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Abstract

In this paper, we propose to address the semantic-

oriented 3D mesh hierarchical segmentation problem, us-

ing enhanced topological skeletons [18]. This high level

information drives both the feature boundary computation

as well as the feature hierarchy definition. Proposed hierar-

chical scheme is based on the key idea that the topology of

a feature is a more important decomposition criterion than

its geometry.

First, the enhanced topological skeleton of the input tri-

angulated surface is constructed. Then it is used to de-

limit the core of the object and to identify junction areas.

This second step results in a fine segmentation of the ob-

ject. Finally, a fine to coarse strategy enables a semantic-

oriented hierarchical composition of features, subdividing

human limbs into arms and hands for example.

Method performance is evaluated according to seven cri-

teria enumerated in latest segmentation surveys [3]. Thanks

to the high level description it uses as an input, presented

approach results, with low computation times, in robust and

meaningful compatible hierarchical decompositions.

1. Introduction

Mesh segmentation consists in subdividing a polygonal

surface into patches of uniform properties [16, 3], either

from a strictly geometrical point of view or from a per-

ceptual point of view. This operation has become a nec-

essary pre-processing tool for many applications such as

shape modeling [7], deformation [10], compression, texture

mapping [20], retrieval, etc.

According to Attene et al. [3], mesh segmentation tech-

niques can be classified into two categories. On the one

hand, geometry-oriented methods aim at defining patches of

homogeneous geometry. In this case, algorithms are driven

by purely low level geometrical information, such as cur-

vature [19]. On the other hand, semantic-oriented meth-

ods aim at distinguishing regions of perceptual interest, fol-

lowing high level notions such as defined in human percep-

tion theory [6]. This kind of approach is particularly suited

for human shape interaction applications (texture mapping,

modeling, deformation, etc.), where the decomposition has

to be meaningful from a human user’s point of view.

In this latter case, three main difficulties arise. (i) Char-

acterizing high level notions from low-level measurements

(such as curvature or geodesic distance evaluations) remains

an open issue [3]. (ii) For most applications, a hierarchical

decomposition scheme is expected, so as to provide a pro-

gressive understanding of the object, but it is often based

on low-level measurement clustering [10, 2]. (iii) The com-

patibility of the segmentation – which means the ability to

identically segment objects that are visually similar – has

been recently expressed as a new challenging problem [9].

To address these issues, Katz et al. [9], using multi-

dimensional scaling, introduce the high level notion of fea-

ture points – vertices located on the extremity of prominent

components – to drive the segmentation of the object into

core and features. Then, only patches that contain feature

points are recursively sub-divided. This means that, at the

finest levels of the hierarchy, the more the patches will be

located near the feature points, the smaller they will be (fig.

5), which is not a natural hierarchical scheme.

Podolak et al. [14] propose to drive the segmentation by

the notion of symmetry. They describe a clustering-based

algorithm using planar-reflective symmetry transform val-

ues as an input. However, the depth of their hierarchical

scheme is user-defined. Moreover, the symmetry of an ob-

ject depends on its pose, which impacts the global pose ro-

bustness of the overall approach.

Li et al. [12] propose to construct a skeleton of the object

and to use this high level structural information to drive the

segmentation. Lien et al. [13] extend this idea construct-

ing a hierarchical skeleton, analyzing the principal axis of

its convex hull. However, this method is reported to be

time consuming when dealing with non-null genus surfaces.

Moreover, the convex hull of an object is dependent on its

pose, which also impacts the pose robustness of the overall

algorithm.

Berreti et al. [4] propose a method that overcomes above
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Figure 1. Enhanced topological skeleton ex-

traction overview [18].

issue using topological skeletons [5], defined with regard to

a geodesic based mapping function computed on the sur-

face. However, their algorithm is not hierarchical and only

segments objects into core and limbs. Zhang et al. [20] use

topological skeletons as well but also propose to segment

obtained patches along separating regions, where the area

of the level sets of the mapping function suddenly varies.

In this paper, we propose to address the three previously

mentioned segmentation related issues. Firstly, as the struc-

ture of an object is an important perceived shape charac-

teristic, we propose to drive the segmentation by the topol-

ogy of the object, using an enhanced version of topological

skeletons [18]. Secondly, as this shape abstraction also en-

codes shape geometry, we propose a semantic-oriented hier-

archical segmentation process that gathers object’s features

according to their topology and their geometry. Thirdly,

as segmentation is topology driven, objects of compatible

topology are segmented in a compatible manner.

This paper makes the following contributions. In the

next section, we show how to adapt shape topological de-

scription techniques to the segmentation problem, with an

appropriate surface mapping function. In the third sec-

tion, we show how to use this high level information for

the feature boundary definition. In the fourth section, we

show how to benefit from the topological description of the

shape to achieve a semantic-oriented feature hierarchy. Ex-

perimental results are presented in the fifth section, where

method performance is evaluated according to criteria enu-

merated in latest surveys [3].

2. Fitting enhanced topological skeletons to the

segmentation problem

In the first stage of the method, given an input triangu-

lated surface T (manifold, connected and closed), an en-

hanced topological skeleton is extracted. The following

paragraph sums up previous work [18] presenting this pro-

cess.

2.1. Enhanced topological skeleton extraction

First, mesh feature points (in pink in figure 1(a)) are au-

tomatically extracted, intersecting geodesic-based map ex-

(a) (b) (c) (d)

Figure 2. Original geodesic based function
(a). Curvature index [11] (b). Curvature con-

strained geodesic based function (c). In (d),
level sets are aligned with concave areas.

trema [18]. Then, for each vertex in the mesh, a mapping

function fm is defined as the geodesic distance to the clos-

est feature point (fig. 2(a)). Next, for each vertex v ∈ T ,

an upper-value approximation of f−1
m ( fm(v)), noted Γ(v),

is computed along the edges of T . In particular, the con-

nected component of Γ(v) containing v is identified and

noted γ(v). Analyzing the evolution of the number of con-

nected subsets of Γ(v) as fm evolves enables the construc-

tion of a Reeb graph [15] (fig. 1(b)). At this stage, each

connected component of the Reeb graph is modeled with

an ordered collection of closed curves γ(v). The next step

consists in identifying constrictions [8] within these collec-

tions. For each connected component of the Reeb graph,

the average Gaussian curvature on each curve γ(v) is com-

puted. Then, local negative minima are identified as con-

strictions (fig. 1(c)). Finally, the connected components of

the Reeb graph are subdivided using these constrictions as

boundaries between subparts (fig. 1(d)). As a conclusion

of this algorithm, the input surface is represented by an en-

hanced topological skeleton (fig. 1(d)), which encodes the

topological and geometrical evolution of the contours of the

mapping function fm.

2.2. Constriction location optimization

In this paper, we use such a high level description to drive

the segmentation process. In particular, as identified con-

strictions are located on the narrowest parts of the surface,

they are good candidates for feature boundary definition

(fig. 1(c)). However, in the latter algorithm, constrictions

are identified along level line approximations, which do not

necessarily follow the concavity of the surface. Within the

framework of segmentation, to conform to human percep-

tion theory [6], feature boundaries must be aligned with

concave areas. Consequently, we force the alignment of

the mapping function level lines with surface bottlenecks,

by integrating surface curvature into the geodesic distance

computation. Such a curvature constrained geodesic dis-

tance evaluation is computed with Dijkstra’s algorithm, us-



ing w(vi,v j) as weight for every edge (vi,v j):

w(vi,v j) =
e(vi,v j)

e
+ α×

|Ic(vi)− Ic(v j)|

∆Ic

(1)

where e(vi,v j) is the euclidean distance between vi and v j,

e the average edge length in T , α a predefined ratio, Ic(v)
the curvature index [11] in v (Ic(v) ∈ [−1;1]) and ∆Ic the

average curvature index difference between two adjacent

vertices in T . The motivation of this computation is to in-

crease the distance between two vertices when a concave

region separates them. Consequently, when Ic(vi) or Ic(v j)
(or both) are negative (which corresponds to concavity), α
is set to α0 and 0 otherwise. Therefore, level lines quickly

visit convex areas and slowly get aligned with concave ones.

This effect can be observed in figure 2, which shows on a

hand model the mapping function computed in [18] (defined

as the geodesic distance to the closest feature point), the

curvature index distribution and the mapping function used

in this paper (defined as the curvature constrained geodesic

distance to the closest feature point, noted f̂m). In particu-

lar, the reader can notice in figure 2(d) that displayed level

sets are aligned with the concave parts of the finger. In these

illustrations, α0 has been set to a high value for display pur-

pose. In practice, it has been set to 0.05 for every model.

Once this curvature constrained function is computed, the

Reeb graph is constructed. Then, for each connected com-

ponent of the graph, a curvature estimation ζ(γ(v)) is com-

puted for each of its curve γ(v) as follows:

ζ(γ(v)) =
∑vi∈γ(v) Ic(vi)× (L e1

(vi)+L e2
(vi))

2×P (γ(v))
(2)

where P (γ(v)) is the perimeter of γ(v) and where L e1
(vi)

and L e2
(vi) are the lengths of the edges adjacent to vi on

γ(v). This computation gives a robust and relevant estima-

tion of the curvature along each curve γ(v). Then, curves

that locally minimize ζ(γ(v)) are identified as constrictions.

In this section, we introduced an adaptation of shape

topological description techniques to the segmentation

problem. We proposed a novel mapping function, based

on a modified computation of geodesic distances. This

computation integrates curvature so that the mapping func-

tion level lines are forced to be located along concave ar-

eas. Then, estimating the curvature on these collections of

curves enables the detection of the most concave ones, that

we refer as constrictions. In the next section, these constric-

tions are used for feature boundary computations.

3. Feature boundary computation

In the previous stage of the approach, a modified ver-

sion of enhanced topological skeletons has been computed.

Each node of this skeleton references a surface patch of the

mesh. In figure 3(b), each patch has been displayed with

(a) Original

graph.

(b) Raw

segmentation.

(c) Simplified

graph.

(d) Fine

segmentation.

Figure 3. Core and junction computation re-
sults in the finest segmentation of the object.

a distinctive color, resulting in an over-segmentation of the

object. In this section, we describe a region merging algo-

rithm based on the notions of core and junction areas, which

results in a fine segmentation of the object (fig. 3(d)).

3.1. Junction areas

We classify the nodes of the skeleton into three cate-

gories, according to their degree. A node N is an extremity

node if its degree (deg(N)) equals 1 (related surface patch

contains a feature point, in green in fig. 3(a)). A node N is

a tubular node if deg(N) = 2 (in blue in fig. 3(a)). Its sur-

face patch has two boundaries: an outer one (γo), directed

towards feature points, and an inner one (γi). A node N is

a junction node if deg(N) > 2 (in red in fig. 3(a)). We de-

fine a junction area as a connected set of junction nodes.

Concretely speaking, junction areas correspond to surface

patches adjacent to several large features, such as the palm

of the hand on a humanoid model. In figure 3(a), the set of

four red nodes forms a junction area. At this stage of the

algorithm, junction nodes are merged into junction areas.

3.2. Core boundary definition

We define the core of an object as a connected set of

nodes, including the root node of the skeleton and its pos-

sible adjacent junction areas. The root node is displayed in

figure 3(a) with a bigger radius. It corresponds to the sur-

face patch containing the vertex which is the furthest away

from feature points. Concretely speaking, the core of the

object corresponds to its global inner part, like the torso of

a humanoid for example. The presence of tubular nodes on

prominent components prevents an undesired expansion of

the core. In figure 4(d), the core expansion is stopped at the

basis of the head, the arms and the legs because constric-

tions have been detected on these features.

An additional mechanism is proposed to optimize core

boundary computation. Constrictions are often identified at

the basis of prominent components, delimiting thin patches.

Consequently, to prevent over-segmentation in those areas

(see the fingers in figure 3(b)), we propose to merge the first

tubular node of a component with the core in the following

cases:
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Figure 4. Hierarchical segmentation of a baby
model.

1. Related surface patch is small: its interval on f̂m is

lower than a fixed threshold ∆ f̂m (∆ f̂m = 0.1);

2. Its outer boundary (γo) is a better candidate for

core boundary definition than its inner boundary (γi):

ζ(γo) < ζ0 and ζ(γo) < ζ(γi) (ζ0 = −0.2).

In figure 3, the first tubular node of the inch (white patch

in fig. 3(b)) is large but its outer boundary (with the cyan

patch) is deeply concave and better suits the purpose of seg-

mentation as a delimitation between the inch and the palm.

This tubular node is merged into the core. The first condi-

tion makes, for example, the first tubular node of the middle

finger (pink patch in fig. 3(b)) merge with the core.

As a conclusion, in figure 3, junction nodes first merges

to form a junction area. Then this junction area merges with

the root node. Finally, core boundary is optimized merging

first tubular nodes if necessary (see figure 3(c)).

4. Topology driven feature hierarchy

In the previous stage of the approach, a fine segmentation

of the object has been obtained running a node merging al-

gorithm on the skeleton (figs. 4(a), 5(e)). Based on this fine

segmentation, we propose in this section a fine to coarse

strategy for the semantic-oriented composition of features.

Traditional hierarchical segmentation algorithms [10, 9,

2] base their hierarchy scheme on low level measurement

clustering. In this paper, we propose to drive the hierarchy

composition using a high level shape description so as to

provide a semantic-oriented feature hierarchy. The key idea

of our hierarchical scheme is that the topology of a feature

is a more important decomposition criterion than its geom-

etry. Consequently, we propose to subdivide features in pri-

ority along junction areas, which corresponds to skeleton’s

topological variations.

First, each core-adjacent connected component of the

skeleton is identified as a feature. This identification results

in the coarsest level of hierarchy (figs. 4(b) and 5(b)).

Then features are recursively subdivided according to the

following strategy. Each feature is swept from its inner

boundary to its extremity (extremity node). If a junction

area is encountered, the previously swept nodes are gath-

ered into a new feature, and the junction area is gathered

with the remaining nodes into another feature. If there is no

junction area in the feature, it is subdivided into the nodes

it is composed of and the recursive algorithm stops.

In figure 4(a), the baby’s left arm is swept from its basis

until the hand palm (junction area, in red) is reached. The

(a) Hierarchy from [9].

(b) (c) (d) (e)

Figure 5. Comparison to the hierarchical de-

composition from [9]. At the second level,
our algorithm segments dinopet’s limbs into

arms and hands or legs and feet.

two tubular nodes (in blue) are gathered into a feature (in

white in fig. 4(c)) and the hand into another (in pink in fig.

4(c)). At this level of hierarchy, arms are divided into hands

and arms. Then, these features are subdivided into the nodes

they are composed of in the last hierarchical level.

In this section, we presented a semantic-oriented hier-

archical mesh decomposition algorithm. Contrary to state

of the art methods, it subdivides features according to their

topological characteristics, providing meaningful decompo-

sitions of limbs into arms and hands or legs and feet (fig.

5(c)) for example, which benefits shape understanding.

5. Experiments and results

In this section, we present experimental results obtained

on manifold, connected and closed triangulated surfaces ex-

tracted from the Princeton [17] and the INRIA [1] shape

repositories.

5.1. Segmentation evaluation

To our knowledge, no ground truth 3D mesh segmenta-

tion evaluation process has been proposed in the past. How-

ever, Attene et al. [3] enumerate seven criteria for evaluat-

ing a segmentation algorithm.

1. Versatility: figure 8 shows that visually meaningful seg-

mentations are obtained on primitive shapes (with genus 2),

animals, anatomic and mechanical parts.

2. Decomposition semantic: in figures 4, 5, and 8, ani-

mals and humanoids are first segmented into core and limbs.

Moreover, figure 6 shows a compatible segmentation of two

horse models (into core and limbs, at first level).

3. Boundary location: a curvature constrained geodesic

distance computation has been proposed in section 2 so as to

align constrictions along concavities. This can be observed

on models with frank or coarse concavities (figs. 8(a), 8(e)).

However, when no constriction is identified (fig. 8(d)), the

object is segmented with coarse boundaries.

4. Hierarchy semantic: on the contrary to related work,



(a) 1st level. (b) 2nd level. (c) 3rd level.

(d) 1st level. (e) 2nd level. (f) 3rd level.

Figure 6. Compatible hierarchical segmenta-

tion on two horses. The models are identi-
cally segmented at each step while the sec-

ond one has an additional feature (tail).

(a) Original (NP

= 12).

(b) Under

sampling (NP =

13).

(c) Surface noise

(NP = 13).

(d) Deformations

(NP = 12).

Figure 7. Algorithm robustness against vari-
ous surface degradations.

our hierarchy scheme is driven by high level shape descrip-

tions. Consequently, it produces a more natural categorisa-

tion of features. In figure 5(c), dinopet’s limbs are decom-

posed into arms and hands or legs and feet while those limbs

are simply subdivided in the middle in [9] at the same level

of hierarchy. Moreover, figure 6 shows that this hierarchy is

compatible when dealing with objects that are visually sim-

ilar. Horses are first decomposed into core and limbs, then

limbs are subdivided and the head is decomposed at the last

level of hierarchy in both cases.

5. Robustness: In fig. 7(b), the number of vertices has

been reduced by 5. In fig. 7(c), each vertex has been moved

randomly into a volume equal to 1% of that of the object,

reproducing scanner noise for example. In fig. 7(d), the

object has been deformed via user-interaction as described

in [18]. After these degradations, the number of extracted

patches NP is quite stable, even with strong surface noise.

Moreover, the deformed object is segmented identically to

the original one, which underlines the pose robustness of

the algorithm.

6. Time complexity: enhanced topological skeletons are

extracted in O(n2) steps in the worst case, with n the num-

ber of vertices in T [18]. Feature boundary computation

takes O(N) steps with N the number of nodes in the skele-

(a) (b) (c) (d)

(e) (f) (g)

Figure 8. Finest level of hierarchy for various
objects.

Model Faces 1st level Last level Time (s.)

Hand 52 000 7 12 107

Baby 10 000 6 24 5.4

Chess piece 600 3 5 0.05

Human jaw 2 300 3 7 0.43

Dolphin 4 200 6 8 0.89

Bi-torus 6 000 5 7 1.3

Bird 2 000 6 14 0.4

Fan 450 6 8 0.06

Mechanical 2800 3 5 0.53

Horse 1 40 000 6 21 34

Dinopet 9 000 7 28 3.9

Horse 2 5 000 7 20 1.35

Table 1. Computation times and number of

surface patches at the coarsest and the finest
levels of hierarchy.

ton. Feature hierarchy composition takes O((NJ + 1)×N)
with NJ the number of junction areas in the feature. Table 1

shows running times obtained on a 3GHz P4 PC. For infor-

mation, the dinopet is segmented in 28 s. in [9] while our

method takes 3.9 s.

7. Control parameters: some low level parameters are

used in our method (α0, ∆ f̂m and ζ0) but they have been

fixed experimentally for all models. Therefore, our algo-

rithm is fully automatic.

As a comparison to related work, feature points are accu-

rately extracted, even on small features such as the horse’s

ears, where segments are isolated in figure 9 (black and

white patches), on the contrary to [20, 13]. Also notice that

limbs are more accurately subdivided with our method than

in [20] (where the front right leg, in red, is not subdivided).

Moreover, our hierarchical scheme decomposes features in

a more semantic-oriented manner than [9] (fig. 5). Finally,

running times are significantly lower than clustering based

methods [10, 9]. On the contrary to [13], the genus of the

surface does not impact the computation time (cf. table 1).

5.2. Limitations

Because it is topology based, our method cannot distin-

guish features when they form a compact connected com-



(a) Zhang [20]. (b) Lien [13]. (c) Our algorithm.

Figure 9. Comparison to other skeleton

driven segmentation algorithms [20, 13].

ponent. For example, a closed fist will not be decomposed

if the fingers are stuck to each other. This drawback can

be observed in figure 3(d) where fingers are stuck at their

basis, preventing the extraction of the first phalanx as an in-

dividual feature. The same effect can be observed in figure

5, where the upper part of the dinopet’s legs cannot be dis-

tinguished from the core. To overcome this issue, extending

extracted boundaries with an optimization algorithm could

be an interesting direction for future work. Moreover, local

re-meshing techniques could improve boundary locations

on coarsely designed objects, such as the bi-torus (fig. 8(d)).

6. Conclusion

In this paper, we presented a fully automatic topology

driven 3D mesh hierarchical segmentation algorithm. Fea-

ture boundaries and feature hierarchy are both computed

in a semantic-oriented manner, subdividing character limbs

into arms and hands for example. Method performance has

been evaluated according to latest evaluation methodology

[3]. Experiments shown the rapidity of our algorithm as

well as its robustness against various surface degradations.

We made the following contributions. We adapted

shape topological description techniques to the segmenta-

tion problem, using a curvature constrained geodesic based

mapping function and identifying constrictions along result-

ing level lines. We also proposed a region merging strategy

that produces a fine segmentation, based on the previously

computed topological decomposition. Finally, we intro-

duced a new semantic-oriented hierarchical scheme, where

features are subdivided according to their topological com-

plexity. In the future, thanks to the progressive shape un-

derstanding provided by the algorithm, we would like to

address the partial shape retrieval problem [7].
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