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Abstract—This paper present a new approach to the mul-
tisensor Bearing-Only Tracking applications (BOT). Usually, a
centralized data fusion scheme which involves a stacked vector
of all the sensor measurements is applied using a single estimation
filter which copes with the non-linear relation between the states
and the measurements. The aforementioned approach is asymp-
totically optimal but suffers from the computational burden due
to the augmented measurement vector and transmission aleas
like delays generated by the bottleneck that occurs at the fusion
center. Alternatively, since the Cartesian target positions can be
determined by fusing at least 2 infrared sensor measurements in
2D case, one can use a local linear filter to estimate the target
motion parameters, then a state fusion formula based on the
Likelihood of the expected overall local measurements is applied
to obtain the global estimate. The simulation results show that the
proposed approach performance is equivalent to the centralized
fusion schema in terms of tracking accuracy but exhibits the
advantages of the decentralized fusion schema like parallel pro-
cessing architecture and robustness against transmission delays.
In addition, the low complexity of the obtained algorithm is well
suited for real-time applications.

I. I NTRODUCTION

In the lasts decades, passive tracking problems have been
addressed in many practical applications, originating from the
underwater sonar domain, it rapidly propagates to radar and
automotive applications seeking the development of sensor
technology. Usually, in such applications researchers focus on
the maneuvering character of the target and the non-linearity
due to the nature of the measurements. From a survey of
(BOT) techniques, the combination of an Interactive Multiple
Model (IMM) method and a Kalman Filter based methods
like the Extended Kalman Filter (EKF) [7] or the Unscented
Kalman Filter (UKF) [3], [8] were successfully implemented.
Altoutght, the latter exhibit better accuracy and achievesa
good compromise between performance and computational
cost. Recently, a multi-mode particle filter was presented in
[7] which shows a good performance but requires a high
computational capacity. The related methods involves the use
of the overall bearing angles measurements in the same time,
i.e. the observations are stacked in a single vector, then a non-
linear filter which switch between a predefined set of target
motion models is applied to estimate the target positions.
From the viewpoint of data fusion, a passive bearing-only
multi sensor system can be seen as a cooperative data fusion

scheme where only the relative angle of the target position can
be obtained by a single sensor. Thus, methods that consider
a global measurement vector of the overall observations are
assimilated to a data fusion process or a centralized fusion
scheme. The aforementionned approach is assymptoticaly op-
timal but have several drawbacks like the high computational
burden and transmission aleas due the bottleneck that occurs
at the fusion center. Alternatively, in a 2D case, target position
can be derived in Cartesian coordinates by combining at
least two sensor measurements. Thus, one can use a linear
filter such as Kalman filter to estimate local target motion
parameters, then applies a decentralized fusion schema which
is a weighted combination of the local estimates to obtain the
global estimates. Finally, a fusion formula that uses a weighted
coefficients which are based on the Likelihood function of the
expected local measurements generates the global estimate.
This paper is organized as follows: in section 2, the problem
formulation and the classical approach are presented for the
2D case. Then a new bearing-only fusion technique which
involves a decentralized fusion schema that combines the local
Kalman filters with a Singer maneuvring target model [4] is
described and the resulting algorithm is presented in section
3. The simulation results comparing the centralized fusion
approach are presented in section 4, for an evasive target in
passive multisensor environment. Finally, concluding remarks
are given in section 5.

II. PROBLEM FORMULATION

In tracking applications, we are interested about estimating
the target motion parameters. In case of infrared sensors, the
observations are the bearing anglesθi of the target regarding
the sensor positions which are calculated using the following
equation:

θi = arctan
y − yi
x− xi

+ vi i = 1, ...,M (1)

wherevi is a zero mean white noise components,M is the
number of sensors and(xi, yi) are the correspondent sensor
positions as shown in the figure above
The tracking filter is based on a space state representation of
the target motion model. From a survey of target models used
in maneuvering target tracking applications [2], the Singer
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model is an appropriate compromise between complexity and
performance.

A. Target model

The Singer model uses a first order Markov process combined
with a zero mean white noise to model the acceleration inputs.
Such a process is the state process of a linear time-invariant
system given by

ȧ(t) = −αa(t) + ω(t) (2)

whereω(t) is a zero mean white noise with constant power
spectral densitySω = 2ασ2. Thus, the autocorrelation of the
target acceleration isRa(τ) = E[a(t)a(t+τ)] = σ2e−α which
can be modeled in discrete-time as:

ak+1 = βak + ωa
k (3)

whereωa
k is a zero-mean white noise sequence with variance

σ2(1− β2).
The state space representation of the discrete time Singer
model obtained by applying a (sample and hold) filter on the
continuous time model is given by:

xk+1 = Fαxk + ωk (4)

where:

Fα =





1 T (αT − 1 + e−αT )/α2

0 1 (1− e−αT /α
0 0 e−αT



 (5)

andα = 1/τm is the reciprocal of the maneuver time constant
τm. Thus, it is related to the type of the target. For example
for an aircraft,τm = 60s considering a lazy turn andτm =
10 − 20s for an evasive maneuver, as suggested by Signer
[4], while σ2 is the instantaneous variance of the acceleration
treated as a random variable.
In [4], the author proposes to model the distribution of
acceleration as aternary-uniform mixture, that is the target
may accelerate or decelerate with a probabilityP1 and moves
without accelerating with probabilityP0 at a maximum rate
of ±amax with equal probabilityPmax; or accelerate and
decelerate at a rate uniformly distributed over(−amax, amax).
It turn out that:

σ2 =
a2max

3
(1 + 4Pmax − P0) (6)

wherePmax, P0, a
2
max can be chosen to fit the target motion

capability.
To estimate the target position parameters, a non linear-filter
is applied. The unscented filter is based on the Unscented
Transform denoted (UT) which is a non linear transform that
translate a chosen set of representativesigma points which
capture the posterior mean and covariance of the Gaussian
random variables to the third order Taylor series expansion
for any non linearity.

B. Unscented Kalman filter

In case of an additive noise the Unscented Kalman filter steps
are the following [6]:
1. Assume the following initialization parameters:

x̂0 = E(x0)

P̂0 = E((x0 − x̂0)(x0 − x̂0)
T ) (7)

2. Calculate sigma points

χk−1 = [x̂k−1 x̂k−1 +

√

(n+ λ)P̂k−1x̂k−1

−

√

(n+ λ)P̂k−1x̂k−1] (8)

using the tunning parametersα,κ,β andλ = α2((n+κ)−n).
Then compute the weighting coefficientsWm

0 = λ/(L + λ),
W c

0 = λ/(L+λ)+(1−α2+β) andWm
i = W c

i = 1/2(L+λ)
for i = 1, ..., 2L wheren,L are respectively the state and the
measurement vector dimension.
2.2 Time update:

χ⋆
k/k−1 = f(χk−1) (9)

x̂k/k−1 =
2n
∑

i=0

W
(m)
i χ⋆

i,k/k−1 (10)

P̂k/k−1 =
2n
∑

i=0

W
(c)
i (χ⋆

i,k/k−1 − x̂k/k−1)

(χ⋆
i,k/k−1 − x̂k/k−1)

T +Qk (11)

χk/k−1 = [x̂k/k−1x̂k/k−1 +
√

(n+ λ)P̂k/k−1x̂k/k−1

−
√

(n+ λ)P̂k/k−1x̂k−1] (12)

Zk/k−1 = h(χk/k−1) (13)

ẑk/k−1 =

2n
∑

i=0

W
(m)
i Zi,k/k−1 (14)

2.3 Measurement update:

P̂zz,k =
2n
∑

i=0

W
(c)
i (Zi,k/k−1 − ẑk/k−1)

(Zi,k/k−1 − ẑk/k−1)
T +Rk (15)



P̂xz,k =

2n
∑

i=0

W
(c)
i (χi,k/k−1 − x̂k/k−1)

(Zi,k/k−1 − ẑk/k−1)
T (16)

Kk = P̂xz,kP̂
−1
zz,k (17)

x̂k = x̂k/k−1 +Kk(zk − ẑk/k−1) (18)

P̂k = P̂k/k−1 −KkP̂zz,kK
T
k (19)

C. Centralized fusion schema

Usually, in passive multi-sensor environment, all the observa-
tions are transmitted to a central processor wich implements a
non-linear estimation filter that considers a stacked vector of
all the received measurements, as shown in the figure 2:
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Fig. 2. Centralized fusion scheme

Lets us considers a single maneuvring target observed byM
passive sensors:

x(k + 1) = fs(x(k)) +Gw(k) (20)

zi(k) = hi(x(k)) + vi(k), i = 1, ...,M (21)

whereG is the process noise gain matrix,w is the mode-
dependent process noise sequence with zero mean and covari-
ance matrixQ, hi is a non-linear function that relies between
the states and the measurements andvi is the noise sequence
with zero mean and covarianceRi of sensori.
To estimate the target motion parameters an unscented kalman
filter that considers the concatned vector of all the measure-
ment is used as

Z =

















arctan( y−y1

x−x1

+ v1)

arctan( y−y2

x−x2

+ v2)

.

.

.
arctan( y−yM

x−xM
+ vM )

















(22)

The most computationally expensive operation in the basic
UKF corresponds to calculating the new set of sigma points
at each time update. This requires taking a matrix square-root
of the state covariancePxx ∈ ℜn×n. Thus, the resulting Com-
putational Complexity (CC) isO(n3). But for the centralized
UKF, the measurement update step involves the inversion of

the measure covariance matrixPzz ∈ ℜML×ML. The obtained
filter will have a CC ofO((M × L)3). In addition, while the
centralized UKF requires the overall sensors measurementsto
be available at the same time, any delays that occurs in the
transmission system will affect the reliability of the measure-
ments and degrades the tracking performance. To overcome
these drawbacks a new approach based on a decentralized
fusion schema is adopted.

III. N EW APPROACH

In 2D (BOT) applications, the target position can be derived
by combining at least two sensor measurements. The obtained
Cartesian position is the result of the intersection of two
bearing lines. Let’s(xij , yij) denote the intersection point
coordinates which are obtained by bearing measurementθi, θj ,
i.e:

xij =
ysj − ysi + xsjtgθ̂i − xsjtgθ̂j

tgθ̂i − tgθ̂j
(23)

yij =
ysjtgθ̂i − ysitgθ̂j + (xsi − xsj)tgθ̂itgθ̂j

tgθ̂i − tgθ̂j
(24)

The variance matrix of the new measurements can be directly
deduced from (23) and (24). Thus, it is given by the following
equation [1]:

(

σ2
xx σ2

xy

σ2
yx σ2

yy

)

= E{

(

dx
dy

)

(

dx dy
)

}

= Aij

(

σ2
θi 0
0 σ2

θj

)

(25)

where

Aij =
1

(tgθ̂i − tgθ̂j)2
(

(x̃ijtgθ̂j − ỹij)sec
2θ̂i (−x̃ijtgθ̂i − ỹij)sec

2θ̂j

(x̃ijtgθ̂j − ỹij)
tgθ̂j

cos2θ̂i
(−x̃ijtgθ̂i − ỹij

tgθ̂i
cos2θ̂j

)

)

(26)

and

x̃ij = xsi − xsj

ỹij = ysi − ysj (27)

The new measurements exhibit the advantage to have a linear
relation with the state vector parameters of the target. So we
can write using the new measurement:

x(k + 1) = fs(x(k)) +Gw(k) (28)

zi(k) = Hix(k) + vi(k), i = 1, ..., L (29)

Thus, under Gaussian hypothesis, a linear filter as the Kalman
Filter (KF) can be implemented to provide a local unbiased
optimal state estimate. Then one can combine the obtained
local estimates using a state fusion formula that uses weighting
coefficients which are the Likelihood of the expected local
measurements provided by each KF to obtain the global
estimate as shown in figure 3.
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Fig. 3. Proposed approach scheme

Thus, the state fusion formula is given by:

X̂ =

L
∑

i=1

cix̂i; (30)

whereci are scalars and L is the number of the new Cartesian
measurements.
From the unbiased assumptionE(x̂i) = E(x), and taking ex-
pectation of both sides of eq.(30), we obtain the normalization
condition equation :

c1 + c2 + ...+ cL = 1 (31)

which ensure the unbiasdness of the global estimate.
In the proposed algorithm, a Kalman Filter uses the computed
Cartesian position obtained by combining the measurements
from two sensor to provide the state estimation of a target
motion. Kalman filter is a non biased asymptotically optimal
estimation tool for linear systems under Gaussian additive
noise assumptions. From [5], assuming a good approximation
of the initial target motion parametersx0 and the initial error
covarianceP0 ,the following steps are executed at each time
step for each local Kalman filter :
Predicted state and covariance

x̂i
k/k−1 = Fkx̂

i
k−1/k−1 (32)

P̂ i
k/k−1 = FkP̂

i
k/k−1F

T
k +Qk (33)

Updated measure error covariance

Ŝi,k = Hi,kP̂
i
k/k−1H

T
i,k +Ri

k (34)

kalman Gain
Ki

k = P̂ i
k/k−1H

T
i,kŜ

−1
i,k (35)

Innovation
ηik = zik −Hi,kx̂

i
k/k−1 (36)

Filtered state
x̂i
k/k = x̂i

k/k−1 +Ki
kη

i
k (37)

Filtered covariance

P̂ i
k/k = (IN −Ki

kHi,k)P̂
i
k/k−1 (38)

The obtained local estimatêxi
k/k is then weighted by a Likeli-

hood function based on the innovationηik and the correpondant
measurement covariance errorŜi,k provided by theith kalman
filter. The correspondent unnormalized weighting coefficient is
given by:

Λi(k) =
1

[2πl‖Si(k)‖]1/2
exp[−

1

2
ηT (k)Si(k)

−1η(k)] (39)

where l is the measurement vector dimension.
Then a normalization step is applied to the obtained coeffi-
cients to ensure the unbiasedness of the global estimate as
follows:

ci(k) =
Λi(k)

∑L
i=1 Λi(k)

(40)

Finally equation (30) is applied to obtain the global estimate.
The obtained algorithm exhibits three main advantages, the
first one is related to the low level data association processthat
generates the new measurements which have a linear relation
with the state vector parameters. Thus, the use of a linear
Kalman filter is allowed leading to reduce the computational
complexity of the resulting algorithm. Secondly, from equation
(25) we can notice that the variance matrix of each pairs of
sensors is updated at each new measurements, this adaptivityis
necessary to reduce the effects of the erroneous Cartesian mea-
sures obtained using equations (23,24) while the processing of
the corresponding error measurement covariance matrix in the
Kalman filter steps as shown in eq. (34). The last and not the
least advantage is directly drawn from the decentralized fusion
architecture which reduce the overall computational burden
and exhibits better robustness against transmissions aleas [9].

IV. SIMULATION

In this section the performance of the proposed algo-
rithm is evaluated and compared with the centralized UKF
based on a Singer target model. The simulation sce-
nario involves three Infrared sensors which are located at
(0,−3km),(0, 3km),(4km, 0). The sampling rate is 1s. The
covariances of the measure errors isσv = 0.002rad. The
Singer model design parameters areP0 = 0.3, amax =
50m/s2, and τm = 10s which correspond to an evasive
maneuvring target. The initial state covariance matrix isP0 =
diag(10−6 × [400, 100, 10, 400, 100, 10]).
The flying trajectory is composed from linear segments and
turns organized as the following:

1thsegment. t=1-24s, Linear flight
2thsegment. t=25-37s, turn right with a constant turn
ratew = 0.25rad/s
3thsegment. t=38-61s, a constant acceleration phase
4thsegment. t=62-74s, turn left with parameters
wmax = −0.25rad/s, ẇ = 0.0208rad/s2

5thsegment. t=75-91s, a constant deceleration phase
6thsegment. t=92-104s, turn right with parameters
wmax = 0.25rad/s, ẇ = 0.0208rad/s2

7thsegment. t=105-135s, Linear flight
The initial target position is(2km, 10km) with velocity
(−172m/s, 246m/s) without acceleration.



Comparison between the tracking performances of the two
configurations was made in terms of Root Square Error (RSE)
of the position and velocity components of the target motion
model using 200 Monte-Carlo runs.
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The Root Mean Square Error (RMSE) of the target position
and velocity for the two tested configurations is shown in
table.1

CENT-UKF ALGO
x(km) 0.021 0.024
y(km) 0.014 0.016
vx(km/s) 0.017 0.019
vy(km/s) 0.015 0.016

TABLE I
COMPARISON OFRMSE OF CENT-UKF AND ALGO

The computed Cartesian positions for every pairs of sensors
is presented in figure 4, while figure 5 shows the real flying
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trajectory of the target and the filtered ones using the central
UKF and the proposed algorithm. Figures 6. and 7. illustrate
the RSE of the position and velocity in Cartesian coordinates.
From figure 4. we can notice that the combination of sensors
(s1, s3) exhibit a large variance in Cartesian position com-
ponents compared to pairs(s1, s2) and (s2, s3). Additional
simulation scenarios involving the same trajectory but different
localization of the sensors shows that the distance between
the combined pairs of sensors is inversely proportional to the
variance of the obtained Cartesian positions as expected from
equation (25). However, the effect of this phenomenon is mit-
igated during the fusion step, because the weighted coefficient
will reduce the correspondent state estimate contributionto the
global estimate.
The comparison of the RMSEs reveals that our algorithm has
the same performance of the centralized UKF in terms of
accuracy. But it exhibits a lower Computational Complexity



(CC) because it is based on local KFs instead of a centralized
UKF. CC of KF isO(n3) while for the Centralized UKF the
CC is related to the number of sensors asO((M × L)3).
Furthermore, the elapsed computational time for our algorithm
is reduced because of the distributed processing architecture
allowed by the state fusion schema. Thus, the proposed design
is more suitable for real-time applications.
In practical applications, the measurements from sensors are
not available simultaneously at the fusion center. The trans-
missions delays due to the distance between the sensors and
the transmission protocol which avoids the scratch of the
data at the fusion center affect negatively the performanceof
the centralized fusion schema. Conversely, the decentralized
fusion architecture is more robust because it allows a state
correction if the corresponding delay is well approximated.

V. CONCLUSION

In this paper a new approach based on a state information
fusion scheme to track a 2D maneuvring target is proposed.
The resulting algorithm uses the Cartesian positions of the
target obtained by combining at least 2 bearing-only sensor
measurements. Thus, a linear filter, namely the Kalman filter,
can be used to generate a local state estimate for each pairs
of sensors. Then a state fusion process is applied on the
overall local estimates weighted by normalized Likelihood
coefficients to generate the global estimate. The simulation
results show the effectiveness of our approach which can be
compared to the centralized UKF in terms of accuracy, while
our algorithm exhibits a low computational complexity and
better robustness against transmission aleas because of the
decentralized architecture that characterizes the state fusion
scheme which makes it more suited for real-time applications.
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