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ABSTRACT

We have recently proposed a second-order method for the blind

identification of underdetermined mixtures that relies on the

constrained factor (CONFAC) decomposition. It consists in storing

successive second-order derivatives of the cumulant generating

function (CGF) of the observations computed at different points

of the observation space in a third-order tensor following a

CONFAC model. In this work, we extend this approach to

the case of third-order derivatives by resorting to a fourth-order

CONFAC decomposition. We show how different third-order

derivative types can be combined into a single fourth-order

CONFAC tensor model with the goal of increasing the diversity

of the observations, so that higher underdeterminacy levels can be

handled. Computer simulation results illustrate the performance of

a CONFAC-based blind identification algorithm compared to some

competing methods.

Index Terms— Blind identification, cumulant generating

function, complex sources, CONFAC decomposition.

1. INTRODUCTION

The problem of blind identification of underdetermined mixtures

can be solved by resorting to second or higher even order statistics

of the observations (see, e.g. [1–7] and references therein). When

the diversity of the observations is not sufficient, one can resort

to a second class of tensor-based methods that rely on the

multilinearity properties of higher-order statistics (HOS) [3, 8].

A large majority of these methods solves the blind identification

problem for underdetermined mixtures by means of the canonical

polyadic (CP) decomposition1 [12, 13] of a tensor storing the

cumulants of the observations [1–3,9–11]. A particular class of blind

identification methods exploiting the second characteristic function

(CAF) of the observations, has been proposed in a few works

[5, 14, 15]. In [5], the alternating least squares (ALS) algorithm

is applied to blindly estimate the mixing matrix from a data

tensor constructed from third-order derivatives of the characteristic

function of the observations. In [16], we have considered a more

general scenario where the sources are assumed to be complex

(e.g. 4-PSK or 4-QAM). More recently [17], we have shown

that the CGF-based blind underdetermined mixture identification

∗The author is partially supported by Pronex/Funcap (Proc. 21.01.00/08)
and CNPq/Brazil (Proc. 303238/2010-0).

1This decomposition is sometimes also called Candecomp/Parafac, which
can be referred to with the same acronynm.

problem can be addressed by means of the constrained factor

(CONFAC) decomposition [18]. Therein, the authors propose to

store a collection of successive second-order derivatives of the CGF

of the observations in a third-order tensor. Exploiting three different

derivative forms, an “extended” CONFAC tensor model is built and

exploited for estimating the mixing matrix using the alternating least

squares (ALS) algorithm.

In this work, we extend the approach of [17] to the case

of third-order derivatives by resorting to a fourth-order CONFAC

decomposition with known constrained structure. We combine the

four derivative types of the generating functions of the observations

into a single fourth-order CONFAC tensor model, which is exploited

for blind identification on the mixing matrix. Compared to [17],

the approach proposed in this work allows to further increase the

diversity of the observations so that stronger underdeterminacy

levels can be handled. Our numerical results show that the proposed

solution offers improved performance over some competing blind

identification algorithms.

Notations: In the following, vectors, matrices and tensors are

denoted by lower case boldface (a), upper case boldface (A) and

upper case calligraphic (A) letters respectively. ai is the i-th
coordinate of vector a and ai is the i-th column of matrix A. The

(i, j) entry of matrix A is denoted Aij and the (i, j, k) entry of

the third order tensor A is denoted Aijk . Complex objects are

underlined, their real and imaginary parts are denoted ℜ{·} and ℑ{·}
respectively. E[.] denotes the expected value of a random variable.

AT and A† stand, respectively, for the transpose and Moore-Penrose

pseudo-inverse of A. The Kronecker and Khatri-Rao products are

denoted by ⊗ and ⊙, respectively.

2. THE FOURTH-ORDER CONFAC DECOMPOSITION

The constrained factor (CONFAC) decomposition of a fourth-order

tensor X ∈ C
P×Q×R×S is given by [18]:

Xi1i2i3i4 =

F1∑

f1=1

F2∑

f2=1

F3∑

f3=1

F4∑

f4=1

A
(1)
i1f1

A
(2)
i2f2

A
(3)
i3f3

A
(4)
i4f4

Wf1f2f3f4 ,

(1)

where

Wf1f2f3f4 =
F∑

f=1

Θf1fΨf2fΓf3fΩf4f , (2)

{A(n)} ∈ C
In×Fn , n = 1, 2, 3, 4, are factor matrices, Θ ∈

R
F1×F , Ψ ∈ R

F2×F , Γ ∈ R
F3×F , Ω ∈ R

F4×F are constraint

matrices, and F ≥ max (Fi), i = 1, 2, 3, 4. The constraint



matrices Θ,Ψ,Γ, and Ω have full row-rank and their columns are

canonical vectors possibly multiplied by -1. These canonical vectors

belong to the bases R
F1 , RF2 , RF3 and R

F4 , respectively. From

(1)-(2), we can note that the fourth-order CONFAC decomposition

can be viewed as a “constrained” Tucker decomposition [19] with

the particular feature of having a core tensor that follows a rank-F
sparse polyadic decomposition structure. At the same time, it can

be interpreted as an “augmented” CP decomposition whose factor

matrices may have repeated columns. The third-order CONFAC

decomposition was introduced in [18] its uniqueness properties have

been investigated in [20].

As will be shown later, in this work we resort to the

fourth-order CONFAC decomposition (1)-(2) to solve the blind

identification problem by exploiting third-order derivatives of the

second generating of the observations.

3. PROBLEM FORMULATION

We consider a noisy linear mixture of K narrowband sources

received by an array of N sensors. The mixing matrix is

defined by H = [h1, . . . ,hK ] ∈ R
N×K . Define z(m) =

[z1(m), . . . , zN (m)]T ∈ R
N , s(m) = [s1(m), . . . , sK(m)]T ∈

R
K and n(m) ∈ R

N as the mth discrete-time realizations of

the observations, source and additive white Gaussian noise vectors,

respectively, m = 1, . . . ,M . According to this model we have:

z(m) = Hs(m) + n(m). (3)

The problem consists in finding Ĥ such that Ĥ = HΠΛ, where

Π is a permutation matrix and Λ is a diagonal matrix. This

means that H can be identified up to permutation and scaling of its

columns. Column permutation and scaling are referred to as trivial

ambiguities. The identification of the mixing matrix H relies on the

following assumptions:

H1. The mixing matrix H does not contain pairwise collinear

columns;

H2. The sources s1, . . . , sK are non-Gaussian and mutually

statistically independent;

H3. The number of sources K is known.

In the following, we recall from [16] the core equations that

formulate the problem in the case of complex sources.

3.1. Second generating function of the observations

We recall from [16] the main steps that formulate the second-order

derivatives of the cumulant generating function (CGF) of the

observations in the case of complex sources. The CGF of the

observations, Φz , can be decomposed in a sum of marginal second

generating functions of the sources, ϕk, k = 1 · · ·K. We start by

defining Φz and ϕk in the complex field. The second generating

function ϕk of the k-th source taken at the point x of C defined R
2

is given by

ϕk(ℜ{x},ℑ{x}) = log E[exp(ℜ{x∗
sk})]. (4)

Similarly, the second generating function Φz of the observations

taken at the point w = (u,v) defined in R
2N can be written as

Φz(u,v)
def
= log E[exp(xT

u+ y
T
v)],

where x = ℜ{z} and y = ℑ{z}. Define A and Ā as the real and

imaginary parts of the mixing matrix so that H = A + iĀ. Next,

denote ak (resp. āk) the k-th column of A (resp. Ā). Replacing

z by its model and using sources’ mutual statistical independence

hypothesis yields:

Φz(u,v) =
∑

k

ϕk

(
u

T
ak + v

T
āk,v

T
ak − u

T
āk

)
+ Φe(u,v),

(5)

where Φe(u,v) is the corresponding second generating function of

the Gaussian noise. From these definitions, we can rewrite (5) as

Φz(w) =
∑

k

ϕk (g1(w) , g2(w)) + Φe(w), (6)

where g1(w) =
∑

n
Ankun + Ānkvn and g2(w) =

∑
n
Ankvn −

Ānkun. Defining

g : R
2N −→ R

2

w 7−→ g(w) = (g1(w), g2(w)),

yields a compact representation for (6) as

Φz(w) =
∑

k

ϕk (g(w)) + Φe(w). (7)

The differentiation of Φz and ϕk has been done in [16], and is

summarized in the following section.

3.2. Decomposing third-order derivatives of Φz(ℜ{w},ℑ{w})

We focus on third-order derivatives of the CGF and compute

partial derivatives of Φz in S different points of R
2N ,

denoted here as w(s) = (u(s), v(s)), s = 1 · · ·S. Let

{Φz(w
(1)),Φz(w

(2)), . . . ,Φz(w
(S))} be the set containing the

CGFs evaluated at S different points of the observation space, with

w(s) = (u(s),v(s)). Let us define

G
ijl

sk =
∂3ϕk(g(w

(s)))

∂gi(w(s))∂gj(w(s))∂gl(w(s))
,

and note that G211
sk = G121

sk = G112
sk and G221

sk = G122
sk = G212

sk .

By successively differentiating (6), we can obtain the four different

third-order derivative equations:

∂3Φz(w
(s))

∂up∂uq∂ur

=

K∑

k=1

ApkAqkArkG
111
sk −

K∑

k=1

ApkAqkĀrkG
211
sk −

K∑

k=1

ApkĀqkArkG
211
sk −

K∑

k=1

ĀpkAqkArkG
211
sk +

K∑

k=1

ApkĀqkĀrkG
221
sk +

K∑

k=1

ĀpkAqkĀrkG
221
sk +

K∑

k=1

ĀpkĀqkArkG
221
sk −

K∑

k=1

ĀpkBqkĀrkG
222
sk ,

(8)



∂3Φz(w
(s))

∂up∂uq∂vr
=

K∑

k=1

ApkAqkĀrkG
111
sk +

K∑

k=1

ApkAqkArkG
211
sk −

K∑

k=1

ApkĀqkĀrkG
211
sk −

K∑

k=1

ĀpkAqkĀrkG
211
sk −

K∑

k=1

ApkĀqkArkG
221
sk −

K∑

k=1

ĀpkAqkArkG
221
sk +

K∑

k=1

ĀpkĀqkĀrkG
221
sk +

K∑

k=1

ĀpkBqkArkG
222
sk ,

(9)

∂3Φz(w
(s))

∂vp∂vq∂vr
=

K∑

k=1

ĀpkĀqkĀrkG
111
sk +

K∑

k=1

ĀpkĀqkArkG
211
sk +

K∑

k=1

ĀpkAqkĀrkG
211
sk +

K∑

k=1

ApkĀqkĀrkG
211
sk +

K∑

k=1

ĀpkAqkArkG
221
sk +

K∑

k=1

ApkĀqkArkG
221
sk +

K∑

k=1

ApkAqkĀrkG
221
sk +

K∑

k=1

ApkAqkArkG
222
sk ,

(10)

∂3Φz(w
(s))

∂vp∂vq∂ur

=

K∑

k=1

ĀpkĀqkArkG
111
sk −

K∑

k=1

ĀpkĀqkĀrkG
211
sk +

K∑

k=1

ĀpkAqkArkG
211
sk +

K∑

k=1

ApkĀqkArkG
211
sk −

K∑

k=1

ĀpkAqkĀrkG
221
sk −

K∑

k=1

ApkĀqkĀrkG
221
sk +

K∑

k=1

ApkAqkArkG
221
sk −

K∑

k=1

ApkAqkĀrkG
222
sk .

(11)

As can be seen from (8)-(11), each third-order derivative equation

corresponds to a sum of eight fourth-order CP decompositions

[12, 13]. Moreover, notice that for each derivative equation, the

first-, second-, third- and fourth-mode factor matrices are appear

repeated times across the different CP decompositions involved in

the sum. Otherwise stated, different CP decompositions associated

with a given derivative equation involve repeated real and imaginary

parts of the mixing matrix, and the repetition pattern depends on the

derivative equation.

4. CONFAC FORMULATION

Define XΦt ∈ R
N×N×N×S , t = 1, 2, 3, 4, as fourth-order tensors

storing the third-order derivatives of Φz(w
(s)) taken at a specific

point s of the observation space, s = 1, . . . , S, as follows:

XΦ1
pqrs

def
=

∂3Φz(w
(s))

∂up∂uq∂ur

, XΦ2
pqrs

def
=

∂3Φz(w
(s))

∂up∂uq∂vr
,

XΦ3
pqrs

def
=

∂3Φz(w
(s))

∂vp∂vq∂vr
, XΦ4

pqrs
def
=

∂3Φz(w
(s))

∂vp∂vq∂ur

(12)

where XΦt
pqrs is the (p, q, r, s)-th entry of tensor XΦt , t = 1, 2, 3, 4.

We call XΦ1 , XΦ2 , XΦ3 and XΦ4 simply as “derivative tensors”.

Let A(k) ∈ R
N×2 and G(k) ∈ R

S×4, k = 1, . . . ,K, be defined as:

A
(k) def

=




A1k Ā1k

...
...

ANk ĀNk



 = [ak, āk] (13)

G
(k) def

=




G111

1k G211
1k G221

1k G222
1k

...
...

...

G111
Sk G211

Sk G221
Sk G211

Sk



 = [g1,k,g2,k,g3,k,g4,k](14)

Using these definitions, as subsequently shown, we can

decompose the t-th derivative tensor XΦt , t = 1, 2, 3, 4, as follows:

XΦt
pqrs =

K∑

k=1

( 2∑

f1=1

2∑

f2=1

2∑

f3=1

4∑

f4=1

A
(k)
pf1

A
(k)
qf2

A
(k)
rf3

G
(k)
sf4

W
(t)
f1f2f3f4

︸ ︷︷ ︸

X
Φt(k)
pqrs

)

(15)

where

W
(t)
f1f2f3f4

=
8∑

f=1

Θ
(t)
f1f

Ψ
(t)
f2f

Γ
(t)
f3f

Ω
(t)
f4f

. (16)

which corresponds to a sum of K CONFAC decomposition blocks

that yield the t-th derivative tensor XΦt ∈ R
N×N×N×S of the

observations, t = 1, 2, 3, 4. Its k-th block is given by a sum of

8 outer products involving repeated columns of matrices A(k) and

G(k). The repetition pattern involving the columns of A(k) and

G(k) are determined by the joint structure of Θ(t), Ψ(t), Γ(t),

Ω(t), which in turn, depends on the pair of differentiation variables

with respect to which the second generating function Φz(w
(s))

is successively derived. Comparing individually each derivative

form (8), (9), (10), and (11) with the decomposition in (15), a

possible structural choice for the constraint matrices satisfying the

decomposition can be identified as follows:

Θ
(t) = Θ =

[
1 1 1 0 1 0 0 0
0 0 0 1 0 1 1 1

]
, (17)

Ψ
(t) = Ψ =

[
1 1 0 1 0 1 0 0
0 0 1 0 1 0 1 1

]
, (18)

Γ
(t) = Γ =

[
1 0 1 1 0 0 1 0
0 1 0 0 1 1 0 1

]
, (19)

Ω
(1) =





1 0 0 0 0 0 0 0
0 −1 −1 −1 0 0 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1



 , (20)

Ω
(2) =





0 1 0 0 0 0 0 0
1 0 0 0 −1 −1 0 0
0 0 −1 −1 0 0 0 1
0 0 0 0 0 0 1 0



 , (21)

Ω
(3) =





0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0



 , (22)

Ω
(4) =





0 0 0 0 0 0 1 0
0 0 1 1 0 0 0 −1
1 0 0 0 −1 −1 0 0
0 −1 0 0 0 0 0 0



 , (23)



t = 1, 2, 3. Other structures for Θ(t), Ψ(t), Γ(t), Ω(t) satisfying

the decomposition are possible. Note that the convenience of the

adopted choice comes from the fact that only the fourth-mode

constraint matrix changes as the differentiation variables are

changed, while the three first ones are fixed, i.e. they do not depend

on the differentiation variables.

Define the block matrices

A = [A(1)
, . . . ,A

(K)] ∈ R
N×2K

(24)

G = [G(1)
, . . . ,G

(K)] ∈ R
S×4K

, (25)

which concatenate the contributions of the K sources, where A(k)

and G(k) are defined in (13) and (14), respectively. Define also the

block-diagonal constraint matrices

Θ̄ = IK ⊗Θ ∈ R
2K×8K

, (26)

Ψ̄ = IK ⊗Ψ ∈ R
2K×8K

, (27)

Γ̄ = IK ⊗ Γ ∈ R
2K×8K

, (28)

Ω̄
(t) = IK ⊗Ω

(t) ∈ R
4K×8K

. (29)

With these definitions, we can treat (15) simply as an “augmented”

CONFAC decomposition composed of K blocks, the k-th block

being associated with the k-th source. In this case, the following

correspondences can be obtained by analogy with (1):

(A(1)
,A

(2)
,A

(3)
,A

(4)) ↔ (A,A,A,G),

(Θ,Ψ,Γ,Ω) ↔ (Θ̄, Ψ̄, Γ̄, Ω̄
(t)),

(F1, F2, F3, F4, F ) ↔ (2K, 2K, 2K, 4K, 8K),

(P,Q,R,S) ↔ (N,N,N, S).

Let us define X
(t)
1 ∈ C

N3×S as a matrix unfolding of the t-th
derivative tensor XΦt , t = 1, . . . , T . It can be shown [18] that this

matrix admits the following quadrilinear CONFAC factorization:

X
(t)
1 =

(
(AΘ̄)⊙ (AΨ̄)⊙ (AΓ̄)

))
(GΩ̄

(t))T . (30)

Following the approach of [17], we take all the four derivative types

into account by defining a X̄1 = [X
(1)T
1 , . . . ,X

(4)T
1 ]T ∈ R

4N3×S ,

yielding a bigger CONFAC model as follows

X̄1 =





(
(AΘ̄)⊙ (AΨ̄)⊙ (AΓ̄)

)
(GΩ̄(1))T

...(
(AΘ̄)⊙ (AΨ̄)⊙ (AΓ̄)

)
(GΩ̄(4))T



 , (31)

which can be compactly written as

X̄1 =
(
I4 ⊗

(
(AΘ̄)⊙ (AΨ̄)⊙ (AΓ̄)

))
(GΩ̃)T , (32)

where

Ω̃ =
[
Ω̄

(1)
, Ω̄

(2)
, Ω̄

(3)
, Ω̄

(4)
]
∈ R

4K×32K
.

Using a similar reasoning, we can also define three additional

matrix unfoldings X̄2 ∈ R
4N2S×N , X̄3 ∈ R

4N2S×N and X̄4 ∈

R
4N2S×N , which can be factored as2

X̄2 =
(
(AΨ̄)⊙ (AΓ̄)⊙ ((I4 ⊗G)Ω̄)

)
(AΘ̄)T , (33)

X̄3 =
(
(AΓ̄)⊙ ((I4 ⊗G)Ω̄)⊙ (AΘ̄)

)
(AΨ̄)T , (34)

X̄4 =
(
((I4 ⊗G)Ω̄)⊙ (AΘ̄)⊙ (AΨ̄)

)
(AΓ̄)T , (35)

2The intermediate steps leading to the construction of the unfoldings X̄i,
i = 1, 2, 3, 4, have been ommited due to lack of space and can be found
in [16].

where Ω̄ = [Ω̄(1)T , Ω̄(2)T , Ω̄(3)T , Ω̄(4)T ]T ∈ R
16K×8K .

The identifiability of the mixing matrix A in the least squares

(LS) sense from the unfolded factorizations (32)-(35) requires that

the inequalities N3 ≥ 2K and N2S ≥ 2K are satisfied, implying

that min(N3, N2S) ≥ 2K. This condition yields the maximum

number of sources that can be handled by the proposed blind

identification method, which is based on the alternating least squares

algorithm.

5. NUMERICAL RESULTS

We propose to fit a fourth-order CONFAC model to the derivative

tensor. The alternating least squares (ALS) algorithm [13] is used to

estimate A and G by exploiting the unfolded matrix representations

(32)-(35) of the proposed CONFAC model. Note that a CP model

cannot be fitted to the derivative tensor, once A and G have

identical columns. Thus, a CP-based ALS algorithm would fail

in estimating the mixing matrix. The LS estimation steps of the

CONFAC-based ALS algorithm follow directly from (32)-(35), and

have been omitted due to lack of space (see [18] for further details).

After convergence of the ALS algorithm, a final estimate of the

complex-valued mixing matrix H is obtained by properly combining

pairs of columns of the real-valued A, as explained in [16]. We

evaluate the normalized mean square error (NMSE)

fH(H, Ĥ) =
vec(H− Ĥ)T vec(H− Ĥ)

vec(H)T vec(H)

as a function of the signal to noise ratio (SNR). Each NMSE curve

represents the median value from 50 Monte Carlo runs. Sources are

synthesized 4-PSK signals.

In Figures 1 and 2, we compare the proposed method,

named “CONFAC-3”, with the FOOBI method that also relies on

fourth-order statistics [6], and the 6-BIOME method [4] that is

based in sixth-order statistics. We consider two different situations

regarding the number of sources, sensors and observations. It

can be noted that in both situations the CONFAC-3 method

offers the best performance in most of the SNR range. For the

“CONFAC-3”method, we have used S = 100 randomly drawn

derivative points. Note that the performance is sensitive to the choice

of the points at which the derivatives are calculated. We believe that

improved results can be obtained with a better choice of these points.

6. CONCLUSIONS

A fourth-order CONFAC tensor decomposition has been used

to solve the problem of blind identification of underdetermined

mixtures of complex sources. We have shown that third-order

derivatives of the CGF of the observations can be stored in

fourth-order tensors admitting similar CONFAC decompositions

with known constrained structures. The proposed method combines

four different CGF derivatives into a single fourth-order CONFAC

tensor model with a known constrained structure, from which

an estimation if the mixing matrix is obtained by means of

the ALS algorithm. This work generalizes [17] to the case

of third-order derivatives and, therefore, it allows to deal with

higher underdeterminacy levels. A deeper study of the uniqueness

conditions of the proposed CONFAC model is a perspective of this

work. From an algorithmic viewpoint, the use of a CONFAC-based

enhanced line search (CONFAC-ELS) method in conjunction wit

the alternating least squares algorithm and a numerical complexity

analysis are left for a future work.
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Fig. 1. NMSE vs. SNR (K = 5, N = 3, M = 5000, S = 100)
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