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Abstract — In multisensor tracking systems, the state fuJnbiased Minimum Variance (LUMV), which basically is
sion also known as "track to track” fusion is a crucial is-the minimum norm of the variance-covariance matrix of the
sue where the derivation of the "best” track combinatiomlobal estimation error.

iS Obtained according toa StOChaStiC Criteria in a minimurmOre recentiy, In [4] and [5]’ Optimai distributed estima_
variance sense. Recently, sub-optimal weighted combifgn algorithms which are for finding the optimal linear
tion fusion algorithms involving matrices and scalars wergombination of the local estimates weighted by matrices
developed. However, hence they only depend on the initigld scalars were developed. In the first one, the computa-
parameters of the system motion model and noise charggnal complexity is very high, in particular when the num-
teristics, these techniques are not robust against errasedyer of sensors is large because it involves the inversion of
measures and unstable environment. To overcome this dra-ns N —by— M N matrix. While, in the latter the solution

baCkS, this work introduces a new approaCh to the Optimﬁi\/oives the inversion of a matrix of dimensiéw but pro-
decentralized state fusion that copes with erroneous ebsgiges lower performance.

vations and sys.tem shortcomings. The simulations resuiﬁe above state fusion methods have the disadvantage that
show the effectiveness of the proposed approach. M

. Ofﬁéy require a large computational burden or give a globally
méﬁb-optimal state estimate. Moreover, they are not robust
against erroneous observations because local errors mea-
. ) . . sures effects are not passed to the error estimation matrix
Keywords: State fusion,Kalman filter,decentralized fu3|onSince the weighting coefficients depend only on the system
model and the noise characteristics [6]. To overcome this

1 Introduction drawbacks, we propose to reformulate the problem of find-
In recent years, there has been a growing interest to iiﬂg_the optimal Coefﬁ_cients that m_inimize_s a stochastieerit
prove the performance of fusion process in multisensor sﬁa IN a minimum variance sense into an mstantanequs (_:leter-
tems. Its applications are spread over many fields inclu,r,ﬂi]-InIStIC crlt"erlg based th_g minimum error 9f the realizasio
ing, guidance, robotic, target tracking and signal procgssi Measures” with probability one revealed in [7].

[8, 3, 11, 12]. The key architectures involved in such applfFurthermore, the state fusion algorithms based on Kalman
cations are centralized and decentralized schemes [9]eIn fiifer methods are only effective when the model parameters
former, the measurements are treated by a central proceg4¥t the noise statistics are exactly known, which is hardly
and the resulting fusion process is referred to as datarfusigatisfied in practical. Thus, an on line estimator of the-vari
While in the latter, these observations are proceeded jocafince matrix for each local sensor is implemented using the
then a global state estimate is obtained by a linear combi§@relation method in order to pre-weighten the local mea-
tion of the local state estimates. The information fusion isurement then provide an optimal fused measurement which
stead of data fusion exhibits several advantages like estiu®has the same dimension of the local measurements. This
computational load and low transmission bandwidth but@Pproach has two main advantages: the first one is that it
provides a sub-optimal global state estimation in compapeovides a general sub-optimal solution to the problem of
to the centralized fusion scheme. decentralized state fusion. The second advantage is that it
Since |t has been proven’ for many yearS, that |Oca| es’i.papts to the sensor performances and COpeS with unstable
mates have correlated error [1], many work addressed #f&vironment that characterizes the target tracking agplic
problem of optimal estimation that minimizes a stochastions.

quadratic criteria as the Linear Minimum Mean Square Ein the following paragraphs, we review the optimal fusion
ror (LMMSE), the Least Mean Square (LMS) or the Lineaalgorithms using matrices and scalars to show the complex-

well suited for real-time implementation.



ity of the state fusion problem formulation. Then, an efZ is an arbitraryM-by-N matrix satisfyingD” PZ = 0,
ficient algorithm that take into consideration the reliapil D is the square root factor of covariance mateixi.e.
of the measurements using a decentralized fusion schethe- DD’.
is presented. Finally, the results of simulations invadvan  WhenC' is not singular, the weighting matri¥” has an ex-
target tracking scenario in multisensor environment are praicit expression as:
sented to assess the effectiveness of the proposed atgorith

W =0tAT(AC1AT) ! (10)
2 Background
2.1 Optimal fusion using matrices
From [5], given the unbiased local estimaigs..., £ s pro- v — f: o) f: 0(71))_1 (11)
vided by M decentralized Kalman filter, we want to find an = Ik
optimal fused estimate in the sense of minimum variance of a
the estimation error among all the linear unbiased estisnatwhereci—; is the (j, k)" N — by — N sub matrix ofC".

Therefore, each element is given by

k=1

The corresponding criteria is given by: The weighting matrix given by equation (11) requires the
. ~oN(m T inversion of anM N-by-M N matrix.

J=trace(E[(z — 2)(Z — 2)7]) (1) Although, the study presented in [5] develops an effi-

where: cient iterative algorithm which reduces the computational

i=B+WTX (2) complexity induced by the inversion of a large dimension

r ] ~matrix. But, it does not provide a general formula like the
andB andW™ are constant vector and matrix respectivelyye|| known two sensor state fusion Bar-Shalom and Compo

2 wT formula [2].
X=| . |w=]| . |,wie R"Y (3) 2.2 Optimal fusion using scalars
. T From [5], let's consider the multisensor discrete time-
LM Unm varying linear stochastic system:
with:
E(3—2) =0 @) z(t+1) = At)x(t) + G(t)w(t) (12)
. . . yi(t) = H;(t)z(t) + vi(?) (13)
Tacking expectation of (1) and because of the unbiasedness
of the local estimates i.€£(;) = F(xz) yields to: wherez(t) € R" is the state vectord(t), G(t), H;(t) are
" known time-varying matrices with compatibles dimensions
_ T _ T andw(t),v;(t) are respectively the process noise and the
E(z) = B+ W E(X) =B+ Z; w; E(z) () local sensor noises far= 1, ..., M.
. Assumption 1.w(t), v;(t) are zeros mean, correlated, white
and u Gaussian noises, and
B+ (> w/ —DE(x)=0 (6) wt)\yr 10 T Q) Si(t)
= B P et wn = (( 0 5
E(x) is unknown. Thus, this equation is true onlyB3f= 0 Elvi(H)? (k)] = S0 fori # 7 (14)
K3 J - ? LK)

and>"M, wT — I = 0, therefore (2) became:
whered;, denote the Kronecker delta function

(7) Assumption 2. the initial stater(0) is independent ofv(¢)

and

g=wTXx

The minimization of the variance of the estimation erro?ndvi(t)
E[(2 — z)(2# — z)T] became a quadratic optimization prob- Ex(0) = El(2(0) — 0) — u) 1 = PT (15
lem subject to linear constraint given by: 2(0) = o, El(@(0) = po)(((0) = p10)"] o (19
Given the problem formulation above, we want to find an
— ) — T _ T _ 1

J = arg minaw=r, = E[(W"X —2)(W" X —z)] (8) optimal fused estimate in a minimum variance sense of es-
WhereA = [I...1], lis anN — by — N identity matrix and timation error among all the linear unbiased estimates. But

' instead of using matrices, we will consider scalars.THuss, t

the general solution of (8) is given by:
g ®isg y resulting global state estimate will be in the form of :

W = (I — (PCP)'C)A' + PZ (9) R X ) R
T =101+ Qs+ ... +ap g (16)
Where
whereq; are scalars.

P=I-—AtA Let the fused estimate variance of the estimation errer



x—1 be P”. From the unbiased assumptidiii;) = E(x), The equation (24) completely define the optimal scalars co-
and taking expectation of both side of (16), we obtain ttefficients that minimizes the fusion criterion in a minimum

normalization condition equation given by: variance sense.
The above techniques provides a suboptimal global estimate
aptax+ ... +ay =1 (17) in compare to the optimal centralized Kalman fusion filter.
However, they are more robust against transmission errors.
Thus, from (16), (17) we have that But, hence the optimal coefficients either scalars or matri-
T=x—2=),_ a(r—2;) =), oy ces can be pre-computed because they only require the sys-

and the variance of the error estimation will be in form of: (o, model and the noises characteristics to be known they
! don't cope with unreliable measurements and unstable envi-
pP* = B(#37) = Z ;o P (18) ronments that characterizes practical scenarios; edlyenia
=1 tracking applications. To overcome these drawbacks, a new
_ o S _ approach which integrate information about the local mea-
The resulting criteria for minimizing the variance of thgurements reliability into the fusion formula is presented
global estimate: which is the trace of”* becomes

3 New approach

The key idea of the proposed approach is to reformulate the
wherea = [a1, ag, ..., an]. stochastic performance criteria into an instantaneousr-det
The fusion problem reduces to find the scalar weights ministic one according the concept of the convergence in re-
under the restriction (17) that minimizes the performaneization revealed in [7]. But, unlike the former, our intsrre

J =al Aa (19)

index.J is mainly focused on the convergence of a weighted com-
Applying the Lagrange multiplier method, we introduce thbination of the realizations, related to the local estirmate

auxiliary function to an asymptotically optimal fused measurement. In addi-

tion, it addresses the problem of unstable environments by

fha)=J+2Xa"e—1) (20)  an on line estimation of the local variance matrices. Figure

. 1 shows how this approach involves:
where) is a real number.

Settingd f /0al,—5 = 0 we have that:

i
|
|
Aa+Xe=0 21 Emn : N
( ) _’ KFillter i it "
Merging (21) and (17) yields to the matrix equation: 7 On,meva,imizﬁ ;
estimation | |7 1541 E
Fo0-() e
T = alman _: . x &
o) b=l GorlEy o
where A = trace(P), a = [a1,ag,...,an] ande = = —»0“::;‘1‘;':2:“—:ngﬁz t
[1,1,...,1]T. Then, hence” A~le # 0, and using the in- Ber | i
verse formula we obtain that: | .
Kalman L2 E_.f
a\ 1 —A7te\ (A e\ (0 (23) @ ». L
)\ - —eTAfle ]. eT 0 ]_ Zpm On;isrt\ien::;iig:ce_i'i §M i
Filter : o
Since 2L, = A > 0, the optimal fusion scalar weights !
that minimize the performance index= t¢r(P#) are given
by:
A-1le Figure 1: Schematic diagram of the proposed algorithm

(24)

O = ———
el A-1le

In case of uncorrelated estimation erirz; i # j; the

gy ) . . 3.1 Online sensor variance estimation
coefficientsy; are given by the following equation

The decentralized fusion based on Kalman filter requires an

= 14 fori=1,2,..,M (25) exact prior knowledge of the model parameters and noise
tra(Fy) B statistics. Although, in several studies, these charaeteri
) tics are assumed to be invariant. But, in practical appli-
where: M cations, especially in target tracking, the target model an
p= (Z 1 _ )~ (26) noise statistics are partially known and may vary over the
= tT(Pj ) observation period. In [7], an on line estimation of the Bois



variance matrices based on the correlation function is aphe correlation function (33) yields
plied to cope with both stable and unstable systems based

on a new stationary measurement process as described in o T o T

the following paragraph. Rai(k) = Z B;QBj_j, + Z PiR:Pj_  (38)
From [7], lets consider the multisensor linear time-inaati =k =k

discrete system fork=1,..,n, i=1,..,M andB;andP; are known.

Expanding equation (38) for each element of the matrices
ot +1) = Az(t) + Gu(t) will provide a set of linear equations in the form of
yi(t) = Hx(t) + w;(t) (27)
00, = w; (39)
Lets assume that(t) andw;(t) are uncorrelated Gaussian
noises with zero mean, a process variance mgirix 0 and where(; andw; are known and); represent the matrices
unknown measure variancé&s > 0. One can write: components of) andR; . If Q; has a full rank for a fixed
number of unknown variance matrices components, we can
yi(t) = H(I, —q ' A)""Gq o(t) +wi(t)  (28) selectn, linear equations as:

whereq~! is the backward shift operatdy, is the identity Qiobi = wio (40)
matrix of dimensiom. '
Using the left co prime factorization we can write that where();, is a non singular matrix.

1 gl —1 1, 1 1 Hencef; can be solved as
H(l,—q A)"Gg =P (¢ )B(¢) (29)

) ) ) 0; = Qi wio (41)
WhereP (¢~ ') andB(¢~!) are polynomial matrices having
the form of using the estimateB", (k) we can write
X(g™") = Xo+ X1g™" + o+ Xng™" (30) 0; = Qgtno (42)
i i %

With Py = I, L is the measurement vector dimensio
By =0andX, #0,X; =0(j > n).
Replacing (29) into (28) yields

"Which defines the variance matrix components of dtie
Sensor.

3.2 New performance criteria

zi(t) = B(g~YHov(t) + P(g Hw(t 31 . . .
®) (a7 )u(t) (a7 )w(t) (31) So far, the stochastic convergence analysis provided a com-
2i(t) = P(g Yys(t) (32) plex gene'ral solu.tlon to the §tate fusion problem asin [5].

) ) ) ) However, in practical applications, the cross-covarianee
Applying (31) yields thatz;(¢) is a stationary process be-yjces may not be calculated easily. This statement leads us
cause itis a linear combination of two stationary process.yq jnyestigate a new performance criteria and develop an ef-
The correlation function of; () is denoted as ficient state fusion algorithm based the concept of conver-

gence in realization revealed in [7].
(k) = Elz(t)zi(t — =0,1,...,n . . :
R.i(k) 70zt = k)] k=0.1,mz (33) From the viewpoint of a stochastic process, a sample func-
R.i(k)=0, k> ns (34) ftion of the time t ol_atained froma giv_en random experiment,
) _ _ is called a realization of a stochastic process. Reveraely,
Wheren.; is the highest order between the two polynomiakgmily of realizations can be seen as a stochastic process.

P(g~Y)andB(¢™"). o Moreover, an event with probability one will be inferred as
Then, the sampled estimate B is given by sure in a given random experiment so that the convergence
L with probability one yields to the convergence in realiaati
RZi(k) _ = Zzi(j)ZiT(j — k) (35) Fur_thermore, in [10], it was es_tabhshed that the centealiz
3 fusion measurement can be viewed as a fused measurement

= model of all local measurements. Precisely, in [14] the au-
Wherek = 0,1,...,n,;, t = 1,2,...ty. And the correspon- thor shows that the optimal fused measurement equation is
dent recursive formula will be equivalent to the measurement equation of the centralized
. . 1 . fusion scheme, which is globally optimal [15].
RL(k) = RN 4+ —[zi(t)2l (t — k) — R (k)] (36)  So if we consider that the “realization” of the optimal cen-
t tralized fusion scheme is available at each time increrhent

With the initial valueR!, (k) = z;(1)zZ(1 — k). we can reformulate the state fusion problem as follows:
From [7] and according to the ergodicity of the stationarfpiven the locally unbiased states estimates..., &), 0b-
stochastic processt) we have that tained from local Kalman filters, what are the weighting

R state coefficients that minimize the error between the op-
Rt.(k) — R.i(k) t — co w.p.1. (37) timal fused measurement and the combination of the local



measurements related to the state estimations at each tihe@ce
incrementk?.

The resulting quadratic criteria will be in the form of f: min[(ii(k) — Hiuda (k)
o P M [AS?]
T =z2(k) =Y z(R)° (43) Mo
=t = min[y_(7-2(k) — Hiodei (k)] (52)
M
Where i=1
2:(k) = Hy(k)ouz(k) (44) The problem becomes: finding the coefficienrts that

winimize the error between a linear combination of the
[dcal measurements;«;&; and the expected local optimal
measurement; = -z under the constraift " | a; = Iy

And z;(k) is the local unbiased state estimate provided
the ith local Kalman filter,«; is the corresponding coeffi-
cient andH; is the local observation matrix of sensor

z(k) is the instantaneous fused measurement that minimizes ) )
the effect of the unreliable measurements according to thi¥oreover (48) will equal zero if :

estimated variances matric&s(k). 1
In the general case, the optimal fused measurement is given Mi = hio;; (53)
by the following equation
M M : T - , .
3(k) = [Z HY By ()~ H,] ! Z HY By (k)i (k) Finally, the whitening coefficients will be in the form of
i=1 i=1 1
(45) a; = —(H Hy) 7 H Z] (232 (54)

Where z; is the local measurementf; # H; for i # j
1=1,..., M. M is the sensors number.

Equati 4 letel fi th li ffi-
Thus, the global state estimate is given by the following fo quation (54) completely defines the generalized coeffi

Lients formula for a decentralized state fusion problem.

mula
M
Tge = Z id; (46) Thus we can resume the algorithm steps in table 1:
=1
To ensure the unbiasedness of the resulting global estimate#) Estimate the online variance matrices for each sensor
the ConstrainE:Ml a; = Iy had to be satisfied. using the correlation method described in subsection 3.1
proof. - Compute the optimal fused measuremefit) = S°M | w; (k)2 (k)
Assuming thatf(z; — xge) =0 with the relevant weights

wi(k) = [SM, BT Ry(k) ™ Hi] ™ S8, HT Ri(k) ™
M M M M is the number of sensors
EQY aid) =Y iB(#:) =Y aiB(zg)  (47)
i=1 1=1 =1 B) Proceed the local Kalman filters independently
Thuszﬁl «; = I is a prerequisite to the unbiasedness of| Calculate the unbiased optimal local state estimaigs)
the fused estimate. using Kalman filter [13]
And the statistical criteria given in [4], [5] reduces to fimin
mize an instantaneous quadratic error obtained by reacin C) Calculate the corresponding weights

(44)in (43) as o; = 4 (HFH) ' HE z2T (2;27)
M
arg minsu o NJ(k) _ Hi(k) _ Hiaiji(k)HZ E) Compute the global state estimate as
et 2 Foe(k) = S, i (k) ()
(48)
the||.|| refers to the Euclidean norm of a vector given by the
formula ]
|| = VaTx (49) Table 1: The Proposed Algorithm steps
Setting
M . .
RS s0) 4 Simulations
M i=1 To show the efficiency of the proposed algorithm we com-
And replacing in (48) yields pare the Root Square Error (RSE) of the estimated posi-
M tion in Cartesian coordinates with the one obtained using

J(k) = [Z(iz(k) — Hyoudi (k)2 the decentralized state fusion formula using matrices@s pr
posed in [5] and the optimal centralized fusion filter based
(51) on Kalman filter methods. The simulation scenario involves

arg MInsM gy

=1



three sensors assumed to have processing capabilities. The
target is defined as a 2D non-maneuvering model with the
following system state transition and observation equatio

z(k+1) = Az(k) + Gu(k)

where :
1T 0 0 A 1 0\"
01 0 0 T 0 0 0
A=1lg o 1 7|¢= 0 %2 H=10 1
0 0 0 1 o T 0 0
(56)

v(k) and w;(k) are respectively the additive process
noise and sensor noises with zeros mean and known proces
variance (J, but unknown sensors variancd®;,. The
measurements which are the target positions according tc
the sensor geographical positions are provided in Cartesia
coordinates (X,Y) with probability one (no miss) at a
constant rate ds (scan period). The simulation parameters
are identical for all the three algorithms and include the
sensor standard deviations accordingXioY coordinates
(250m, 250m), (300m, 300m), (200m, 200m). The initial
target position and speed are respectivéipm, 100m,
100m/s,100m/s. The initial covariance estimation error
matrix is diag(Py) = {100,10,100,10} and the simula-
tions results are collected using 500 Monte-Carlo runs.

To show the robustness of our algorithm against incondisten
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Figure 2: on line variances estimation in X,Y coordinates
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measures, two cases are considered. The first one occurgigure 3: Fused measurement and local measurements

when the output of one or several sensors don'’t provide any
information about the target position. To simulate this-phe
nomenon, the measurements of thk sensor are replaced
by a Gaussian noise with zero mean and a variance matrix
R, = Ry whereR; >> R, sincet = 507".

While in the second case, we consider the rejection of a glint
noise that affects one or several sensors. These "glint mea:
sures” are generated according the Scaled-Contaminatet
Model (SCM) which is a mixture of two Gaussian random
processes

N, (0, 08, 02) = EN(O,Jg) + (1 —¢)N(0, Uf) (57)

Whereoy <« o1 ande < 1.

We notice here that if = 0 the SCM reduces to the Gaus-
sian distribution.

case 1. The first step of the algorithm is to compute the opti-

x 10

.
0 20

.
40
time T

.
60

.
80

100

0 20

.
40
time T

60

80

100

mal fused measurement according to the estimated variances Figure 4: Fused state estimates and local estimates

R1, R», R5 as defined in subsection 3.1.
In figure 2 the estimated variance matrix component ac-
cording to the decoupled coordinat&sY is plotted.

the optimal centralized and decentralized state fusioo-alg

Figure3 shows that the fused measure is not affected by thithm presented in [5] are affected by the inconsistent mea-
erroneous measurement of sensors 2, while the correspasutes of sensor 2, while the fused trajectory generated by

ing state estimate diverges as noticed in figlreAlso, in

the proposed algorithm is closer to the reel trajectory.sThi

figure5, we can see that the fused trajectory obtained usiiggalso verified when we compare the RSE according the co-



ordinatesX, Y in figure6.
When this phenomenon affects 2 sensors simultaneously a
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Y coordinate m
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(52
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Figure 5: Target trajectory in X,Y coordinates
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Figure 7: RSE in X,Y in case of 2/3 sensors are affected by
erroneous measures
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Figure 6: RSE in X,Y

t = 80s which means that ovei0% of the sensors are pro-
viding erroneous measures, our algorithm is still efficient
hence the effect of the erroneous measures is mitigated while
processing the fused measurement. Thus, the correspondin
state weight will tend to zero leading to inhibit its contrib
tion to the global state estimation.

case 2. The "glint” noise replaces the reel measurements
generated at time intervals equall@!’. We show in figures
8 and9 the resulting RSE for the three algorithms according
to the Cartesian coordinates, Y when this phenomenon
affects one then two sensors.
Remark. IThe unreliable observations originate from an un-
detectable sensor component failure or a bad calibration pr

x 10

Figure 8: RSE in X,Y in case of glint noise affecting sensor
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cedure that may occur in practical applications. In thiskvokigure 9: RSE in X,Y in case of glint noise affecting sensors

three cases are considered, the first one occurs when the seghd 3

sor outputs provide no information about the target pasitio

i.e the observation are modeled as a pure noise. Thus, the

contribution of the corespondent measurement is negéigilth compare to the remaining sensors so its effect is miti-



gated by itself. The second case is when the sensor provifsY. Bar-Shalom and L. campo,“The effect of common
a constant value in addition to a noise process (in the sim- process noise on the two-sensor fused-track covari-
ulations, the constant was chosen equal to the last reliable ance,IEEE Trans. Aerosp. Electron. Sysvol. AES-
measurement). The third case occurs when the output is a 22,n0.6, pp .803-805,Nov.1986.

pure random noise with variande >> R,. The obtained

results show that our algorithm outperforms the remainifgl - M- ,I,<|m,“DeveIopment of track to track fusion Algo-
ones in terms of rejecting these phenomenons. rithm,” Procced. of the American Control Conference

Remark. 2The proposed algorithm processes in two main Maryland, June 1994.
steps. The first one can be assimilated to a data fusion pi s, S. Li, D. Z. Li ,“Multi-Sensor Information Fu-

cess and the second to a state fusion process. Thus, the efsion Kalman Filter Weighted by Scalars for Systems
fect of an unreliable measure will be mitigated by the cor- With Colored Measurement Noisedgurn. of dynam.

responding weight in the first step, while a bad estimation syst., Measurem., and contwol. 127,n0.12, pp. 663-
state will provide an expected measure with a large resid- gg7,2005.

ual error in compare to the optimal fused measure leading
to a negligible state coefficient. Thus it does not affect the] J. Zhou,Y. Zhu,Z. You and E. Song,"An Efficient Al-
global estimation state as shown in figusemd6. Contrari- gorithm for optimal Linear Estimation Fusion in Dis-
wise, the centralized fusion scheme uses the local measurestributed Multisensor System$ZEE Trans. syst.,Man,
as they are acquired. Thus, local erroneous measure lead toCybern, vol.36,n0.5,pp1000-1009,2006.
the tdivlt'ergg?ce' of tge tilo?al elstimate. Also:[.in (iasg ofltdr%-] S. H. LeeD. Y. KimN. Nguyen and V.
e et W~ ShiComparison of Mllisensor fusons Fiers
responding weighting coef?icient will not mitigate the effe Weighted by Scalars and Matricdsfernatio. Conf. on

. Contr., Automat. and systSeoul, Korea 2007.
of the local estimate.
Remark. 3In practical it is difficult to evaluate the com-[7] Y. Gao, W Jia,X. Sun,Z. Deng,"“Self-Tuning Multisen-
putational cost of these algorithms because some sections sor Weighted Measurement Fusion Kalman fil&fZE
of the resulting program code are executed in parallel mode Trans. Aero. and Electr. Systol. 45,n0.1 Jan. 2009.
(simultaneously in locals processors) while others are exe . . .
cuted sequentially by a single processor at the fusion centgl Y- Bar-shalom (Ed.),"Multitarget Multisensor Track-
Thus, additional simulations that take into consideratien ing: Advanced ApllicationsArtech House, Norwoqd
execution sequences of the resulting programs code are re- MA,1990.

quired. [9] M. E. Liggins,D. Hall, J. Llinas (Ed.),"Handbook of

Remark. 4The on line estimation of the sensors variances Multisensor Data Fusion: Theory and Practi€etond
requires the processing of the variance matrices of thé loca Edition, CRC Pres€009.

sensors, this process occurs when all the variances nsatrice

are available simultaneously. Also, the fused measureméHi] C. Ran, Z. Deng,“Reduced Dimension weighted mea-
has to be processed when all the measurements are availablesurement fusion Kalman filtering algorithr@dntrol
that's why we will assume here that the system is synchro- and Decision Conference, 2009. CCDC aj98s Chi-

nized and the transmission delays are negligible. nese Volume , Issue , 17-19 June 2009 Page(s):2196 -
2200.
5 Conclusion [11] J. Manyika and H. Durrant-Whyte “Data Fusion and

Sensor Management: a decentralized information-

In this work, a new approach to the decentralized stateffusio theoretic approach,’New Work, Ellis Horwood,1994.

problem is proposed, it provides a general fusion formula

based on a new performance criteria in a realization senge2] D.L. Hall and J. Llinas,“Handbook of Multisensor data

The key idea of the developed algorithm is to strength the fysion"New York : CRC Pres2001.

robustness of a decentralized fusion scheme by integrating

an updated information about the reliability of the sensidg3] E. Brookner ,“Tracking and Kalman filtering made

system. The obtained results show that our algorithm out- €asy,John Wiley& Sons1998.

performs the related fusion approaches to reject the un?
n

liabl q h bl ! 4] Q. Gan and C.J. Harris,“Comparison of two measure-
lable measures and copes wit _ungta € environments en- ot fusion methods for Kalman-filter-based multisen-
countered in target tracking applications.

sor data fusion/|EEE Transaction on Aerospace and
Electronic System®73-279,2001.
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