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Abstract—This paper present a new approach to the mul- scheme where only the relative angle of the target positéon ¢
tisensor Bearing-Only Tracking applications (BOT). Usually, a pe obtained by a single sensor. Thus, methods that consider
centralized data fusion scheme which involves a stacked vector 4 global measurement vector of the overall observations are

of all the sensor measurements is applied using a single estimation imilated t data fusi tralized fusi
filter which copes with the non-linear relation between the states assimilated 1o a data fusion process or a centralized fusion

and the measurements. The aforementioned approach is asymp-Scheme. The aforementionned approach is assymptoticaly op
totically optimal but suffers from the computational burden due timal but have several drawbacks like the high computationa
to the augmented measurement vector and transmission aleaspyrden and transmission aleas due the bottleneck that occurs
like delays generated by the bottleneck that occurs at the fusion 4t the fusion center. Alternatively, in a 2D case, targeftjms
center. Alternatively, since the Cartesian target positions can be . - - . e
determined by fusing at least 2 infrared sensor measurements in can be derived in Cartesian coordinates by comblnlng_ at
2D case, one can use a local linear filter to estimate the target least two sensor measurements. Thus, one can use a linear
motion parameters, then a state fusion formula based on the filter such as Kalman filter to estimate local target motion
Likelihood of the expected overall local measurements is applied parameters, then applies a decentralized fusion schenghwhi

to obtain the global estimate. The _simula_tion results show that_ the is a weighted combination of the local estimates to obtain th
proposed approach performance is equivalent to the centralized . . . .

fusion schema in terms of tracking accuracy but exhibits the globgl _estlmatgs. Finally, a fusion formulqthat uses qhteuj;
advantages of the decentralized fusion schema like parallel pro- CO€efficients which are based on the Likelihood function & th
cessing architecture and robustness against transmission delays.expected local measurements generates the global estimate
In _addition, the '|OW com_ple>§ity of the obtained algorithm is well  This paper is organized as follows: in section 2, the problem
suited for real-time applications. formulation and the classical approach are presented for th
2D case. Then a new bearing-only fusion technique which
involves a decentralized fusion schema that combines tta lo

In the lasts decades, passive tracking problems have b&aiman filters with a Singer maneuvring target model [4] is
addressed in many practical applications, originatingnftbe described and the resulting algorithm is presented in sectio
underwater sonar domain, it rapidly propagates to radar aBd The simulation results comparing the centralized fusion
automotive applications seeking the development of sensgproach are presented in section 4, for an evasive target in
technology. Usually, in such applications researcherad@n passive multisensor environment. Finally, concluding aska

the maneuvering character of the target and the non-liiyearare given in section 5.

due to the nature of the measurements. From a survey of

(BOT) techniques, the combination of an Interactive Mutip Il. PROBLEM FORMULATION

Model (IMM) method and a Kalman Filter based methodg tracking applications, we are interested about estirgatin
like the Extended Kalman Filter (EKF) [7] or the Unscenteghe target motion parameters. In case of infrared sendues, t
Kalman Filter (UKF) [3], [8] were successfully implementedobservations are the bearing anglesof the target regarding

Altoutght, the latter exhibit better accuracy and achiewesthe sensor positions which are calculated using the fotigwi
good compromise between performance and computatioagluation:

cost. Recently, a multi-mode particle filter was presented i

[7] which shows a good performance but requires a high 0; = arctan? — Yt +v; i=1,.... M Q)
computational capacity. The related methods involves #e u T =T

of the overall bearing angles measurements in the same timvberev; is a zero mean white noise componemts, is the

i.e. the observations are stacked in a single vector, thema nnumber of sensors an@:;,y;) are the correspondent sensor
linear filter which switch between a predefined set of targpbsitions as shown in the figure above

motion models is applied to estimate the target positionEhe tracking filter is based on a space state representaftion o
From the viewpoint of data fusion, a passive bearing-onthe target motion model. From a survey of target models used
multi sensor system can be seen as a cooperative data fusipmaneuvering target tracking applications [2], the Singe

I. INTRODUCTION



where P,,,.., Py, a2,,, can be chosen to fit the target motion
Targe capability.
To estimate the target position parameters, a non linear-filt
is applied. The unscented filter is based on the Unscented
Transform denoted (UT) which is a non linear transform that
translate a chosen set of representasigma points which
capture the posterior mean and covariance of the Gaussian
random variables to the third order Taylor series expansion
for any non linearity.

\4

B. Unscented Kalman filter

Fig. 1. bearing-only measurement In case of an additive noise the Unscented Kalman filter steps
are the following [6]:

. . . . 1. Assume the following initialization parameters:
model is an appropriate compromise between complexity and

performance. iy = E(xo)

A. Target model Py = E((z0 - #0)(zo — £0)") (7)
The Singer model uses a first order Markov process combingdc g culate sigma
with a zero mean white noise to model the acceleration inputs

Such a process is the state process of a linear time-intarian
system given by

points

Xeo1 = [Eho1 Gt +\ (04 N P12

a(t) = —aa(t) + w(t) 2 _\/mik—l] (8)

wherew(t) is a zero mean white noise with constant powessing the tunning parameterss,3 and = o*((n +r) —n).
spectral densitys,, = 2ac?. Thus, the autocorrelation of theThen compute the weighting coefficieritg;” = \/(L + \),
target acceleration i8, (1) = Ela(t)a(t+7)] = o2~ which  W§ = A/(L+X\)+(1—a®+8) andW;" = W = 1/2(L+\)

can be modeled in discrete-time as: fori =1,...,2L wheren, L are respectively the state and the
" measurement vector dimension.
ki1 = Bay + wy () 2.2 Time update:

wherew] is a zero-mean white noise sequence with variance

o?(1 - B?). . . _ . Xie/k—1 = (Xe-1) C)
The state space representation of the discrete time Singer

model obtained by applying a (sample and hold) filter on the . 2n (m)
continuous time model is given by: B = D WX gk (10)
=0
Tpy1 = Forp + wi 4)
where: X 2n .
1 T (o —1+ e_O‘T)/(XQ Prjp—1 = Z Wz’( )(X;k/kq - xk/k—l)
Fo=(0 1 1— e Jq 5 o )
0 0 ( e—oT / © (G k=1 — Zrp—1)” + Qk (11)

anda = 1/7,, is the reciprocal of the maneuver time constant _
Tm- Thus, it is related to the type of the target. For examplexy k-1 = [Zx/k—1Zx/k—1 +\/ (0 + N) Pr/i—125 /11

for an aircraft,r,,, = 60s considering a lazy turn and,, = ~

10 — 20s for an evasive maneuver, as suggested by Signer =\ (n+ ) Pyp1de—] (12)
[4], while o2 is the instantaneous variance of the acceleration

treated as a random variable. Zy /i1 = "(Xr/k-1) (3)
In [4], the author proposes to model the distribution of an

acceleration as aernary-uniforrn_ mixture tha_t is the target Bkt = ZWi(m)Zi,k/k—l (14)
may accelerate or decelerate with a probabilttyand moves =0

without accelerating with probability’, at a maximum rate
of +a,,.. with equal probability P,,..; or accelerate and
decelerate at a rate uniformly distributed oVenax, Gmaz )- . 2n
It turn out that: Poop=) W Zi et — Zu/i—1)
2 1=0
2 _ Qmax .
7 =73 (1 +4Pmaz — Fo) (6) (Zi k-1 — Zk/k—l)T + Ry, (15)

2.3 Measurement update:



2 . ) .
i the measure covariance matix, € RML*ML The obtained

Pozk = ZW (i k/k-1 = Ba/p1) filter will have a CC ofO((M x L)?). In addition, while the
7 . T 16 centralized UKF requires the overall sensors measurenents

(Zigofr—1 = Zn/k-1) (16) e available at the same time, any delays that occurs in the

Ky = P,. kp; . (17) transmission system will affect the reliability of the meees
R . ments and degrades the tracking performance. To overcome
Tk = Tppp—1 + Ki(2k = Zp/p-1) (18) these drawbacks a new approach based on a decentralized

b, = pk/k_l — KB n KT (19) fusion schema is adopted.
C. Centralized fusion schema I1I. NEW APPROACH

Usually, in passive multi-sensor environment, all the oise |n 2D (BOT) applications, the target position can be derived
tions are transmitted to a central processor wich implesantby combining at least two sensor measurements. The obtained
non-linear estimation filter that considers a stacked vesto Cartesian position is the result of the intersection of two
all the received measurements, as shown in the figure 2: pearing lines. Let's(z;;,yi;) denote the intersection point
coordinates which are obtained by bearing measurethefi,

ie:
zyy = Y Y + stghi — Tsitg0; 23)
tg@,» - tgﬁj
“ #? z _ ysjtgéi — ysitgéj + (25 — xsj)tgéitgéj o
Yij = S S (24)
tgGl — tgHJ
The variance matrix of the new measurements can be directly
Tracking filter deduced from (23) and (24). Thus, it is given by the following
(2122 23] equation [1]:
o2, o2 dx
T Ty —
Fig. 2. Centralized fusion scheme < O'fﬂ 012111 E{( dy ( dvdy )}

. . . o5 0
Lets us considers a single maneuvring target observedi/by = A 0 o2 (25)
passive sensors: J

where
wk+1) = fo(z(k) + Gu(k) (20) Ay —
zi(k) = hi(x(k) +uvi(k), i=1,..M (21) ) A (g0 —g0;)?
= ~ 2 = ~ 2

where G is the process noise gain matri; is the mode- (%5890 y”)sec O (=@ijtg0 = Gij)secd, (26)
dependent process noise sequence with zero mean and covai- (Zi190; — fiij) —5 coszg.  (—Titgli — i Cﬁifgj)
ance matrix@, h; is a non-linear function that relies between
the states and the measurements ani$ the noise sequencean
with zero mean and covariand® of sensor:. o —
To estimate the target motion parameters an unscented kalma Y > >
filter that considers the concatned vector of all the measure Yij = Ysi = YUsj 27)

ment is used as The new measurements exhibit the advantage to have a linear

arctan(Z=2 + v1) relation with the state vector parameters of the target. 8o w
arctan(2=2 + vy) can write using the new measurement:
Z = ' (22) z(k+1) = fo(z(k))+ Guw(k) (28)

Y—Ym
arctan($ o T var) Thus, under Gaussian hypothesis, a linear filter as the Kalma

The most computationally expensive operation in the badidter (KF) can be implemented to provide a local unbiased
UKF corresponds to calculating the new set of sigma pointgtimal state estimate. Then one can combine the obtained
at each time update. This requires taking a matrix square-réocal estimates using a state fusion formula that uses wegyh

of the state covariancB,, € R"*". Thus, the resulting Com- coefficients which are the Likelihood of the expected local
putational Complexity (CC) i€)(n?). But for the centralized measurements provided by each KF to obtain the global
UKF, the measurement update step involves the inversionastimate as shown in figure 3.



The obtained local estimatg, , is then weighted by a Likeli-

e e hood function based on the innovatighand the correpondant
measurement covariance er&,rk provided by the*" kalman
filter. The correspondent unnormalized weighting coeffitie
@ @ given by:

1

1
Aj(k) = ——————exp[—=n’ (k)S;(k)'n(k)] (39
x S x wherel is the measurement vector dimension.
/ Then a normalization step is applied to the obtained coeffi-
Jr cients to ensure the unbiasedness of the global estimate as
X = C1.X1+C2.x2+C3.x3 fO“OWS: A (k)
ci(k) = LliA (40)
Fig. 3. Proposed approach scheme Zi:l ’(k)

Finally equation (30) is applied to obtain the global estigna
The obtained algorithm exhibits three main advantages, the

Thus, the state fusion formula is given by: first one is related to the low level data association protrests
I generates the new measurements which have a linear relation
X = Zcii‘i; (30) Wwith the state vector parameters. Thus, the use of a linear
= Kalman filter is allowed leading to reduce the computational

mplexity of the resulting algorithm. Secondly, from etio

) we can notice that the variance matrix of each pairs of
sensors is updated at each new measurements, this adativity
necessary to reduce the effects of the erroneous Cartesian m
sures obtained using equations (23,24) while the proogssin
the corresponding error measurement covariance matrbein t
c1t+et...t+ep=1 (31) Kalman filter steps as shown in eq. (34). The last and not the
. ) _ least advantage is directly drawn from the decentralizsibfu
which ensure the unbiasdness of the global estimate. architecture which reduce the overall computational burde

In the proposed algorithm, a Kalman Filter uses the computgly exhibits better robustness against transmissions [9ga
Cartesian position obtained by combining the measurements

from two sensor to provide the state estimation of a target IV. SIMULATION

motion. Kalman filter is a non biased asymptotically optimah this section the performance of the proposed algo-
estimation tool for linear systems under Gaussian additivighm is evaluated and compared with the centralized UKF
noise assumptions. From [5], assuming a good approximatigised on a Singer target model. The simulation sce-
of the initial target motion parametexs and the initial error nario involves three Infrared sensors which are located at
covarianceF ,the following steps are executed at each tim@, —3km),(0, 3km),(4km,0). The sampling rate is 1s. The

wherec; are scalars and L is the number of the new Cartesi
measurements.

From the unbiased assumpti®(#;) = F(x), and taking ex-
pectation of both sides of eq.(30), we obtain the normadmat
condition equation :

step for each local Kalman filter : covariances of the measure errorsois = 0.002rad. The

Predicted state and covariance Singer model design parameters afg = 0.3, amazr =
4 o (32) 50m,/s2, .and Tm = 105 \_A{hich correqund to an_e\(asive
Tk/k=1 Fok—1/k—1 maneuvring target. The initial state covariance matri¥js=
Bl = BBl Bl +Qx (33)  diag(10~¢ x [400, 100, 10,400, 100, 10]).

The flying trajectory is composed from linear segments and
turns organized as the following:
w=Hix Pl Hl + Rj, (34) 1*"segment. t=1-24s, Linear flight
2thsegment. t=25-37s, turn right with a constant turn
i A oAl ratew = 0.25rad/s
K = Prje—1Hi 155 (35) 3thsegment. t=38-61s, a constant acceleration phase
Innovation 4thsegment. t=62-74s, turn left with parameters
ni =2 — Hi’kﬁc/]ﬁl (36) thM = —0.25_md/s,u'1 = 0.0208rad/s? .
5t"segment. t=75-91s, a constant deceleration phase
Filtered state A ‘ o 6'"segment. t=92-104s, turn right with parameters
Th = Bhyp—1 + Kpmy, (37 Winaz = 0.25rad/s,w = 0.0208rad/s?
7t"segment. t=105-135s, Linear flight
X . The initial target position is(2km,10km) with velocity
P =(In — KiHi )Py (38) (—172m/s,246m/s) without acceleration.

Updated measure error covariance

Si

s

kalman Gain

Filtered covariance



Comparison between the tracking performances of the t
configurations was made in terms of Root Square Error (RS
of the position and velocity components of the target motic

model using 200 Monte-Carlo runs.
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Fig. 4. Computed Cartesian coordinates from sensors pairs
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Fig. 5. Target flying trajectory
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Fig. 7. RSE of velocity estimation in X,Y coordinates

trajectory of the target and the filtered ones using the centra
UKF and the proposed algorithm. Figures 6. and 7. illustrate
the RSE of the position and velocity in Cartesian coordsate

From figure 4. we can notice that the combination of sensors

The Root Mean Square Error (RMSE) of the target positiqn1, s3) exhibit a large variance in Cartesian position com-
and velocity for the two tested configurations is shown ifonents compared to paifs1, s2) and (s2, s3). Additional

table.1

CENT-UKF | ALGO
z(km) 0.021 0.024
y(km) 0.014 0.016
vy (ki /3) 0.017 0.019
vy (ki /s) 0.015 0.016

TABLE |

COMPARISON OFRMSEOF CENT-UKF AND ALGO

simulation scenarios involving the same trajectory buedint
localization of the sensors shows that the distance between
the combined pairs of sensors is inversely proportionahéo t
variance of the obtained Cartesian positions as expected fro
equation (25). However, the effect of this phenomenon is mit
igated during the fusion step, because the weighted caffici
will reduce the correspondent state estimate contributidhe
global estimate.

The comparison of the RMSEs reveals that our algorithm has

The computed Cartesian positions for every pairs of senstine same performance of the centralized UKF in terms of
is presented in figure 4, while figure 5 shows the real flyinaccuracy. But it exhibits a lower Computational Complexity
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decentralized architecture that characterizes the stesi@rf

scheme which makes it more suited for real-time application



