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Abstract – In multisensor tracking systems, the state fu-
sion also known as ”track to track” fusion is a crucial is-
sue where the derivation of the ”best” track combination
is obtained according to a stochastic criteria in a minimum
variance sense. Recently, sub-optimal weighted combina-
tion fusion algorithms involving matrices and scalars were
developed. However, hence they only depend on the initial
parameters of the system motion model and noise charac-
teristics, these techniques are not robust against erroneous
measures and unstable environment. To overcome this draw-
backs, this work introduces a new approach to the optimal
decentralized state fusion that copes with erroneous obser-
vations and system shortcomings. The simulations results
show the effectiveness of the proposed approach. More-
over, the reduced complexity of the designed algorithm is
well suited for real-time implementation.
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1 Introduction
In recent years, there has been a growing interest to im-
prove the performance of fusion process in multisensor sys-
tems. Its applications are spread over many fields includ-
ing, guidance, robotic, target tracking and signal processing
[8, 3, 11, 12]. The key architectures involved in such appli-
cations are centralized and decentralized schemes [9]. In the
former, the measurements are treated by a central processor
and the resulting fusion process is referred to as data fusion.
While in the latter, these observations are proceeded locally,
then a global state estimate is obtained by a linear combina-
tion of the local state estimates. The information fusion in-
stead of data fusion exhibits several advantages like reduced
computational load and low transmission bandwidth but it
provides a sub-optimal global state estimation in compare
to the centralized fusion scheme.
Since it has been proven, for many years, that local esti-
mates have correlated error [1], many work addressed the
problem of optimal estimation that minimizes a stochastic
quadratic criteria as the Linear Minimum Mean Square Er-
ror (LMMSE), the Least Mean Square (LMS) or the Linear

Unbiased Minimum Variance (LUMV), which basically is
the minimum norm of the variance-covariance matrix of the
global estimation error.

More recently, In [4] and [5], optimal distributed estima-
tion algorithms which are for finding the optimal linear
combination of the local estimates weighted by matrices
and scalars were developed. In the first one, the computa-
tional complexity is very high, in particular when the num-
ber of sensors is large because it involves the inversion of
anMN−by−MN matrix. While, in the latter the solution
involves the inversion of a matrix of dimensionN but pro-
vides lower performance.

The above state fusion methods have the disadvantage that
they require a large computational burden or give a globally
sub-optimal state estimate. Moreover, they are not robust
against erroneous observations because local errors mea-
sures effects are not passed to the error estimation matrix
since the weighting coefficients depend only on the system
model and the noise characteristics [6]. To overcome this
drawbacks, we propose to reformulate the problem of find-
ing the optimal coefficients that minimizes a stochastic crite-
ria in a minimum variance sense into an instantaneous deter-
ministic criteria based the minimum error of the realizations
”measures” with probability one revealed in [7].

Furthermore, the state fusion algorithms based on Kalman
filter methods are only effective when the model parameters
and the noise statistics are exactly known, which is hardly
satisfied in practical. Thus, an on line estimator of the vari-
ance matrix for each local sensor is implemented using the
correlation method in order to pre-weighten the local mea-
surement then provide an optimal fused measurement which
has the same dimension of the local measurements. This
approach has two main advantages: the first one is that it
provides a general sub-optimal solution to the problem of
decentralized state fusion. The second advantage is that it
adapts to the sensor performances and copes with unstable
environment that characterizes the target tracking applica-
tions.

In the following paragraphs, we review the optimal fusion
algorithms using matrices and scalars to show the complex-



ity of the state fusion problem formulation. Then, an ef-
ficient algorithm that take into consideration the reliability
of the measurements using a decentralized fusion scheme
is presented. Finally, the results of simulations involving a
target tracking scenario in multisensor environment are pre-
sented to assess the effectiveness of the proposed algorithm.

2 Background
2.1 Optimal fusion using matrices
From [5], given the unbiased local estimatesx̂1, ..., x̂M pro-
vided byM decentralized Kalman filter, we want to find an
optimal fused estimate in the sense of minimum variance of
the estimation error among all the linear unbiased estimates.
The corresponding criteria is given by:

J = trace(E[(x̂− x)(x̂− x)T ]) (1)

where:
x̂ = B +WTX (2)

andB andWT are constant vector and matrix respectively
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, wi ∈ RN×N (3)

with:
E(x̂− x) = 0 (4)

Tacking expectation of (1) and because of the unbiasedness
of the local estimates i.e.E(x̂i) = E(x) yields to:

E(x) = B +WTE(X) = B +

M
∑

i=1

wT
i E(x) (5)

and

B + (

M
∑

i=1

wT
i − I)E(x) = 0 (6)

E(x) is unknown. Thus, this equation is true only ifB = 0
and

∑M
i=1 w

T
i − I = 0, therefore (2) became:

x̂ = WTX (7)

The minimization of the variance of the estimation error
E[(x̂− x)(x̂− x)T ] became a quadratic optimization prob-
lem subject to linear constraint given by:

J = arg minAW=In = E[(WTX − x)(WTX − x)] (8)

WhereA = [I...I], I is anN − by −N identity matrix and
the general solution of (8) is given by:

W = (I − (PCP )†C)A† + PZ (9)

Where

P = I −A†A

Z is an arbitraryM -by-N matrix satisfyingDTPZ = 0,
D is the square root factor of covariance matrixC i.e.
C = DD′.
WhenC is not singular, the weighting matrixW has an ex-
plicit expression as:

W = C−1AT (AC−1AT )−1 (10)

Therefore, each elementwi is given by

wi =

M
∑

k=1

C−1
i,k (

M
∑

j,k=1

C
(−1)
j,k )−1 (11)

WhereC−1
i,j is the(j, k)thN − by −N sub matrix ofC−1.

The weighting matrix given by equation (11) requires the
inversion of anMN -by-MN matrix.
Although, the study presented in [5] develops an effi-
cient iterative algorithm which reduces the computational
complexity induced by the inversion of a large dimension
matrix. But, it does not provide a general formula like the
well known two sensor state fusion Bar-Shalom and Compo
formula [2].

2.2 Optimal fusion using scalars
From [5], let’s consider the multisensor discrete time-
varying linear stochastic system:

x(t+ 1) = A(t)x(t) +G(t)w(t) (12)

yi(t) = Hi(t)x(t) + vi(t) (13)

wherex(t) ∈ Rn is the state vector,A(t), G(t), Hi(t) are
known time-varying matrices with compatibles dimensions
andw(t), vi(t) are respectively the process noise and the
local sensor noises fori = 1, ...,M .
Assumption 1.w(t), vi(t) are zeros mean, correlated, white
Gaussian noises, and

E{[
(

w(t)
vi(t)

)

][wT (k)vTi (k)]} = [

(

Q(t) Si(t)
ST
i (t) Ri(t)

)

δtk

E[vi(t)v
T
j (k)] = Sijδtk, fori 6= j (14)

whereδtkdenote the Kronecker delta function
Assumption 2. the initial statex(0) is independent ofw(t)
andvi(t) and

Ex(0) = µ0, E[(x(0)− µ0)((x(0)− µ0)
T ] = P x

0 (15)

Given the problem formulation above, we want to find an
optimal fused estimate in a minimum variance sense of es-
timation error among all the linear unbiased estimates. But
instead of using matrices, we will consider scalars.Thus, the
resulting global state estimate will be in the form of :

x̂ = α1x̂1 + α2x̂2 + ...+ αM x̂M (16)

whereαi are scalars.
Let the fused estimate variance of the estimation errorx̃ =



x− x̂ beP x. From the unbiased assumptionE(x̂i) = E(x),
and taking expectation of both side of (16), we obtain the
normalization condition equation given by:

α1 + α2 + ...+ αM = 1 (17)

Thus, from (16), (17) we have that
x̃ = x− x̂ =

∑M
i=1 αi(x− x̂i) =

∑M
i=1 αix̃i

and the variance of the error estimation will be in form of:

P x = E(x̃x̃T ) =

l
∑

i,j=1

αiαjP
x
ij (18)

The resulting criteria for minimizing the variance of the
global estimatêx which is the trace ofP x becomes

J = αTAα (19)

whereα = [α1, α2, ..., αM ].
The fusion problem reduces to find the scalar weightsαi

under the restriction (17) that minimizes the performance
indexJ
Applying the Lagrange multiplier method, we introduce the
auxiliary function

f(λ, α) = J + 2λ(αT e− 1) (20)

whereλ is a real number.
Setting∂f/∂α|α=ᾱ = 0 we have that:

Aᾱ+ λe = 0 (21)

Merging (21) and (17) yields to the matrix equation:
(

A e
eT 0

)(

ᾱ
λ

)

=

(

0
1

)

(22)

whereA = trace(P x
ij), α = [α1, α2, ..., αM ] and e =

[1, 1, ..., 1]T . Then, henceeTA−1e 6= 0, and using the in-
verse formula we obtain that:

(

ᾱ
λ

)

=
1

−eTA−1e

(

−A−1e
1

)(

A e
eT 0

)(

0
1

)

(23)

Since ∂f2

∂α2 = A > 0, the optimal fusion scalar weightsαi

that minimize the performance indexJ = tr(P z) are given
by:

αi =
A−1e

eTA−1e
(24)

In case of uncorrelated estimation errorz̃i, z̃j i 6= j; the
coefficientsαi are given by the following equation

αi =
ρ

tra(P z
i )

fori = 1, 2, ...,M (25)

where:

ρ = (

M
∑

j=1

1

tr(P z
j )

)−1 (26)

The equation (24) completely define the optimal scalars co-
efficients that minimizes the fusion criterion in a minimum
variance sense.
The above techniques provides a suboptimal global estimate
in compare to the optimal centralized Kalman fusion filter.
However, they are more robust against transmission errors.
But, hence the optimal coefficients either scalars or matri-
ces can be pre-computed because they only require the sys-
tem model and the noises characteristics to be known, they
don’t cope with unreliable measurements and unstable envi-
ronments that characterizes practical scenarios; especially in
tracking applications. To overcome these drawbacks, a new
approach which integrate information about the local mea-
surements reliability into the fusion formula is presented.

3 New approach
The key idea of the proposed approach is to reformulate the
stochastic performance criteria into an instantaneous deter-
ministic one according the concept of the convergence in re-
alization revealed in [7]. But, unlike the former, our interest
is mainly focused on the convergence of a weighted com-
bination of the realizations, related to the local estimates,
to an asymptotically optimal fused measurement. In addi-
tion, it addresses the problem of unstable environments by
an on line estimation of the local variance matrices. Figure
1 shows how this approach involves:

Figure 1: Schematic diagram of the proposed algorithm

3.1 Online sensor variance estimation
The decentralized fusion based on Kalman filter requires an
exact prior knowledge of the model parameters and noise
statistics. Although, in several studies, these characteris-
tics are assumed to be invariant. But, in practical appli-
cations, especially in target tracking, the target model and
noise statistics are partially known and may vary over the
observation period. In [7], an on line estimation of the noise



variance matrices based on the correlation function is ap-
plied to cope with both stable and unstable systems based
on a new stationary measurement process as described in
the following paragraph.
From [7], lets consider the multisensor linear time-invariant
discrete system

x(t+ 1) = Ax(t) +Gv(t)

yi(t) = Hx(t) + wi(t) (27)

Lets assume thatv(t) andwi(t) are uncorrelated Gaussian
noises with zero mean, a process variance matrixQ > 0 and
unknown measure variancesRi > 0. One can write:

yi(t) = H(In − q−1A)−1Gq−1v(t) + wi(t) (28)

whereq−1 is the backward shift operator,In is the identity
matrix of dimensionn.
Using the left co prime factorization we can write that

H(In − q−1A)−1Gq−1 = P−1(q−1)B(q−1) (29)

WhereP (q−1) andB(q−1) are polynomial matrices having
the form of

X(q−1) = X0 +X1q
−1 + ...+Xnq

−n (30)

With P0 = IL, L is the measurement vector dimension,
B0 = 0 andXn 6= 0,Xj = 0(j > n).
Replacing (29) into (28) yields

zi(t) = B(q−1)v(t) + P (q−1)w(t) (31)

zi(t) = P (q−1)yi(t) (32)

Applying (31) yields thatzi(t) is a stationary process be-
cause it is a linear combination of two stationary process.
The correlation function ofzi(t) is denoted as

Rzi(k) = E[zi(t)zi(t− k)] k = 0, 1, ..., nzi (33)

Rzi(k) = 0, k > nzi (34)

Wherenzi is the highest order between the two polynomials
P (q−1) andB(q−1).
Then, the sampled estimate ofRzi is given by

R̂t
zi(k) =

1

t

t
∑

j=1

zi(j)z
T
i (j − k) (35)

Wherek = 0, 1, ..., nzi, t = 1, 2, ...tf . And the correspon-
dent recursive formula will be

R̂t
zi(k) = R̂t−1

zi +
1

t
[zi(t)z

T
i (t− k)− R̂t−1

zi (k)] (36)

With the initial valueR̂1
zi(k) = zi(1)z

T
i (1− k).

From [7] and according to the ergodicity of the stationary
stochastic processz(t) we have that

R̂t
zi(k) → Rzi(k) t → ∞ w.p.1. (37)

The correlation function (33) yields

Rzi(k) =

nb
∑

j=k

BjQBT
j−k +

np
∑

j=k

PjRiP
T
j−k (38)

for k = 1, ..., nzi i = 1, ...,M andBjandPj are known.
Expanding equation (38) for each element of the matrices
will provide a set of linear equations in the form of

Ωiθi = ωi (39)

whereΩi andωi are known andθi represent the matrices
components ofQ andRi . If Ωi has a full rank for a fixed
number of unknown variance matrices components, we can
selectni linear equations as:

Ωi0θi = ωi0 (40)

whereΩi0 is a non singular matrix.
Henceθi can be solved as

θi = Ω−1
i0 ωi0 (41)

using the estimateŝRt
ri(k) we can write

θ̂i = Ω−1
i0 ω̂i0 (42)

Which defines the variance matrix components of theith
sensor.

3.2 New performance criteria
So far, the stochastic convergence analysis provided a com-
plex general solution to the state fusion problem as in [5].
However, in practical applications, the cross-covariancema-
trices may not be calculated easily. This statement leads us
to investigate a new performance criteria and develop an ef-
ficient state fusion algorithm based the concept of conver-
gence in realization revealed in [7].
From the viewpoint of a stochastic process, a sample func-
tion of the time t, obtained from a given random experiment,
is called a realization of a stochastic process. Reversely,a
family of realizations can be seen as a stochastic process.
Moreover, an event with probability one will be inferred as
sure in a given random experiment so that the convergence
with probability one yields to the convergence in realization.
Furthermore, in [10], it was established that the centralized
fusion measurement can be viewed as a fused measurement
model of all local measurements. Precisely, in [14] the au-
thor shows that the optimal fused measurement equation is
equivalent to the measurement equation of the centralized
fusion scheme, which is globally optimal [15].
So if we consider that the ”realization” of the optimal cen-
tralized fusion scheme is available at each time incrementk
we can reformulate the state fusion problem as follows:
Given the locally unbiased states estimatesx̂1, ..., x̂M ob-
tained from local Kalman filters, what are the weighting
state coefficients that minimize the error between the op-
timal fused measurement and the combination of the local



measurements related to the state estimations at each time
incrementk?.
The resulting quadratic criteria will be in the form of

J = ‖z̄(k)−
M
∑

i=1

ẑi(k)‖2 (43)

Where

ẑi(k) = Hi(k)αix̂i(k) (44)

And x̂i(k) is the local unbiased state estimate provided by
the ith local Kalman filter,αi is the corresponding coeffi-
cient andHi is the local observation matrix of sensori.
z̄(k) is the instantaneous fused measurement that minimizes
the effect of the unreliable measurements according to their
estimated variances matricesR̂i(k).
In the general case, the optimal fused measurement is given
by the following equation

z̄(k) = [
M
∑

i=1

HT
i R̂i(k)

−1Hi]
−1

M
∑

i=1

HT
i R̂i(k)

−1zi(k)

(45)
Wherezi is the local measurement,Hi 6= Hj for i 6= j
i = 1, ...,M . M is the sensors number.
Thus, the global state estimate is given by the following for-
mula

xge =

M
∑

i=1

αix̂i (46)

To ensure the unbiasedness of the resulting global estimate,
the constraint

∑M
i=1 αi = IN had to be satisfied.

proof.
Assuming thatE(xi − xge) = 0

E(
M
∑

i=1

αix̂i) =
M
∑

i=1

αiE(x̂i) =
M
∑

i=1

αiE(xge) (47)

Thus
∑M

i=1 αi = IN is a prerequisite to the unbiasedness of
the fused estimate.
And the statistical criteria given in [4], [5] reduces to mini-
mize an instantaneous quadratic error obtained by replacing
(44) in (43) as

arg min∑
M
i=1

αi=IN
J(k) = ‖z̄(k)−

M
∑

i=1

Hiαix̂i(k)‖2

(48)
the‖.‖ refers to the Euclidean norm of a vector given by the
formula

‖x‖ =
√
xTx (49)

Setting

z̄ =
1

M

M
∑

i=1

z̄ (50)

And replacing in (48) yields

arg min∑
M
i=1

αi=IN
J(k) = [

M
∑

i=1

(
1

M
z̄(k)−Hiαix̂i(k)]

2

(51)

Hence

M
∑

i=1

min[(
1

M
z̄(k)−Hiαix̂i(k)]

2

→ min[

M
∑

i=1

(
1

M
z̄(k)−Hiαix̂i(k)]

2 (52)

The problem becomes: finding the coefficientsαi that
minimize the error between a linear combination of the
local measurementshiαix̂i and the expected local optimal
measurement̄zi = 1

M
z̄ under the constraint

∑M
i=1 αi = IN

Moreover (48) will equal zero if :

1

M
z̄ = hiαix̂i (53)

Finally, the whitening coefficients will be in the form of

αi =
1

M
(HT

i Hi)
−1HT

i z̄x̂
T
i (x̂ix̂

T
i ) (54)

Equation (54) completely defines the generalized coeffi-
cients formula for a decentralized state fusion problem.

Thus we can resume the algorithm steps in table 1:

A) Estimate the online variance matrices for each sensor

using the correlation method described in subsection 3.1

Compute the optimal fused measurementz̄(k) =
∑

M
i=1

wi(k)zi(k)

with the relevant weights

wi(k) = [
∑

M
i=1

HT
i R̂i(k)

−1Hi]
−1

∑
M
i=1

HT
i R̂i(k)

−1

M is the number of sensors

B) Proceed the local Kalman filters independently

Calculate the unbiased optimal local state estimatesx̂i(k)

using Kalman filter [13]

C) Calculate the corresponding weights

αi =
1
M
(HT

i Hi)
−1HT

i z̄x̂
T
i (x̂ix̂

T
i )

E) Compute the global state estimate as

x̂ge(k) =
∑M

i=1 αi(k)x̂i(k)

Table 1: The Proposed Algorithm steps

4 Simulations
To show the efficiency of the proposed algorithm we com-
pare the Root Square Error (RSE) of the estimated posi-
tion in Cartesian coordinates with the one obtained using
the decentralized state fusion formula using matrices as pro-
posed in [5] and the optimal centralized fusion filter based
on Kalman filter methods. The simulation scenario involves



three sensors assumed to have processing capabilities. The
target is defined as a 2D non-maneuvering model with the
following system state transition and observation equations:

x(k + 1) = Ax(k) + Gv(k)

zi(k) = Hix(k) + wi(k) (55)

where :

A =









1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1









G =









T 2

2 0
T 0

0 T 2

2
0 T









H =









1 0
0 0
0 1
0 0









T

(56)

v(k) and wi(k) are respectively the additive process
noise and sensor noises with zeros mean and known process
variance Q, but unknown sensors variancesRi. The
measurements which are the target positions according to
the sensor geographical positions are provided in Cartesian
coordinates (X,Y) with probability one (no miss) at a
constant rate of5s (scan period). The simulation parameters
are identical for all the three algorithms and include the
sensor standard deviations according toX,Y coordinates
(250m, 250m), (300m, 300m), (200m, 200m). The initial
target position and speed are respectively400m, 100m,
100m/s, 100m/s. The initial covariance estimation error
matrix is diag(P0) = {100, 10, 100, 10} and the simula-
tions results are collected using 500 Monte-Carlo runs.

To show the robustness of our algorithm against inconsistent
measures, two cases are considered. The first one occurs
when the output of one or several sensors don’t provide any
information about the target position. To simulate this phe-
nomenon, the measurements of theith sensor are replaced
by a Gaussian noise with zero mean and a variance matrix
Ri = Rf whereRf >> Ri sincet = 50T .
While in the second case, we consider the rejection of a glint
noise that affects one or several sensors. These ”glint mea-
sures” are generated according the Scaled-Contaminated
Model (SCM) which is a mixture of two Gaussian random
processes

Nv(0, σ
2
0 , σ

2
1) = ǫN(0, σ2

0) + (1− ǫ)N(0, σ2
1) (57)

Whereσ0 ≪ σ1 andǫ < 1.
We notice here that ifǫ = 0 the SCM reduces to the Gaus-
sian distribution.
case 1. The first step of the algorithm is to compute the opti-
mal fused measurement according to the estimated variances
R̂1, R̂2, R̂3 as defined in subsection 3.1.

In figure 2 the estimated variance matrix component ac-
cording to the decoupled coordinatesX,Y is plotted.
Figure3 shows that the fused measure is not affected by the

erroneous measurement of sensors 2, while the correspond-
ing state estimate diverges as noticed in figure4. Also, in
figure5, we can see that the fused trajectory obtained using
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Figure 2: on line variances estimation in X,Y coordinates
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Figure 4: Fused state estimates and local estimates

the optimal centralized and decentralized state fusion algo-
rithm presented in [5] are affected by the inconsistent mea-
sures of sensor 2, while the fused trajectory generated by
the proposed algorithm is closer to the reel trajectory. This
is also verified when we compare the RSE according the co-



ordinatesX,Y in figure6.
When this phenomenon affects 2 sensors simultaneously at
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Figure 6: RSE in X,Y

t = 80s which means that over50% of the sensors are pro-
viding erroneous measures, our algorithm is still efficient,
hence the effect of the erroneous measures is mitigated while
processing the fused measurement. Thus, the corresponding
state weight will tend to zero leading to inhibit its contribu-
tion to the global state estimation.

case 2. The ”glint” noise replaces the reel measurements
generated at time intervals equal to10T . We show in figures
8 and9 the resulting RSE for the three algorithms according
to the Cartesian coordinatesX,Y when this phenomenon
affects one then two sensors.
Remark. 1The unreliable observations originate from an un-
detectable sensor component failure or a bad calibration pro-
cedure that may occur in practical applications. In this work
three cases are considered, the first one occurs when the sen-
sor outputs provide no information about the target position
i.e the observation are modeled as a pure noise. Thus, the
contribution of the corespondent measurement is negligible
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Figure 7: RSE in X,Y in case of 2/3 sensors are affected by
erroneous measures
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Figure 8: RSE in X,Y in case of glint noise affecting sensor
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Figure 9: RSE in X,Y in case of glint noise affecting sensors
2 and 3

in compare to the remaining sensors so its effect is miti-



gated by itself. The second case is when the sensor provides
a constant value in addition to a noise process (in the sim-
ulations, the constant was chosen equal to the last reliable
measurement). The third case occurs when the output is a
pure random noise with varianceR >> R2. The obtained
results show that our algorithm outperforms the remaining
ones in terms of rejecting these phenomenons.
Remark. 2The proposed algorithm processes in two main
steps. The first one can be assimilated to a data fusion pro-
cess and the second to a state fusion process. Thus, the ef-
fect of an unreliable measure will be mitigated by the cor-
responding weight in the first step, while a bad estimation
state will provide an expected measure with a large resid-
ual error in compare to the optimal fused measure leading
to a negligible state coefficient.Thus it does not affect the
global estimation state as shown in figures5 and6. Contrari-
wise, the centralized fusion scheme uses the local measures
as they are acquired. Thus, local erroneous measure lead to
the divergence of the global estimate. Also, in case of de-
centralized fusion [5], the local erroneous estimate resulting
from sensor(2) affects the global estimate because the cor-
responding weighting coefficient will not mitigate the effect
of the local estimate.
Remark. 3In practical it is difficult to evaluate the com-
putational cost of these algorithms because some sections
of the resulting program code are executed in parallel mode
(simultaneously in locals processors) while others are exe-
cuted sequentially by a single processor at the fusion center.
Thus, additional simulations that take into considerationthe
execution sequences of the resulting programs code are re-
quired.
Remark. 4The on line estimation of the sensors variances
requires the processing of the variance matrices of the local
sensors, this process occurs when all the variances matrices
are available simultaneously. Also, the fused measurement
has to be processed when all the measurements are available
that’s why we will assume here that the system is synchro-
nized and the transmission delays are negligible.

5 Conclusion
In this work, a new approach to the decentralized state fusion
problem is proposed, it provides a general fusion formula
based on a new performance criteria in a realization sense.
The key idea of the developed algorithm is to strength the
robustness of a decentralized fusion scheme by integrating
an updated information about the reliability of the sensing
system. The obtained results show that our algorithm out-
performs the related fusion approaches to reject the unre-
liable measures and copes with unstable environments en-
countered in target tracking applications.
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