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ABSTRACT

Due to their good temporal resolution, electroencephalog-

raphy (EEG) and magnetoencephalography (MEG) are two

often used techniques for brain source analysis. In order to

improve the results of source localisation algorithms applied

to EEG or MEG data, tensor-based preprocessing techniques

can be used to separate the sources and reduce the noise.

These methods are based on the Canonical Polyadic (CP)

decomposition (also called Parafac) of space-time-frequency

(STF) or space-time-wave-vector (STWV) data. In this pa-

per, we analyse the combination of EEG and MEG data to

enhance the performance of the tensor-based preprocessing.

To this end, we consider the joint CP decomposition of two

(or more) third order tensors with one or two identical load-

ing matrices. We present the necessary modifications for

several classical CP decomposition algorithms and examine

the gain on performance in the EEG/MEG context by means

of simulations.

Index Terms— Canonical polyadic decomposition,

Parafac, EEG, MEG, STWV/STF analysis

1. INTRODUCTION

As non-invasive methods with a high temporal resolution,

EEG and MEG play an important role in the analysis of brain

signals. For example, they provide crucial insights on the

location of epileptogenic zones in drug resistant epileptic

patients, which can then be treated by surgery. In the past,

a large variety of techniques has been developed to estimate

the source positions based on EEG or MEG measurements

[1]. In the context of usually low SNRs and several simul-

taneously active source regions, an important point as to the

outcome of the source localisation process is the preprocess-

ing. One preprocessing step consists in the separation of

the sources, on which we concentrate in this paper. To this

end, tensor-based techniques can be used, which separate the

sources by applying the Canonical Polyadic (CP) decomposi-

tion to space-time-frequency (STF) (see [2, 3] and references
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therein) or space-time-wave-vector (STWV) [3] transformed

EEG or MEG data. As has been shown in [3], these methods

reduce the noise, extract the source time signals and improve

the accuracy of source localisation estimates obtained with

standard source localisation algorithms, which can then be

applied separately to each source.

Since EEG and MEG measurements yield complementary

information about the underlying sources and can be acquired

simultaneously, several authors have examined the combina-

tion of EEG and MEG data in brain source localisation al-

gorithms (see [4, 5] and references therein), reporting a gain

on accuracy of the source position estimates compared to the

results of each modality alone.

In this paper, we analyse the combination of EEG and

MEG in tensor-based preprocessing, focusing on STF and

STWV tensor analyses. This leads us to the problem of com-

puting CP decompositions of third order tensors that have one

or two loading matrices in common. In order to improve the

estimates of the loading matrices of each of these tensors, we

propose to apply a joint CP (JCP) decomposition that simul-

taneously computes the loading matrices that are identical for

all tensors. This approach is comparable to the JCP decompo-

sitions proposed in the context of symmetric [6] or hermitian

[7] tensors. We then present the modifications of several ex-

isting CP decomposition algorithms [8, 9, 10] that have to be

carried out to this end. Finally, we examine the accuracy of

the EEG and MEG lead field estimates that are obtained by

applying the JCP decomposition to STF and STWV data, in

comparison to the results achieved for a separate treatment of

both modalities by means of simulations.

2. EEG/MEG DATA MODEL

Both EEG and MEG data are measured as a function of sen-

sor position and time and can be stored into two real-valued

data matrices, Xeeg and Xmeg of sizes Nr,eeg × Nt,eeg and

Nr,meg × Nt,meg , respectively, where Nr,eeg and Nr,meg de-

note the number of EEG and MEG sensors and Nt,eeg and

Nt,meg indicate the number of time samples recorded with

the EEG and MEG systems.

Since the EEG and MEG measurements are generated by



the same sources and are generally sampled synchronously,

the data can be stored into the larger EEG/MEG data matrix,

which can, according to [11], be modelled as:

Xmeeg =

[

Xeeg

Xmeg

]

=

[

Geeg

Gmeg

]

S +

[

Neeg

Nmeg

]

. (1)

Here, Geeg ∈ R
Nr,eeg×R and Gmeg ∈ R

Nr,meg×R are the

EEG and MEG lead field matrices, which are specific to the

head model and the source positions, S ∈ R
R×Nt with Nt =

Nt,eeg = Nt,meg denotes the signal matrix that contains the

temporal activities of R equivalent dipole sources [1], and

Neeg and Nmeg are the EEG and MEG noise matrices.

3. TENSOR-BASED PREPROCESSING

The objective of the preprocessing techniques considered in

this paper consists in recovering the EEG and MEG lead field

and signal matrices from the measurement data, yielding sep-

arated sources with an estimate of the temporal activity and

the lead field vector of each source. This can be achieved by

means of the Canonical Polyadic (CP) decomposition, which

is introduced in the next section.

3.1. CP decomposition

Each element of a third order tensor X of size I ×J ×K can

be written in the form:

Xi,j,k =

P
∑

p=1

ai,pbj,pck,p (2)

where P is the rank of the tensor and ai,p, bj,p, and ck,p are

elements of three loading matrices A ∈ C
I×P , B ∈ C

J×P ,

and C ∈ C
K×P , respectively. This trilinear representation is

referred to as the CP model. There is almost surely a finite

number of decompositions of tensor X into the three loading

matrices A, B and C, up to scale and permutation indeter-

minacies, if P < IJK
I+J+K−2 [12]; tighter bounds also give

sufficient conditions for uniqueness. This is an important ad-

vantage over matrix decompositions.

3.2. STF analysis

In case of the STF analysis [2], a 3-dimensional tensor W is

constructed from the 2-dimensional EEG or MEG data ma-

trix X by computing a Wavelet transform over time. Under

the assumption of oscillatory signals, the tensor W is approx-

imately trilinear and can be decomposed using the CP model

into space, time and frequency characteristics, ar(ri), br(tj),
and cr(fk), r = 1, . . . , R, respectively:

Wi,j,k ≈

R
∑

r=1

ar(ri)br(tj)cr(fk) (3)

where ri is the location of the i-th sensor, tj denotes the j-th

time sample, and fk is the k-th frequency sample. The load-

ing matrix A containing the spatial characteristics provides a

good estimate of the lead field matrix, Ĝ = A. To accurately

estimate the source activities, the signal matrix is computed

in a second step from the pseudo inverse Ĝ
+ of the estimated

lead field matrix and the data matrix:

Ŝ = Ĝ
+
X. (4)

3.3. STWV analysis

The idea of the STWV analysis [3] consists in building a

3-dimensional tensor F from the EEG or MEG measurement

data by computing a local Fourier transform over space.

For superficial sources, this tensor can then be approxi-

mated by the CP model and decomposed into space, time,

and wave vector characteristics, ar(ri), br(tj), and cr(kk),
r = 1, . . . , R, respectively:

Fi,j,k ≈

R
∑

r=1

ar(ri)br(tj)cr(kk). (5)

Here, kk denotes the k-th wave vector sample. This permits

us to obtain an estimate of the signal matrix Ŝ, which is ap-

proximated by the loading matrix B containing the temporal

characteristics of the tensor F . An estimate of the lead field

matrix can then obtained from:

Ĝ = XŜ
+. (6)

The pertinency of this approach has been demonstrated by

means of simulations in [3] whereas its theoretical validation

will be the subject of future work.

3.4. Combination of EEG and MEG

Since the signal matrices of EEG and MEG are identical,

in case of the STF analysis, the Wavelet transform can be

computed simultaneously for both EEG and MEG by apply-

ing it to the extended data matrix Xmeeg , yielding the tensor

W = [Weeg ⊔1 Wmeg], where ⊔1 denotes a concatenation

along the first dimension. The tensors Weeg and Wmeg can

be decomposed using the CP model and exhibit two different

loading matrices Aeeg and Ameg for the spatial characteris-

tics of EEG and MEG. However, the two loading matrices

B and C that contain the time and frequency characteristics

are the same for EEG and MEG due to the identical signal

matrices. Therefore, in order to improve the results of the

CP decomposition, we propose to exploit this property by

jointly decomposing the tensors using the JCP decomposi-

tion for two common loading matrices as described in Sec-

tion 4.1. To this end, the tensors should be normalised to

W ′
eeg = w

√

Nr,eeg
Weeg

||Weeg||F
, W ′

meg =
√

Nr,meg
Wmeg

||Wmeg||F
,

where || · ||F denotes the Frobenius norm and w is a weighting



factor to account for different separability and SNR of EEG

and MEG.

On the other hand, the STWV tensors need to be con-

structed separately for both modalities because EEG and

MEG yield physically different measurements and their lead

field matrices differ. In the next step of the STWV analysis,

the resulting tensors Feeg and Fmeg can be decomposed in-

dividually using the CP model. However, in this case, we do

not exploit the fact that both modalities are generated by the

same sources. In fact, due to the identical EEG and MEG sig-

nal matrices, the loading matrices Beeg and Bmeg containing

the temporal characteristics of the tensors Feeg and Fmeg

should be equal, whereas the loading matrices associated to

the space and wave vector characteristics generally differ.

To achieve this, we propose to apply a JCP decomposition

to the normalised tensors F ′
eeg = w

√

Nr,eeg
Feeg

||Feeg||F
and

F ′
meg =

√

Nr,meg
Fmeg

||Fmeg||F
that enforces one loading matrix

(in this case the matrix B) to be the same for both tensor

decompositions while allowing different loading matrices A

and C for the two tensors. This technique is described in

detail in Section 4.2.

4. JOINT CP DECOMPOSITION

In this section, we describe some algorithms for the Joint CP

(JCP) decomposition of third order tensors that have one or

two loading matrices in common.

4.1. Two common loading matrices

Consider M tensors Wm ∈ C
Im×J×K , m = 1, . . . ,M ,

(M = 2 for the STF analysis of EEG/MEG data), with com-

mon loading matrices B and C in the second and third mode

and M different loading matrices Am in the first mode. These

tensors can be stacked into a larger tensor W = W1⊔1 . . .⊔1

WM of size (I1+. . .+IM )×J×K. The JCP decomposition

of the M tensors can then be achieved by solely decomposing

the tensor W using any existing algorithm to fit the CP model,

e.g., [8, 9, 10]. This yields common loading matrices B and C

for all tensors and the loading matrix A = [AT
1 , . . . ,AT

M ]T

that contains all individual mode-1 loading matrices.

4.2. One common loading matrix

In the following, we consider M tensors Fm ∈ C
Im×J×Km ,

m = 1, . . . ,M , (M = 2 for the STWV analysis of EEG/MEG

data). We assume that these tensors have one common load-

ing matrix B in the second mode and different loading matri-

ces Am and Cm in the first and third mode, respectively. The

objective consists in decomposing the tensors simultaneously

such that the loading matrix B is computed jointly for all

tensors while allowing different loading matrices for each

tensor in the first and third mode. Subsequently, we present

modified versions of several CP decomposition algorithms

that meet these specifications.

4.2.1. ALS

Starting from an initial setting, the classical ALS algorithm

[8] iteratively updates the three loading matrices Am, Bm,

and Cm of the tensor Fm, m = 1, . . . ,M , until convergence

or a certain number of iterations is reached:

Am = [Fm](1)

(

(Cm ⊙ Bm)
T
)+

(7)

Bm = [Fm](2)

(

(Cm ⊙ Am)
T
)+

(8)

Cm = [Fm](3)

(

(Bm ⊙ Am)
T
)+

. (9)

Here, [Fm](n) denotes the mode-n unfolding matrix, as de-

fined in [8], for instance, and ⊙ denotes the Khatri-Rao prod-

uct.

A joint update of the loading matrix B = Bm, m =
1, . . . ,M , of the M tensors Fm can hence be incorporated

by replacing equation (8) by

B = [F ](2) D
+ (10)

where D = [C1 ⊙ A1, . . . ,CM ⊙ AM ]
T

and [F ](2) =
[

[F1](2) , . . . , [FM ](2)

]

. The other loading matrices are up-

dated separately according to equations (7) and (9).

4.2.2. SALT and CFP

Contrary to the ALS technique, the CFP [10] and SALT [9]

algorithms belong to the class of semi-algebraic methods.

Indeed, they algebraically formulate the CP problem as the

combination of classical matrix decomposition problems for

which efficient numerical solutions exist. For instance, CFP

resorts to several Joint EigenValue Decompositions (JEVDs)

[9] while SALT makes use of only one JEVD and several

singular value decompositions. Although the sets of matrices

jointly diagonalized by CFP and SALT are totally different

for tensors of order greater than or equal to four, for third or-

der tensors the unique JEVD computed in SALT corresponds

to one of the JEVDs computed by CFP. Nevertheless, a more

straightforward way of determining the matrices to be jointly

diagonalized is used by SALT.

More particularly, the loading matrix of the n-th mode,

e.g., Bm for the second mode, can be obtained by mul-

tiplying the left signal subspace matrix of the n-th mode,

U
[s]
n,m, obtained from a singular value decomposition of

the mode-n unfolding, by a projection matrix Tn,m, e.g.,

Bm = U
[s]
2,mT2,m. The estimation of the mode-n loading

matrix is thus replaced by the determination of the projection

matrix Tn,m. Only the tallest loading matrix is determined

in this way by SALT whereas the other loading matrices



are obtained from rank-1 decompositions of the matrices

T
−1
n,m(U

[s]
n,m)H [Fm][n]. On the contrary, for CFP, all the

unfolding matrices are required to determine the three projec-

tion matrices and therefore the three loading matrices. The

projection matrix Tn,m can be determined by computing the

JEVD of several matrices:

Θ
(km,lm)
m = Tn,m Λ

(km,lm)
m T

−1
n,m

with Λ
(km,lm)
m = diag{φm,km

}diag{φm,lm}, 1 ≤ km 6=
lm ≤ Km, where φm,k corresponds to the k-th row of a

loading matrix that does not belong to the mode n, e.g.,

for n = 2, Cm. As previously mentioned, SALT uses a

cheaper way of determining the matrices Θ
(km,lm)
m than CFP.

In SALT, the matrices Θ
(km,lm)
m are obtained from the blocks

Γ
(km)
m ∈ C

R×Im of the matrices Γm = (U
[s]
n,m)H [Fm][n] =

[Γ
(1)
m , . . . ,Γ

(Km)
m ] as Θ

(km,lm)
m = Γ

(km)
m (Γ

(lm)
m )+ [9]. To

reduce the computational complexity [13], only one matrix

Γ
(lm)
m can be used, e.g. the best conditioned. For the determi-

nation of the matrices Θ
(km,lm)
m using the CFP algorithm, the

reader is referred to [10].

Now, based on SALT’s strategy, let’s present our way of

computing the JCP of tensors sharing only one loading ma-

trix. To enforce an identical loading matrix B for all tensors,

we can only consider joint diagonalisation problems for the

mode-2 projection matrix T2, which has to be equal for all

tensors. Consequently, the mode-2 subspace U2, which is

identical for all tensors, needs to be computed jointly to pre-

vent different representations:

[

[F1](2) , . . . , [FM ](2)

]

= U2Σ2V
H
2 . (11)

The matrix U
[s]
2 then corresponds to the columns of U2 that

are associated with the R largest singular values. We then

extend the joint diagonalization problem for T2 by simulta-

neously diagonalizing all matrices Θ
(km,lm)
m , m = 1, . . . ,M ,

in the following way to combine all tensors:

Θ
(km,lm)
m = T2 · Λ

(km,lm)
m · T−1

2 .

Once an estimate of the matrix T2 has been obtained, the ma-

trix B can be computed. The other loading matrices can be

obtained either from rank-1 decompositions of the matrices

T
−1
2 (U

[s]
2 )H [Fm][2] according to the SALT algorithm [9] or

by recovering, for each tensor Fm, one loading matrix from

the entries of the diagonal matrices Λ
(km,lm)
m and comput-

ing the third loading matrix by ALS from the tensor Fm and

the two already known loading matrices. In fact, both latter

strategies could be combined in order to jointly use the dif-

ferent estimates of the same loading matrix [13]. Eventually

note that our JCP semi-algebraic algorithm requires that two

dimensions of each tensor, namely the second dimension cor-

responding to the number of rows of T2 and one of both other

dimensions, are larger than the tensor rank.

5. SIMULATION RESULTS

In order to analyse the gain in accuracy of the lead field esti-

mates that can be achieved by combining EEG and MEG data

in the tensor-based preprocessing using the JCP decomposi-

tion, we performed some computer simulations. To this end,

EEG and MEG data were generated for two dipole sources

located at [6.33,−1.35, 4.70] cm and [6.33, 1.35, 4.70] cm
with dipole moment vectors [0.98,−0.21,−0.07] cm and

[0.98, 0.21,−0.07] cm and 64 EEG electrodes as well as

148 MEG sensors (magnetometers) in a 3-shell spherical

head model. The radii of the three shells representing the

brain, the skull, and the scalp were 8 cm, 8.5 cm, and 9.2 cm

with conductivities 3.3 · 10−3 S/cm, 8.25 · 10−5 S/cm, and

3.3 · 10−3 S/cm, respectively. The MEG sensors were posi-

tioned on a sphere with radius 10.5 cm. Epileptogenic signals

were obtained using the Jansen model [14] with parameters

v0 = [7, 6], Br = [0, 100, 50], Aa = [7, 6], Bb = [46.6, 40],
and Cc = 135 for two sources and Nt = 100 time samples

that were acquired at a sample rate of 125 Hz. White Gaus-

sian noise was added to the EEG and MEG data according to

a given SNR, which was assumed to be equal for EEG and

MEG.

The STF tensors were built by computing a Wavelet trans-

form of the EEG and MEG data using a real-valued Morlet

wavelet with a centre frequency of 35 Hz and Nf = 100
frequency samples. The STWV tensors were constructed

separately for EEG and MEG by calculating a discrete local

Fourier transform over space of data selected by a spherical

Blackman window function. For both modalities, we consid-

ered 63 wave vector samples. Each of the resulting tensors

was then decomposed individually using a slightly modified

version of the SALT algorithm, yielding the lead field matri-

ces of the separately treated data. Moreover, we computed the

JCP decompositions of the EEG and MEG tensors using the

same modified SALT algorithm. For the present source con-

figuration, we used a weighting factor of w = 4 for the EEG

tensor, which was chosen because of the high associated core

consistency (cf. [8]) of the decomposed tensors. To ensure

a real-valued loading matrix for the temporal characteristics

of the STWV tensors, one iteration of ALS was applied after

the SALT decomposition. For all cases, we assumed that the

number of sources and thereby the number of CP components

is known.

In Figure 1, we plotted the average correlation coefficient

of the original and estimated EEG (top) and MEG (bottom)

lead field vectors depending on the SNR. It can be seen that

for the STWV analysis, the JCP decomposition of the EEG

and MEG tensors generally results in better estimates for the

lead field matrices of both modalities, whereas in case of

the STF technique, we observe only a small improvement

of the MEG lead field estimate. This can be explained by

the fact that for STWV preprocessing the JCP decomposition

improves the temporal characteristics and therefore the sig-
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Fig. 1. Correlation coefficient of estimated and original EEG

(top) and MEG (bottom) lead field vectors depending on the

SNR for separate and JCP decomposition of the STF and

STWV tensors for two dipoles and 200 realizations.

nal matrix estimate and the lead field estimate whereas even

though the JCP decomposition of the STF tensor improves the

time and frequency characteristics, the spatial characteristics,

which provide an estimate of the lead field matrix, are only

slightly amended. In case of the STWV analysis, the combi-

nation of EEG and MEG improves especially the MEG lead

field because the electric potential is more focused than the

magnetic field, which facilitates the source separation based

on EEG measurements.

6. CONCLUSIONS

We have shown that, due to the approximately identical signal

matrices for EEG and MEG, the two modalities can be com-

bined in tensor-based STF and STWV preprocessing. This

can be accomplished by simultaneously decomposing EEG

and MEG data tensors using the JCP decomposition intro-

duced in Section 4, and described for ALS, SALT and CFP

algorithms. As we have demonstrated by simulations, the ap-

plication of the JCP decomposition to STWV EEG/MEG data

leads to clearly improved lead field estimates, whereas in case

of the STF analysis, only a slight amendment of the MEG

lead field can be achieved. Based on the promising results for

the STWV method, the next step of our studies will consist

in verifying the results for a realistic head model and actual

EEG and MEG measurement data.
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