ P at random, and set ζ1 = uµ∗1
.

• Repeat, for n from 2 to N :

– For each µ ∈ Ξ, compute the online error bound for euµ when using

{ζ1, . . . ,ζn−1} as reduced basis.

– Find µ∗n ∈ Ξ with the greatest online error bound.

– Set ζn = uµ∗n
.

This procedure requires computation of N actual solutions, and #Ξ×N online

error bounds. It relies crucially on the existence of a cheap online error bound.

Of course, instead of fixing a target size for the reduced basis, one can also keep

iterating and adding functions to the reduced basis until the greatest online

error bound (on the Ξ sample of parameters) gets below some prescribed value.

15



4.2 Proper Orthogonal Decomposition (POD)-driven procedure

To our knowledge, the following presentation of the Proper Orthogonal Decom-

position is new. We refer to [8] for a different presentation, based on singular

value decomposition (SVD).

First mode

Suppose, for a soft start, that we want to find a reduced basis containing only

one item: {ζ1}. Without loss of generality we can always suppose that ||ζ1|| =

1. It seems reasonable to make the choice which makes the least summed

squares error when projecting orthogonally the solutions uµ (for all µ ∈ P )

onto the reduced space Span {ζ1}. Said with formulas, we seek ζ1 satisfying:

ζ1 = arginf
p∈X ,||p||=1

∫

µ∈Ξ

����uµ− < uµ, p > p
����2 dµ

The function ζ1 will be called our first POD mode.

Unfortunately, the integral appearing in the objective function below is, in gen-

eral, analytically untractable. We can approximate it using a finite sample of

parameters Ξ⊂P ; the integral then gets replaced by a finite sum over Ξ:

ζ1 = arginf
p∈X ,||p||=1

∑

µ∈Ξ

����uµ− < uµ, p > p
����2

The set of solutions {uµ,µ ∈ Ξ} is called the snapshots ensemble.

The objective function can then be rewritten:

∑

µ∈Ξ

����uµ− < uµ, p > p
����2 =

∑

µ∈Ξ

����uµ
����2 − 2

∑

µ∈Ξ

< uµ, p >2 +
∑

µ∈Ξ

< uµ, p >2 ||p||2

=
∑

µ∈Ξ

����uµ
����2 −

∑

µ∈Ξ

< uµ, p >2 using that ||p||2 = 1

And so:

ζ1 = argmax
p∈X ,||p||=1

∑

µ∈Ξ

< uµ, p >2 (13)

The objective function in (13) is a quadratic form in p, that has to be maxi-

mized under a "unity norm" constraint. We know this can be reduced to an

eigenproblem.

More specifically, let us introduce a basis {φ1, . . . ,φN } of X . As we stressed
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in the introduction, N is large. We enumerate the snapshots parameters: Ξ =

{µ1, . . . ,µNsnap
}.

Each snapshot u(i) = uµi
(i = 1, . . . , Nsnap) has an expansion in the basis of X :

u(i) =

N∑

j=1

u(i) jφ j

and we can write down M , the matrix of the u(i) j coefficients:

M =




u(1)1 u(2)1 . . . u(Nsnap)1

u(1)2 u(2)2 . . . u(Nsnap)2
...

... . . .
...

u(1)N u(2)N . . . u(Nsnap)N




Denote by Ω, the (symmetric, positive definite) matrix of the scalar product

<,> in X .

We can write down our objective function as:

∑

µ∈Ξ

< uµ, p >2= pTΩT M M TΩp

The condition of optimality for (13) is then given by the Lagrange multipliers

theorem: there has to exist λ ∈ R, so that:

ΩT M M TΩζ1 = λΩζ1 (14)

and λ is the optimal value of the problem (as can be seen by left-multiplying

(14) by ζT
1 , and using ||ζ1||

2 = 1) – which should be made as large as possible.

Now left-multiply (14) by Ω−T = Ω−1:

M M TΩζ1 = λζ1 (15)

so that ζ1 is the unit eigenvector associated with the greatest eigenvalue of

M M TΩ.

So we have reduced our problem as an eigenproblem of dimensionN , because

M M TΩ is of sizeN ×N . SinceN can be large, this could turn out to be highly

unpractical. Fortunately, we are to see that we can solve the same problem

using eigenproblem of size Nsnap× Nsnap.

The key is to look for ζ1 as a linear combination of the snapshots, instead of the
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"generic" basis items {φi}.

We write:

ζ1 =

Nsnap∑

i=1

z1iu(i) = Mz1

where z1 = (z11, . . . , z1,Nsnap
)T . Setting ζ1 = Mz1 into (15) yields:

M M TΩMz1 = λMz1

and a sufficient condition for this to hold is:

M TΩMz1 = λz1

so that our new unknown z1 ∈ RNsnap is an eigenvector of M TΩM (which of size

Nsnap× Nsnap) associated with its greatest eigenvalue.

The absence of optimality loss when looking for ζ1 in Range(M) (in other

words, ζ1 = Mz1 with z1 as defined below satisfies (13)) follows clearly from

these facts:

1. if z is a nonzero eigenvector of M TΩM (associated with λ 6= 0), then

ζ = Mz is a nonzero eigenvector of M M TΩ associated with λ ;

2. if ζ is a nonzero eigenvector of M M TΩ (associated with λ 6= 0), then

z = M TΩζ is a nonzero eigenvector of M TΩM associated with λ;

3. M TΩM and M M TΩ have the same nonzero eigenvalues, each with the

same multiplicity in one and the other.

Proof: To see 1., first note that if we had Mz = 0, then M TΩMz = 0 and so z

could not be an eigenvector associated with a nonzero eigenvalue of M TΩM ;

thus Mz 6= 0. Now M M TΩ(Mz) = M(M TΩMz) = Mλz = λ(Mz) so that Mz

is an eigenvector of M M TΩ associated with λ. Point 2. is 1. mutatis mutan-

dis. Point 3.: it is clear from 1. and 2. that the two matrices have the same

nonzero eigenvalues. To get the statement about the multiplicities, suppose

that Span{z1, . . . , zk} is the eigenspace of M TΩM associated with eigenvalue

λ. Since M TΩM is self-adjoint with respect to the Euclidean inner product

(i.e., is symmetric), we can suppose that {z1, . . . , zk} is orthogonal (for the Eu-

clidean inner product). Now, from 2., Span{Mz1, . . . , Mzk} is contained in the

eigenspace of M M TΩ associated with λ. Moreover, for every i 6= j:

< Mzi , Mz j >= zT
j M TΩMzi = λzT

j zi = 0
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so that {Mz1, . . . , Mzk} is <,>-orthogonal, and therefore linearly independent,

and so λ has multiplicity k in M M TΩ. �

Second mode

Now let’s say we are looking for a set of two functions as our reduced basis:

{ζ1,ζ2}. As earlier, we want (ζ1,ζ2) to minimize:

∑

µ∈Ξ

����uµ − (< uµ,ζ1 > ζ1+ < uµ,ζ2 > ζ2)
����2

among the (ζ1,ζ2) ∈ X × X satisfying: ||ζ1|| = ||ζ2||= 1 and < ζ1,ζ2 >= 0.

In other words, we aim to minimize the overall error (over our sample of pa-

rameters Ξ) made when orthogonally projecting uµ onto Span{ζ1,ζ2}, with

{ζ1,ζ2} an orthonormal family.

Mimicking what we have done earlier, we rewrite our objective function as:

∑

µ∈Ξ

����uµ − (< uµ,ζ1 > ζ1+ < uµ, p > p)
����2 =

∑

µ∈Ξ

||uµ||
2− 2

∑

µ∈Ξ

< uµ,ζ1 >
2 −2

∑

µ∈Ξ

< uµ, p >2

+
∑

µ∈Ξ

< uµ,ζ1 > ||ζ1||
2+
∑

µ∈Ξ

< uµ, p >2 ||p||2

+
∑

µ∈Ξ

< uµ,ζ1 >< uµ,ζ2 >< ζ1,ζ2 >

= Constant−
∑

µ∈Ξ

< uµ,ζ1 >
2 −
∑

µ∈Ξ

< uµ,ζ2 >
2

because of the constraints on ζ1 and ζ2.

The objective function, apart from the terms that are independent of ζ1 and

ζ2, is a sum of a function dependent on ζ1 only and a function dependent

on ζ2 only. Thus the joint optimization on (ζ1,ζ2) is equivalent to successive

optimization on ζ1, then on ζ2. Optimization on ζ1 has been done previously.

Optimization in ζ2 is the following:

ζ2 = argmax
p∈X ,||p||=1,<p,ζ1>=0

∑

µ∈Ξ

< uµ, p >2

The objective function has exactly the same matrix expression as the one of the

problem defining the first POD mode:

∑

µ∈Ξ

< uµ, p >2= pTΩT M M TΩp
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The Lagrange multiplier theorem now gives that there exist λ2 ∈ R so that:

ΩT M M TΩζ2 = λ2Ωζ2 (16)

As before, left multiplying by ζT
2 gives that λ2 is the optimal value of the prob-

lem, which should be made as large as possible.

Left-multiplying (16) by Ω−T we get that (16) is equivalent to:

M M TΩζ2 = λζ2

so λ2 is an eigenvalue of M M TΩ.

Now we have, for every x , y ∈ X :

< M M TΩx , y > = yTΩM M TΩx

= yT
�

M M TΩ
�T
Ωx

= < x , M M TΩy >

so that M M TΩ is self-adjoint with respect to <,>. So we can find a unit

eigenvector ζ2, orthogonal to ζ1 associated with the second greatest eigen-

value (note that this eigenvalue is equal to λ1 if λ1 has multiplicity > 1).

As earlier, we can use the fact that M M TΩ and M TΩM have the same nonzero

eigenvalues, to get ζ2 = Mz2 where z2 is an eigenvector of the smaller matrix

M TΩM . The fact that multiplicities of nonzero eigenvalues in M M TΩ and

M TΩM are the same ensures that this procedure is correct even if λ1 = λ2.

Following modes, and summary for POD

We can readily repeat what we have done for ζ2 to prove:

Let Ξ = {µ1, . . . ,µNsnap
} be a finite part of P . Let M be the matrix whose

columns are the coefficients of uµ1
, . . . ,uµNsnap

with respect to some basis of X .

Let Ω be the matrix of the inner product in X .

Then, the family (ζ1, . . . ,ζN ) of vectors in X that minimizes:

∑

µ∈Ξ

���
���u(µ)−

�
< uµ,ζ1 > ζ1+ < uµ,ζ2 > ζ2 + . . .+ < uµ,ζN > ζN

����
���
2

under the constraints < ζi ,ζ j >=

(
1 if i = j

0 else.
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is defined by: 



ζ1 =
1

||Mz1||
Mz1

...

ζN =
1

||Mzn||
Mzn

where zk (k = 1, . . . , N) is a nonzero eigenvector, associated with k-th largest

eigenvalue (counting repeated nonsimple eigenvalues) of M TΩM .

The statement above holds for every N ∈ N∗ so that the N -th largest eigenvalue

of M TΩM is nonzero.

The functions (ζ1, . . . ,ζN ) defined above are called the first N POD modes as-

sociated with the snapshot ensemble Ξ.

A note about the (offline) complexity of the POD: for a N -sized reduced basis,

it requires computation of Nsnap "expensive" solutions uµ and extraction of the

N leading eigenelements of an Nsnap × Nsnap symmetric matrix.

5 Case of a scalar output

One is often not interested in the full solution uµ, but rather in an "output"

calculated from uµ:

sµ = η(uµ)

where η : X → R is a (µ-independent) functional.

We present here some approaches for computation of a surrogate output esµ
from euµ.

5.1 Primal approach

A trivial approach to the question is to compute euµ, and then, online:

esµ = η(euµ) (17)

Done naively, this procedure might be dim X -dependent, since evaluation of η

may require access to every component of euµ in the original X space.

A way of overcoming this problem, if η is a linear functional, is to write that:

esµ = η
 

N∑

n=1

cn(µ)ζn

!
=

N∑

n=1

cn(µ)η(ζn)
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and the offline/online procedure becomes:

• offline: compute and store η(ζn), n= 1, . . . , N

• online: find cn(µ) (n = 1, . . . , N) satisfying (2) using procedure described

in 2.2 and compute

esµ =
N∑

n=1

cn(µ)η(ζn) (18)

And now the online phase is still dim X -independent.

For a quadratic output functional, one proceeds the same way using:

esµ =
N∑

n=1

N∑

n′=1

cn(µ)cn′(µ)ηb(ζn,ζn′)

where ηb is the symmetric bilinear form associated with η.

This time, one has to compute and store (offline) ηb(ζn,ζn′), for n, n′ = 1, . . . , N .

The same procedure can easily be generalized for polynomial outputs.

Error bound for the output

A straightforward majoration for |sµ − esµ| can be found under a Lipschitz hy-

pothesis for η: let L > 0 be so that, whatever v, w ∈ X :

|η(v)−η(w)| ≤ L||v−w||

(for example, if η is a continuous linear functional, L can be chosen as the dual

norm of η).

Then we have:

|sµ−esµ| ≤ Lǫµ (19)

5.2 Primal/dual approach

For linear outputs, error bound (19) can be improved, at the expense of, in

some cases, an increase in computation time and program complexity. The

idea, present in [5], is to introduce the dual problem of (1) associated with η:

aµ(v,ψµ) = −η(v) ∀v ∈ X (20)

whose unknown is ψµ ∈ X .
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This dual problem is an affine parametric PDE which we can apply the RB

framework on. That is, given a reduced basis {ζdu
1 , . . . ,ζdu

Ndu
} and a reduced

space eX du = Span{ζdu
1 , . . . ,ζdu

Ndu
}, find an approximation eψµ ∈ eX du to ψµ satis-

fying:

aµ(v, eψµ) = −η(v) ∀v ∈ eX du

with error bound:

|| eψµ−ψµ|| ≤ ǫdu
µ

After having found reduced basis solutions for the primal and dual problems,

the following surrogate output can be taken:

esµ = η(euµ)− rµ(
eψµ) (21)

The error bound on the output now reads:

||esµ− sµ|| ≤ α(µ)ǫµǫ
du
µ (22)

Using (21) instead of (17) gives us the quadratic error bound (22) instead of

the linear (19) for only (roughly) twice the price in computation and storage

requirements. And if the problem is self-dual (i.e. aµ is symmetric and η =

− f ), we can take N = Ndu, ζi = ζ
du
i ∀i = 1, . . . , N and get this "squared" effect

for free, by just adding up the corrective term in (21).

Proof of (22): We omit the µ subscripts.

|s−es| = |η(u− eu)− a(eu, eψ) + f ( eψ)|
= | − a(u− eu,ψ)− a(eu, eψ) + f ( eψ)| from (20)

= | − a(u,ψ) + f ( eψ) + a(eu,ψ− eψ)| by reordering terms

= | f ( eψ−ψ) + a(eu,ψ− eψ)| from (1)

= |r(ψ− eψ)| by the very definition of r

≤ ||r||X ′||ψ− eψ|| ≤ ||r||X ′ǫdu = αǫǫdu from the definition of ǫ. �

We shall now pass to the offline/online procedure: we first require computation

of rµ(
eψµ) in (21).

Expanding eψµ on the dual reduced basis:

eψµ =
Ndu∑

p=1

qp(µ)ζ
du
p

23



we have:

rµ(
eψµ) =

Ndu∑

p=1

qn(µ)rµ(ζ
du
p ) (23)

and, for each p = 1, . . . , Ndu, we have, from definition of rµ, affine expansion

of aµ and reduced basis expansion (2) of euµ:

rµ(ζ
du
p ) = f (ζdu

p )−

Q∑

q=1

Θq(µ)

N∑

n=1

cn(µ)aq(ζn,ζdu
p ) (24)

So our full offline/online procedure for primal/dual evaluation and error bound

on sµ reads:

• offline:

– perform offline-stage RB approximation (part 2.2) and error estima-

tion (part 3) for the two problems (1) and (20) ;

– compute and store η(ζn) for n= 1, . . . , N ;

– compute and store f (ζdu
p ) (p = 1, . . . , Ndu) and aq(ζn,ζdu

p ) (q =

1, . . . ,Q; n = 1, . . . , N ; p = 1, . . . , Ndu) ;

• online:

– perform online-stage RB approximation and error estimation for

the two problems (1) and (20); this gives respective expansions

{cn(µ)}n=1,...,N and {qp(µ)}p=1,...,Ndu
of euµ and eψµ in, respectively

primal reduced basis {ζ1, . . . ,ζN} and dual reduced basis {ζdu
1 , . . . ,ζNdu

},

together with α(µ), ǫµ (error bound for primal problem) and ǫµ (er-

ror bound for dual problem) ;

– compute η(eµ) as left-hand side of (18) ;

– compute rµ(
eψµ) using (23) and (24) ;

– output esµ using (21) ;

– give error bound (22).

5.3 Output-aware choice of basis: goal-oriented POD

When one is interested in a special output of uµ, it could be wise to choose

an adapted reduced basis for this output. For instance, if the output depends

strongly on the values of uµ(x) for x in some region R1 contained in the domain
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of calculus, and much less strongly for x in some region R2, then a well-chosen

reduced basis should lead to a precise euµ approximation in R1, which could be

much less precise in R2.

The goal-oriented POD method, presented in [1] in the context of linear-time-

invariant (LTI) dynamical systems and balanced truncation, is a variation on

POD taking the output functional in account.

Goal-oriented POD proceeds by finding (ζ1, . . . ,ζN ) ∈ X minimizing the sum of

squared differences (for different values of a parameter in a finite sample #Ξ)

between the actual output and the output evaluated on the RB approximation

taking {ζ1, . . . ,ζN } so as to minimize

inf
∑

µ∈Ξ

����η(uµ)−η(euµ)
����2 (25)

under the constraints:





euµ =
N∑

n=1

cn(µ)ζn ∀µ ∈ Ξ

N∑

n=1




Q∑

q=1

Θq(µ)aq(ζn,ζp)


 cn(µ) = f (ζp) ∀µ ∈ Ξ,∀p = 1, . . . , N

< ζn,ζm >=





1 if n= m

0 else
∀n, m = 1, . . . , N

We believe it is possible to adapt the optimization framework described in [1]

to solve (a weaker variant) of the above problem for (ζ1, . . . ,ζN ). However this

optimization problem seems rather difficult (non-convex, with local non-global

minima), thus requiring much more computational burden than classic POD.

Conclusion

We have presented a PDE-based, deterministic approach for model reduction

called reduced basis approximation. The advantages of this approach are: a

certified, computationally-efficient bound for reduction error, and a wide flex-

ibility in the reduced basis chosen so as to enable output-aware choices of ba-

sis. Its main drawback is the need to make assumptions on the model that is

being reduced. However work have been done to extend the reduced basis,

and its associate procedures (error estimation, basis selection) to non-affinely
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parametrized PDEs ( [2]) or non-linear, time-dependent PDEs (see [4] for in-

stance).

Future work should include further extensions to other PDEs with different

parameters, and more output-aware basis choice procedures.
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