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Stability of L-statistics from weakly dependent

observations

Marek Kaluszkaa, Andrzej Okolewskia,∗

aInstitute of Mathematics, Technical University of Lodz, ul. Wolczanska 215, 90-005
Lodz, Poland

Abstract

We study the stability of moments of L-estimates with respect to several
types of weak dependence motivated by different mixing concepts. An actu-
arial interpretation of the presented results is indicated.

Keywords: Order statistics; L-statistics; Spectral risk measures; Weak
dependence; Mixings

1. Introduction

Let X1, X2, . . . , Xn be non-negative random variables defined on a com-
mon probability space (Ω,F ,P) . Denote by X1:n ≤ X2:n ≤ . . . ≤ Xn:n

the order statistics from the sample X1, . . . , Xn. Linear combinations of or-
der statistics called L-statistics form an important class of estimators. A
review of all the developments dealing with L-statistics is presented in Ser-
fling (1980) and David and Nagaraja (2003). A comprehensive survey of the
current knowledge about bounds for L-statistics has been made by Rychlik
(1998, 2001).

In financial context L-statistics accommodate numerous indices of eco-
nomic inequality as well as risk measures of actuarial science (see Davydov
et al., 2007, Greselin et al., 2009). In particular, they constitute a natural
class of estimators for spectral risk measures. Asymptotic properties like
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strong and weak convergence of some L-statistics based on independent ob-
servations to the mentioned measures were discussed e.g. by Acerbi (2002),
Dowd et al. (2008) and Greselin et al. (2009). Since the assumption of mu-
tual independence of risks is often violated in actuarial and financial practice,
it becomes desirable to introduce dependence concepts which can be relevant
in these sciences. Denuit et al. (2001) proved that the sum of positively
dependent risks is greater in stop-loss order than the corresponding sum of
independent risks. On the other hand, Darkiewicz et al. (2005) showed that
there is no strict relation between values of Wang’s risk measures and such
indices of dependence as Pearson’s, Spearmann’s and Kendall’s correlation
coefficients. The non-asymptotic results on L-statistics from dependent sam-
ples (e.g. Arnold and Groeneveld, 1979, Kaluszka and Okolewski, 2001, 2005,
Goroncy and Rychlik, 2008) can help to recognize some properties of (closely
related to each other) empirical spectral and Wang’s (1996) risk measures.

In this paper we study properties of L-statistics in the case when the
underlying observations are weakly dependent. We consider several types of
dependence motivated by mixing concepts. In Section 2 we give some evalua-
tions on the difference of expected L-statistics from independent and weakly
dependent samples with the same univariate marginal distributions. They
are expressed in terms of numerical characteristics of independent samples.
In Section 3 we present similar results on stability of variances of L-statistics
with respect to weak dependence. The bounds can be applied for example
to robust analysis of empirical spectral risk measures as well as large claims
reinsurance treaties against dependence of risks (see Remark 2).

2. Stability of expected L-estimates

Let X
′
1, . . . , X

′
n be independent random variables such that X

′
i =d Xi,

i = 1, . . . , n, and let X
′
1:n ≤ . . . ≤ X

′
n:n be the order statistics from the sample

X
′
1, . . . , X

′
n. Here and subsequently, =d means the equality in distribution.

Let λk, k = 1, . . . , n, be real numbers. Denote L =
∑n

k=1 λkXk:n and L′ =∑n
k=1 λkX

′
k:n. We will study the stability of EL with respect to dependence

structures belonging to some neighbourhoods of independence motivated by
mixings (for notions of ψ and φ mixings see, e.g., Doukhan, 1994, p.3). They
can be called weak dependencies. Let us formulate the propositions for the
case of identically distributed observations, which is most frequently analysed
in the literature, although the proofs provide as well the results for non-
identically distributed samples. We shall assume that the integrals appearing
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in the paper exist and are finite. Moreover, we adopt the convention that
0/0 = 0 and set

Ck
i =

(
i− 1

k

)(
n

i

)
.

Proposition 1. If there exists an ε > 0 such that

|P(Xk1 > x, . . . , Xki > x)−P(Xk1 > x) . . .P(Xki > x)|
P(Xk1 > x) . . .P(Xki > x)

≤ ε (1)

for all x > 0 and 1 ≤ k1 < . . . < ki ≤ n, 2 ≤ i ≤ n, i.e. the Xi’s satisfy
ψ-mixing type 1 dependence condition, then

|E (L− L′)| ≤ ε
n∑

k=1

|λk|
n∑

i=n−k+1

Cn−k
i EX

′
1:i. (2)

Proof. We will use the following well-known identity (cf. Blom et al., 1994,
p.32)

P

(
n∑

i=1

IAi ≥ k

)
=

n∑

i=k

(−1)i−k
(
i− 1

k − 1

) ∑

1≤k1<...<ki≤n
P(Ak1 ∩ . . . ∩ Aki), (3)

where A1, . . . , An are arbitrary events and IA denotes the indicator of A. Of
course

P(Xk:n ≤ x) = 1−P

(
n∑

i=1

I(Xi > x) ≥ n− k + 1

)
.

From (3) we have

P(Xk:n > x) =
n∑

i=n−k+1

(−1)i−(n−k+1)

(
i− 1

n− k

) ∑

1≤k1<...<ki≤n
P(Xk1 > x, . . . , Xki > x). (4)

Combining (4) with the analogous formula for X
′
s leads to

E (L− L′) =
n∑

k=1

λk

n∑

i=n−k+1

(−1)i−(n−k+1)

(
i− 1

n− k

)∫ ∞

0

∑

1≤k1<...<ki≤n
[P(Xk1 > x,

. . . , Xki > x)−P(X
′
k1
> x) . . .P(X

′
ki
> x)] dx. (5)
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Hence, by (1),

|E (L− L′)| ≤ ε

n∑

k=1

|λk|
n∑

i=n−k+1

(
i− 1

n− k

) ∑

1≤k1<...<ki≤n
EX

′
1:k1,...,ki

, (6)

where X
′
j:k1,...,ki

denotes the jth order statistics from the sample X
′
k1
, . . . , X

′
ki
.

For identically distributed observations (6) takes the form (2).

Proposition 2. Suppose that the Xi’s are ψ-mixing type 2 dependent, that
is, there exists an ε > 0 such that

|P(Xk1 ≤ x, . . . , Xki ≤ x)−P(Xk1 ≤ x) . . .P(Xki ≤ x)|
1−P(Xk1 ≤ x) . . .P(Xki ≤ x)

≤ ε (7)

for any x > 0 and all 1 ≤ k1 < . . . < ki ≤ n, 2 ≤ i ≤ n. Then

|E (L− L′)| ≤ ε
n∑

i=1

(
i∑

k=1

Ck−1
i |λk|

)
EX

′
i:i. (8)

Proof. From David and Nagaraja (2003, p. 99) we have

EL =
n∑

k=1

λk

∫ ∞

0

(
1−

n∑

i=k

(−1)i−k
(
i− 1

k − 1

) ∑

1≤k1<...<ki≤n
P(Xk1 ≤ x, . . . , Xki ≤ x)

)
dx.

Hence

E (L− L′) =

∫ ∞

0

n∑

k=1

λk

n∑

i=k

(−1)i−k
(
i− 1

k − 1

) ∑

1≤k1<...<ki≤n
[P(Xk1 ≤ x) . . .P(Xki ≤ x)

− P(Xk1 ≤ x, . . . , Xki ≤ x)] dx

and, by (7),

|E (L− L′)| ≤ ε
n∑

k=1

|λk|
n∑

i=k

(
i− 1

k − 1

) ∑

1≤k1<...<ki≤n

∫ ∞

0

[1−P(X
′
i:k1...ki

≤ x)] dx

= ε

n∑

k=1

|λk|
n∑

i=k

(
i− 1

k − 1

) ∑

1≤k1<...<ki≤n
EX

′
i:k1,...,ki

, (9)

which gives (8).
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Proposition 3. Assume that for an ε > 0 and all 1 ≤ k1 < . . . < ki ≤ n,
2 ≤ i ≤ n,

sup
x>0

∣∣P(Xki > x|Xki−1
> x, . . . , Xk1 > x)−P(Xki > x)

∣∣ ≤ ε, (10)

i.e. the Xi’s are φ-mixing type dependent. Then

|E (L− L′)| ≤ ε
n∑

k=1

|λk|
n∑

i=n−k+1

Cn−k
i

i∑

j=2

i−j∑

s=0

(
i− j
s

)
εi−j−sEX

′
1:j+s−1. (11)

Proof. From (5) we have

E (L− L′) =
n∑

k=1

λk

n∑

i=n−k+1

(−1)i−(n−k+1)

(
i− 1

n− k

)

∫ ∞

0

∑

1≤k1<...<ki≤n

[
i∏

j=1

aj(x)−
i∏

j=1

bj(x)

]
dx,

where a1(x) = P(Xk1 > x), aj(x) = P(Xkj > x|Xkj−1
> x, . . . , Xk1 > x) for

2 ≤ j ≤ n and bj(x) = P(X
′
kj
> x) for 1 ≤ j ≤ n. Applying the identity

i∏

j=1

aj −
i∏

j=1

bj =
i∑

j=1

(aj − bj)
[
j−1∏

r=1

br

][
i∏

r=j+1

ar

]

with
∏t

r=s cr = 1 for s > t, we get

|E (L− L′)| ≤ ε
n∑

k=1

|λk|
n∑

i=n−k+1

(
i− 1

n− k

) ∑

1≤k1<...<ki≤n
i∑

j=2

∫ ∞

0

[
j−1∏

r=1

br(x)

][
i∏

r=j+1

(ε+ br(x))

]
dx, (12)

which for identically distributed observations leads to (11).

Next result concerns the dependence type motivated by asymptotic quad-
rant independence introduced by Birkel (1992).
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Proposition 4. Let

sup
x>0

|P(Xk1 > x, . . . , Xki > x)−P(Xk1 > x) . . .P(Xki > x)|
P(Xk1 > x)P(Xk1 ≤ x) . . .P(Xki > x)P(Xki ≤ x)

≤ ε (13)

for an ε > 0 and all 1 ≤ k1 < . . . < ki ≤ n, 2 ≤ i ≤ n. Then

|E (L− L′)| ≤ ε
n∑

k=1

|λk|
n∑

i=k

Ck−1
i E

(
X
′′
1:i −X

′
i:i

)
+
, (14)

where x+ = max{0, x} and X
′
1, . . . , X

′
n and X

′′
1 , . . . , X

′′
n are independent sam-

ples such that X
′
i =d X

′′
i =d Xi for i = 1, . . . , n.

Proof. By (5), (13) and Fubini’s theorem, we obtain

|E (L− L′)| ≤ ε

n∑

k=1

|λk|
n∑

i=n−k+1

(
i− 1

n− k

)∫ ∞

0

∑

1≤k1<...<ki≤n
i∏

j=1

P(Xkj ≤ x)P(Xkj > x) dx

= ε
n∑

k=1

|λk|
n∑

i=n−k+1

(
i− 1

n− k

) ∑

1≤k1<...<ki≤n

E

∫ ∞

0

I(X
′
i:k1,...,ki

≤ x)I(X
′′
1:k1,...,ki

> x) dx

= ε

n∑

k=1

|λk|
n∑

i=k

(
i− 1

k − 1

) ∑

1≤k1<...<ki≤n
E
(
X
′′
1:k1,...,ki

−X ′i:k1,...,ki

)
+

(15)

and this implies (14).

Example 1. Let X1, . . . , Xn have the standard exponential distribution.
Then EX

′
k:n =

∑n
i=n−k+1 1/i (see David and Nagaraja, 2003, p. 52), and

consequently the bounds of Propositions 1,2,3 and 4, respectively, take the
forms

|E (Xk:n −X
′
k:n)| ≤ ε

n∑

i=n−k+1

Cn−k
i

1

i
,

|E (Xk:n −X
′
k:n)| ≤ ε

n∑

i=k

Ck−1
i

i∑

j=1

1

j
,

6



|E (Xk:n −X
′
k:n)| ≤ ε

n∑

i=n−k+1

Cn−k
i

i∑

j=2

i−j∑

s=0

(
i− j
s

)
εi−j−s

j + s− 1

and

|E (Xk:n −X
′
k:n)| ≤ ε

n∑

i=k

Ck−1
i

[
i

(
2i

i

)]−1

.

Remark 1. The formulae (6), (9), (12) and (15) provide the bounds for the
case when the weakly dependent observations X1, . . . , Xn are non-identically
distributed.

Dependence neighbourhoods (1), (10) and (13) for n = 2 contain some
important classes of copulas. For example, the Farlie-Gumbel-Morgenstern,
Ali-Mikhail-Haq and Plackett families of copulas (see Matu la, 2005) with
parameters from the intervals [0, ε], [0, ε/(1 + ε)] and [1, 1 + ε), respectively,
belong to these neighbourhoods.

Instead of using Kolmogorov-type neighbourhoods of independence, one
can consider the other types of neighbourhoods. Let us give one such example
for the case of n = 2, which is intensively studied in reliability theory (see
e.g. Balakrishnan and Lai, 2009). We have

E (L− L′) = (λ1 − λ2)(EX1:2 −EX
′
1:2) = (λ2 − λ1)(EX2:2 −EX

′
2:2),

since X2:2 = X1 +X2 −X1:2. Obviously,

EX2:2 −EX
′
2:2 =

∫ ∞

0

[
P(X

′
2:2 ≤ t)−P(X2:2 ≤ t)

]
dt. (16)

If F1 = F2 = F, then

|E (L− L′)| ≤ |λ2 − λ1|
∫ 1

0

|C(t, t)− t2| dt,

where C(t, t) = P(X1 ≤ F−1(t), X2 ≤ F−1(t)). In the case when C is a
generalized Farlie-Gumbel-Morgenstern copula, i.e.

C(x, y) = xy + ρxbyb(1− x)a(1− y)a, a, b ≥ 1, |ρ| ≤ 1,

we obtain
|E (L− L′)| ≤ |ρ||λ2 − λ1|B(2a+ 1, 2b+ 1),

where B(x, y) denotes the Euler beta function. In particular, if |ρ| ≤ ε
for some ε, then |E (L − L′)| ≤ ε|λ2 − λ1|/3 for arbitrary a, b ≥ 1, since∫ 1

0
x2a(1− x)2b dx ≤ min{1/(2a+ 1), 1/(2b+ 1)}.

7



Remark 2. The presented inequalities can be applied to evaluate the weak
dependent insurance risks. Suppose that X1, . . . , Xn is a homogeneous port-
folio of risks satisfying ψ-mixing condition (7). If an insurer is able to de-
termine the parameter ε for this mixing type dependence model and if he is
willing to use some empirical spectral risk measure

∑n
i=1 λiXi:n with some

0 ≤ λ1 ≤ . . . ≤ λn, then the bound (8) says that the additional (in com-
parison to the case of independent risks) loading related to the dependence
of risks cannot exceed the coefficient determined by independent risks mul-
tiplied by ε. If the dependence is really weak, i.e. ε is close to zero, then the
loading should be small. Another application of L-statistics to insurance is
the large claim reinsurance treaty (cf. Kremer, 1998). For this reinsurance
contract not only the net premium but also the risk measured by variance
may be of interest.

3. Stability of second moments of L-statistics

We will restrict our attention to one mixing type of dependence. The
other mixings may be treated analogously. Let us examine first the variances
of single order statistics.

Proposition 5. Assume that there exists an ε > 0 such that inequality (1)
is satisfied for all x > 0 and all 1 ≤ k1 < . . . < ki ≤ n, 2 ≤ i ≤ n. Then for
any k

∣∣∣VarXk:n −VarX
′
k:n

∣∣∣ ≤ ε

n∑

i=n−k+1

Cn−k
i

(
E [X

′
1:i]

2 + 2EX
′
1:iEX

′
k:n

)

+ ε2

[
n∑

i=n−k+1

Cn−k
i EX

′
1:i

]2

. (17)

Proof. From Hoeffding’s identity (see, e.g., Szekli, 1995, p. 136) for non-
negative random variables

VarX =

∫

R2
+

[P(X > x ∨ y)−P(X > x)P(X > y)] dx dy,

we obtain

VarXk:n − VarX
′
k:n =

∫

R2
+

[
P(Xk:n > x ∨ y)−P(X

′
k:n > x ∨ y)

]
dx dy

8



+

∫

R2
+

P(X
′
k:n > y)

[
P(X

′
k:n > x)−P(Xk:n > x)

]
dx dy

+

∫

R2
+

[
P(Xk:n > x)−P(X

′
k:n > x)

] [
P(X

′
k:n > y)−P(Xk:n > y)

]
dx dy

+

∫

R2
+

P(X
′
k:n > x)

[
P(X

′
k:n > y)−P(Xk:n > y)

]
dx dy, (18)

where x ∨ y = max{x, y}. By (4) and (1),
∣∣∣∣
∫ ∞

0

[P(Xk:n > y)−P(X
′
k:n > y)] dy

∣∣∣∣

≤ ε
n∑

i=n−k+1

(
i− 1

n− k

) ∑

1≤k1<...<ki≤n

∫ ∞

0

P(X
′
k1,...,ki

> y) dy. (19)

Combining (18) and (19) we get

∣∣∣VarXk:n −VarX
′
k:n

∣∣∣ ≤ 2ε
n∑

i=n−k+1

(
i− 1

n− k

) ∑

1≤k1<...<ki≤n

∫ ∞

0

∫ ∞

y

P(X
′
1:k1,...,ki

> x) dx dy

+ 2εEX
′
k:n

n∑

i=n−k+1

(
i− 1

n− k

) ∑

1≤k1<...<ki≤n
EX

′
1:k1,...,ki

+ ε2

[
n∑

i=n−k+1

(
i− 1

n− k

) ∑

1≤k1<...<ki≤n
EX

′
1:k1,...,ki

]2

.

Applying the identity: 2
∫∞

0

∫∞
y

P(X > x) dx dy = EX2, leads to (17).

Under a stronger mixing condition, the result of Proposition 5 can be
extended to L-statistics.

Proposition 6. Suppose that there is an ε > 0 such that

sup
x,y>0

∣∣∣∣
P(Xk1 > x1, . . . , Xki > xi)

P(Xk1 > x1) . . .P(Xki > xi)
− 1

∣∣∣∣ ≤ ε, (20)

where xj = x or xj = y, j = 1, . . . , i, 1 ≤ k1 < . . . < ki ≤ n and 2 ≤ i ≤ n.
Then
(i) for k < l

∣∣∣Cov(Xk:n, Xl:n)−Cov(X
′
k:n, X

′
l:n)
∣∣∣ ≤ εBkl,

9



in which

Bkl = wlEX
′
k:n + wkEX

′
l:n +

1

2
(vk + vkl) + εwkwl, (21)

where wk, vk and vkl are defined below by (24), (27) and (31), respectively;
(ii)

|VarL−VarL′| ≤ ε

[
n∑

k=1

λ2
kBkk + 2

n−1∑

k=1

n∑

l=k+1

|λkλl|Bkl

]
(22)

with Bkk = 2wkEX
′
k:n + vk + εw2

k.

Proof. By Hoeffding’s identity,

Cov(Xk:n, Xl:n)−Cov(X
′
k:n, X

′
l:n) = I1 + I2 + I3 + I4,

where

I1 =

∫

R2
+

[
P(Xk:n > x,Xl:n > y)−P(X

′
k:n > x,X

′
l:n > y)

]
dx dy,

I2 =

∫

R2
+

P(X
′
k:n > x)

[
P(X

′
l:n > y)−P(Xl:n > y)

]
dx dy,

I3 =

∫

R2
+

P(X
′
l:n > y)

[
P(X

′
k:n > x)−P(Xk:n > x)

]
dx dy,

I4 =

∫

R2
+

[
P(Xl:n > y)−P(X

′
l:n > y)

] [
P(X

′
k:n > x)−P(Xk:n > x)

]
dx dy.

Let us evaluate each Ij, j = 1, . . . , 4, separately. Proceeding analogously as
in the proof of Proposition 5 we obtain

|I2| ≤ εEX
′
k:nwl, |I3| ≤ ε EX

′
l:nwk and |I4| ≤ ε2wkwl, (23)

in which

wj =
n∑

i=n−j+1

(
i− 1

n− j

) ∑

1≤k1<...<ki≤n
EX

′
1:k1,...,ki

. (24)

10



Observe that

I1 =

∫ ∞

0

∫ y

0

[
P(Xk:n > x,Xl:n > y)−P(X

′
k:n > x,X

′
l:n > y)

]
dx dy

+

∫ ∞

0

∫ ∞

y

[
P(Xk:n > x)−P(X

′
k:n > x)

]
dx dy ≡ I11 + I12. (25)

Applying formula (4) to the second integral of (25) gives

|I12| ≤ ε
n∑

i=n−k+1

(
i− 1

n− k

) ∑

1≤k1<...<ki≤n

∫ ∞

0

∫ ∞

y

P(X
′
k1
> x, . . . , X

′
ki
> x) dxdy

= εvk/2, (26)

where

vk =
n∑

i=n−k+1

(
i− 1

n− k

) ∑

1≤k1<...<ki≤n
E
[
X
′
1:k1,...,ki

]2

. (27)

In order to evaluate the first integral I11 of (25) we use the identity

I(xk:n > x) =
n∑

i=n−k+1

(−1)i−(n−k+1)

(
i− 1

n− k

) ∑

1≤k1<...<ki≤n
I(xk1 > x, . . . , xki > x),

which can be deduced from (4) by putting Xk = xk for k = 1, . . . , n. It
follows that

P(Xk:n > x,Xl:n > y) = E
n∑

i=n−k+1

n∑

j=n−l+1

aij
∑

1≤k1<...<ki≤n∑

1≤l1<...<lj≤n
I(Xk1 > x, . . . , Xki > x,Xl1 > y, . . . , Xlj > y)

with

aij = (−1)i+j−(n−k+1)−(n−l+1)

(
i− 1

n− k

)(
j − 1

n− l

)
.

If ks = lz for some s, z, then I(Xks > x,Xlz > y) = I(Xks > y) for x < y (cf.
the definition of I11 in (25)). Therefore

|P(Xk:n > x,Xl:n > y)−P(X
′
k:n > x,X

′
l:n > y)|

11



≤ ε
n∑

i=n−k+1

n∑

j=n−l+1

|aij|
∑

1≤k1<...<ki≤n

∑

1≤l1<...<lj≤n

P


 ⋂

s∈Sij
{X ′s > x} ∩

⋂

z∈Zj
{X ′z > y}


 , (28)

where Zj = {l1, . . . , lj} and Sij = {k1, . . . , ki} \ Zj. Since

∫ ∞

0

∫ y

0

P


 ⋂

s∈Sij
{X ′s > x} ∩

⋂

z∈Zj
{X ′z > y}


 dx dy

= E

∫ ∞

0

I(X
′
1:Zj

> y)

∫ y

0

I(X
′
1:Sij

> x) dx dy

= E

∫ ∞

0

I(X
′
1:Zj

> y) min
(
y,X

′
1:Sij

)
dy

=

∫ ∞

0

P(X
′
1:Zj

> y)E min
(
y,X

′
1:Sij

)
dy

≤
∫ ∞

0

yP(X
′
1:Zj

> y) dy =
1

2
E
[
X
′
1:Zj

]2

≤ 1

2
E
[
X
′
n:n

]2

<∞,(29)

we have, by (25), (28) and (29), that

|I11| ≤ εvkl/2, (30)

with

vkl =
n∑

i=n−k+1

(
n

i

) n∑

j=n−l+1

|aij|
∑

1≤l1<...<lj≤n
E
[
X
′
1:Zj

]2

, (31)

where X
′
1:A is the minimal order statistics from the sample of all the X

′
is

which indices are in the set A. Combining (30) with (26), (25) and (23) leads
to (i). The part (ii) is a straightforward consequence of (i) and the last
formula in the proof of Proposition 5.

Example 2. If X1, . . . , Xn have the standard exponential distribution, then
the coefficients in the definitions of Bkk and Bkl in Proposition 6 take the
forms wk =

∑n
i=n−k+1C

n−k
i /i, vk = 2

∑n
i=n−k+1 C

n−k
i /i2 and vkl = 2

∑n
i=n−k+1∑n

j=n−l+1C
n−k
i Cn−l

j /j2.

12



Example 3. Let B denote the right-hand side of (22). Combining the
Chebychev inequality with (22) we obtain the following confidence interval
[L− ((VarL′ + B)/α)1/2, L+ ((VarL′ + B)/α)1/2] for the expected value of
L-statistic from dependent observations with confidence coefficient greater
than or equal to 1− α.
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no. N N111 431337.
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