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We study the stability of moments of L-estimates with respect to several types of weak dependence motivated by different mixing concepts. An actuarial interpretation of the presented results is indicated.

Introduction

Let X 1 , X 2 , . . . , X n be non-negative random variables defined on a common probability space (Ω, F, P) . Denote by X 1:n ≤ X 2:n ≤ . . . ≤ X n:n the order statistics from the sample X 1 , . . . , X n . Linear combinations of order statistics called L-statistics form an important class of estimators. A review of all the developments dealing with L-statistics is presented in Serfling (1980) and [START_REF] David | Order Statistics[END_REF]. A comprehensive survey of the current knowledge about bounds for L-statistics has been made by [START_REF] Rychlik | Bounds on expectations of L-estimates[END_REF][START_REF] Rychlik | Projecting Statistical Functionals Springer[END_REF].

In financial context L-statistics accommodate numerous indices of economic inequality as well as risk measures of actuarial science (see [START_REF] Davydov | Convex rearrangements, generalized Lorenz curves, and Gaussian data[END_REF][START_REF] Greselin | L-functions, processes, and statistics in measuring economic inequality and actuarial risk[END_REF]. In particular, they constitute a natural class of estimators for spectral risk measures. Asymptotic properties like strong and weak convergence of some L-statistics based on independent observations to the mentioned measures were discussed e.g. by [START_REF] Acerbi | Spectral measures of risk: A coherent representation of subjective risk aversion[END_REF], [START_REF] Dowd | Spectral Risk Measures: Properties and Limitations[END_REF] and [START_REF] Greselin | L-functions, processes, and statistics in measuring economic inequality and actuarial risk[END_REF]. Since the assumption of mutual independence of risks is often violated in actuarial and financial practice, it becomes desirable to introduce dependence concepts which can be relevant in these sciences. [START_REF] Denuit | Does positive dependence between individual risks increase stop-loss premiums?[END_REF] proved that the sum of positively dependent risks is greater in stop-loss order than the corresponding sum of independent risks. On the other hand, [START_REF] Darkiewicz | Risk measures and dependencies of risks[END_REF] showed that there is no strict relation between values of Wang's risk measures and such indices of dependence as Pearson's, Spearmann's and Kendall's correlation coefficients. The non-asymptotic results on L-statistics from dependent samples (e.g. [START_REF] Arnold | Bounds on expectations of linear systematic statistics based on dependent samples[END_REF][START_REF] Kaluszka | An extension of the Erdős-Neveu-Rényi theorem with applications to order statistics[END_REF][START_REF] Matu La | On some families of AQSI random variables and related strong law of large numbers[END_REF][START_REF] Goroncy | Lower bounds on expectations of positive L-statistics from without-replacement models[END_REF]) can help to recognize some properties of (closely related to each other) empirical spectral and [START_REF] Wang | Premium calculation by transforming the layer premium density[END_REF] risk measures.

In this paper we study properties of L-statistics in the case when the underlying observations are weakly dependent. We consider several types of dependence motivated by mixing concepts. In Section 2 we give some evaluations on the difference of expected L-statistics from independent and weakly dependent samples with the same univariate marginal distributions. They are expressed in terms of numerical characteristics of independent samples. In Section 3 we present similar results on stability of variances of L-statistics with respect to weak dependence. The bounds can be applied for example to robust analysis of empirical spectral risk measures as well as large claims reinsurance treaties against dependence of risks (see Remark 2).

Stability of expected L-estimates

Let X 1 , . . . , X n be independent random variables such that X i = d X i , i = 1, . . . , n, and let X 1:n ≤ . . . ≤ X n:n be the order statistics from the sample X 1 , . . . , X n . Here and subsequently, = d means the equality in distribution. Let λ k , k = 1, . . . , n, be real numbers. Denote L = n k=1 λ k X k:n and L = n k=1 λ k X k:n . We will study the stability of E L with respect to dependence structures belonging to some neighbourhoods of independence motivated by mixings (for notions of ψ and φ mixings see, e.g., [START_REF] Doukhan | Mixing: Properties and Examples[END_REF]3). They can be called weak dependencies. Let us formulate the propositions for the case of identically distributed observations, which is most frequently analysed in the literature, although the proofs provide as well the results for nonidentically distributed samples. We shall assume that the integrals appearing 2 in the paper exist and are finite. Moreover, we adopt the convention that 0/0 = 0 and set

C k i = i -1 k n i .
Proposition 1. If there exists an ε > 0 such that

|P(X k 1 > x, . . . , X k i > x) -P(X k 1 > x) . . . P(X k i > x)| P(X k 1 > x) . . . P(X k i > x) ≤ ε (1) 
for all x > 0 and 1 ≤ k 1 < . . . < k i ≤ n, 2 ≤ i ≤ n, i.e. the X i 's satisfy ψ-mixing type 1 dependence condition, then

|E (L -L )| ≤ ε n k=1 |λ k | n i=n-k+1 C n-k i E X 1:i . (2) 
Proof. We will use the following well-known identity (cf. Blom et al., 1994, p.32)

P n i=1 I A i ≥ k = n i=k (-1) i-k i -1 k -1 1≤k 1 <...<k i ≤n P(A k 1 ∩ . . . ∩ A k i ), (3) 
where A 1 , . . . , A n are arbitrary events and I A denotes the indicator of A. Of course

P(X k:n ≤ x) = 1 -P n i=1 I(X i > x) ≥ n -k + 1 .
From (3) we have

P(X k:n > x) = n i=n-k+1 (-1) i-(n-k+1) i -1 n -k 1≤k 1 <...<k i ≤n P(X k 1 > x, . . . , X k i > x). (4) 
Combining ( 4) with the analogous formula for X s leads to

E (L -L ) = n k=1 λ k n i=n-k+1 (-1) i-(n-k+1) i -1 n -k ∞ 0 1≤k 1 <...<k i ≤n [P(X k 1 > x, . . . , X k i > x) -P(X k 1 > x) . . . P(X k i > x)] dx. (5) 
Hence, by [START_REF] Acerbi | Spectral measures of risk: A coherent representation of subjective risk aversion[END_REF],

|E (L -L )| ≤ ε n k=1 |λ k | n i=n-k+1 i -1 n -k 1≤k 1 <...<k i ≤n E X 1:k 1 ,...,k i , (6) 
where X j:k 1 ,...,k i denotes the jth order statistics from the sample X k 1 , . . . , X k i .

For identically distributed observations (6) takes the form (2).

Proposition 2. Suppose that the X i 's are ψ-mixing type 2 dependent, that is, there exists an ε > 0 such that

|P(X k 1 ≤ x, . . . , X k i ≤ x) -P(X k 1 ≤ x) . . . P(X k i ≤ x)| 1 -P(X k 1 ≤ x) . . . P(X k i ≤ x) ≤ ε (7) 
for any x > 0 and all

1 ≤ k 1 < . . . < k i ≤ n, 2 ≤ i ≤ n. Then |E (L -L )| ≤ ε n i=1 i k=1 C k-1 i |λ k | E X i:i . (8) 
Proof. From David and Nagaraja (2003, p. 99) we have

E L = n k=1 λ k ∞ 0 1 - n i=k (-1) i-k i -1 k -1 1≤k 1 <...<k i ≤n P(X k 1 ≤ x, . . . , X k i ≤ x) dx.
Hence

E (L -L ) = ∞ 0 n k=1 λ k n i=k (-1) i-k i -1 k -1 1≤k 1 <...<k i ≤n [P(X k 1 ≤ x) . . . P(X k i ≤ x) -P(X k 1 ≤ x, . . . , X k i ≤ x)] dx
and, by [START_REF] David | Order Statistics[END_REF],

|E (L -L )| ≤ ε n k=1 |λ k | n i=k i -1 k -1 1≤k 1 <...<k i ≤n ∞ 0 [1 -P(X i:k 1 ...k i ≤ x)] dx = ε n k=1 |λ k | n i=k i -1 k -1 1≤k 1 <...<k i ≤n E X i:k 1 ,...,k i , (9) 
which gives [START_REF] Davydov | Convex rearrangements, generalized Lorenz curves, and Gaussian data[END_REF].

Proposition 3. Assume that for an ε > 0 and all

1 ≤ k 1 < . . . < k i ≤ n, 2 ≤ i ≤ n, sup x>0 P(X k i > x|X k i-1 > x, . . . , X k 1 > x) -P(X k i > x) ≤ ε, (10) 
i.e. the X i 's are φ-mixing type dependent. Then

|E (L -L )| ≤ ε n k=1 |λ k | n i=n-k+1 C n-k i i j=2 i-j s=0 i -j s ε i-j-s E X 1:j+s-1 . ( 11 
)
Proof. From [START_REF] Blom | Problems and Snapshots from the World of Probability[END_REF] we have

E (L -L ) = n k=1 λ k n i=n-k+1 (-1) i-(n-k+1) i -1 n -k ∞ 0 1≤k 1 <...<k i ≤n i j=1 a j (x) - i j=1 b j (x) dx,
where

a 1 (x) = P(X k 1 > x), a j (x) = P(X k j > x|X k j-1 > x, . . . , X k 1 > x) for 2 ≤ j ≤ n and b j (x) = P(X k j > x) for 1 ≤ j ≤ n. Applying the identity i j=1 a j - i j=1 b j = i j=1 (a j -b j ) j-1 r=1 b r i r=j+1 a r
with t r=s c r = 1 for s > t, we get

|E (L -L )| ≤ ε n k=1 |λ k | n i=n-k+1 i -1 n -k 1≤k 1 <...<k i ≤n i j=2 ∞ 0 j-1 r=1 b r (x) i r=j+1 (ε + b r (x)) dx, (12) 
which for identically distributed observations leads to [START_REF] Dowd | Spectral Risk Measures: Properties and Limitations[END_REF].

Next result concerns the dependence type motivated by asymptotic quadrant independence introduced by Birkel (1992).

Proposition 4. Let sup x>0 |P(X k 1 > x, . . . , X k i > x) -P(X k 1 > x) . . . P(X k i > x)| P(X k 1 > x)P(X k 1 ≤ x) . . . P(X k i > x)P(X k i ≤ x) ≤ ε (13) 
for an ε > 0 and all

1 ≤ k 1 < . . . < k i ≤ n, 2 ≤ i ≤ n. Then |E (L -L )| ≤ ε n k=1 |λ k | n i=k C k-1 i E X 1:i -X i:i + , (14) 
where x + = max{0, x} and X 1 , . . . , X n and X 1 , . . . , X n are independent samples such that

X i = d X i = d X i for i = 1, . . . , n.
Proof. By ( 5), ( 13) and Fubini's theorem, we obtain

|E (L -L )| ≤ ε n k=1 |λ k | n i=n-k+1 i -1 n -k ∞ 0 1≤k 1 <...<k i ≤n i j=1 P(X k j ≤ x)P(X k j > x) dx = ε n k=1 |λ k | n i=n-k+1 i -1 n -k 1≤k 1 <...<k i ≤n E ∞ 0 I(X i:k 1 ,...,k i ≤ x)I(X 1:k 1 ,...,k i > x) dx = ε n k=1 |λ k | n i=k i -1 k -1 1≤k 1 <...<k i ≤n E X 1:k 1 ,...,k i -X i:k 1 ,...,k i + (15) 
and this implies [START_REF] Kaluszka | An extension of the Erdős-Neveu-Rényi theorem with applications to order statistics[END_REF].

Example 1. Let X 1 , . . . , X n have the standard exponential distribution. Then E X k:n = n i=n-k+1 1/i (see [START_REF] David | Order Statistics[END_REF], p. 52), and consequently the bounds of Propositions 1,2,3 and 4, respectively, take the forms

|E (X k:n -X k:n )| ≤ ε n i=n-k+1 C n-k i 1 i , |E (X k:n -X k:n )| ≤ ε n i=k C k-1 i i j=1 1 j , 6 |E (X k:n -X k:n )| ≤ ε n i=n-k+1 C n-k i i j=2 i-j s=0 i -j s ε i-j-s j + s -1 and |E (X k:n -X k:n )| ≤ ε n i=k C k-1 i i 2i i -1
.

Remark 1. The formulae ( 6), ( 9), ( 12) and ( 15) provide the bounds for the case when the weakly dependent observations X 1 , . . . , X n are non-identically distributed.

Dependence neighbourhoods (1), ( 10) and ( 13) for n = 2 contain some important classes of copulas. For example, the Farlie-Gumbel-Morgenstern, Ali-Mikhail-Haq and Plackett families of copulas (see Matu la, 2005) with parameters from the intervals [0, ε], [0, ε/(1 + ε)] and [1, 1 + ε), respectively, belong to these neighbourhoods.

Instead of using Kolmogorov-type neighbourhoods of independence, one can consider the other types of neighbourhoods. Let us give one such example for the case of n = 2, which is intensively studied in reliability theory (see e.g. [START_REF] Balakrishnan | Continuous Bivariate Distributions[END_REF]. We have

E (L -L ) = (λ 1 -λ 2 )(E X 1:2 -E X 1:2 ) = (λ 2 -λ 1 )(E X 2:2 -E X 2:2 ), since X 2:2 = X 1 + X 2 -X 1:2 . Obviously, E X 2:2 -E X 2:2 = ∞ 0 P(X 2:2 ≤ t) -P(X 2:2 ≤ t) dt. (16) 
If

F 1 = F 2 = F, then |E (L -L )| ≤ |λ 2 -λ 1 | 1 0 |C(t, t) -t 2 | dt,
where C(t, t) = P(X 1 ≤ F -1 (t), X 2 ≤ F -1 (t)). In the case when C is a generalized Farlie-Gumbel-Morgenstern copula, i.e.

C(x, y)

= xy + ρx b y b (1 -x) a (1 -y) a , a, b ≥ 1, |ρ| ≤ 1, we obtain |E (L -L )| ≤ |ρ||λ 2 -λ 1 |B(2a + 1, 2b + 1),
where B(x, y) denotes the Euler beta function. In particular, if |ρ| ≤ ε for some ε, then

|E (L -L )| ≤ ε|λ 2 -λ 1 |/3 for arbitrary a, b ≥ 1, since 1 0 x 2a (1 -x) 2b dx ≤ min{1/(2a + 1), 1/(2b + 1)}.
Remark 2. The presented inequalities can be applied to evaluate the weak dependent insurance risks. Suppose that X 1 , . . . , X n is a homogeneous portfolio of risks satisfying ψ-mixing condition [START_REF] David | Order Statistics[END_REF]. If an insurer is able to determine the parameter ε for this mixing type dependence model and if he is willing to use some empirical spectral risk measure n i=1 λ i X i:n with some 0 ≤ λ 1 ≤ . . . ≤ λ n , then the bound [START_REF] Davydov | Convex rearrangements, generalized Lorenz curves, and Gaussian data[END_REF] says that the additional (in comparison to the case of independent risks) loading related to the dependence of risks cannot exceed the coefficient determined by independent risks multiplied by ε. If the dependence is really weak, i.e. ε is close to zero, then the loading should be small. Another application of L-statistics to insurance is the large claim reinsurance treaty (cf. [START_REF] Kremer | Largest claims reinsurance premiums under possible claims dependence[END_REF]. For this reinsurance contract not only the net premium but also the risk measured by variance may be of interest.

Stability of second moments of L-statistics

We will restrict our attention to one mixing type of dependence. The other mixings may be treated analogously. Let us examine first the variances of single order statistics. Proposition 5. Assume that there exists an ε > 0 such that inequality (1) is satisfied for all x > 0 and all 1 ≤ k 1 < . . . < k i ≤ n, 2 ≤ i ≤ n. Then for any k

VarX k:n -VarX k:n ≤ ε n i=n-k+1 C n-k i E [X 1:i ] 2 + 2E X 1:i E X k:n + ε 2 n i=n-k+1 C n-k i E X 1:i 2 . (17) 
Proof. From Hoeffding's identity (see, e.g., Szekli, 1995, p. 136) for nonnegative random variables

VarX = R 2 + [P(X > x ∨ y) -P(X > x)P(X > y)] dx dy,
we obtain

VarX k:n -VarX k:n = R 2 + P(X k:n > x ∨ y) -P(X k:n > x ∨ y) dx dy + R 2 + P(X k:n > y) P(X k:n > x) -P(X k:n > x) dx dy + R 2 + P(X k:n > x) -P(X k:n > x) P(X k:n > y) -P(X k:n > y) dx dy + R 2 + P(X k:n > x) P(X k:n > y) -P(X k:n > y) dx dy, (18) 
where x ∨ y = max{x, y}. By ( 4) and ( 1)

, ∞ 0 [P(X k:n > y) -P(X k:n > y)] dy ≤ ε n i=n-k+1 i -1 n -k 1≤k 1 <...<k i ≤n ∞ 0 P(X k 1 ,...,k i > y) dy. (19) 
Combining ( 18) and ( 19) we get

VarX k:n -VarX k:n ≤ 2ε n i=n-k+1 i -1 n -k 1≤k 1 <...<k i ≤n ∞ 0 ∞ y P(X 1:k 1 ,...,k i > x) dx dy + 2εE X k:n n i=n-k+1 i -1 n -k 1≤k 1 <...<k i ≤n E X 1:k 1 ,...,k i + ε 2 n i=n-k+1 i -1 n -k 1≤k 1 <...<k i ≤n E X 1:k 1 ,...,k i 2 .
Applying the identity: 2 [START_REF] Matu La | On some families of AQSI random variables and related strong law of large numbers[END_REF]. Under a stronger mixing condition, the result of Proposition 5 can be extended to L-statistics. Proposition 6. Suppose that there is an ε > 0 such that sup x,y>0

∞ 0 ∞ y P(X > x) dx dy = E X 2 , leads to
P(X k 1 > x 1 , . . . , X k i > x i ) P(X k 1 > x 1 ) . . . P(X k i > x i ) -1 ≤ ε, (20) 
where

x j = x or x j = y, j = 1, . . . , i, 1 ≤ k 1 < . . . < k i ≤ n and 2 ≤ i ≤ n. Then (i) for k < l Cov(X k:n , X l:n ) -Cov(X k:n , X l:n ) ≤ εB kl ,
in which

B kl = w l E X k:n + w k E X l:n + 1 2 (v k + v kl ) + εw k w l , (21) 
where w k , v k and v kl are defined below by ( 24), ( 27) and (31), respectively;

(ii)

|VarL -VarL | ≤ ε n k=1 λ 2 k B kk + 2 n-1 k=1 n l=k+1 |λ k λ l |B kl (22) 
with

B kk = 2w k E X k:n + v k + εw 2 k .
Proof. By Hoeffding's identity,

Cov(X k:n , X l:n ) -Cov(X k:n , X l:n ) = I 1 + I 2 + I 3 + I 4 ,
where

I 1 = R 2 + P(X k:n > x, X l:n > y) -P(X k:n > x, X l:n > y) dx dy, I 2 = R 2 +
P(X k:n > x) P(X l:n > y) -P(X l:n > y) dx dy,

I 3 = R 2 +
P(X l:n > y) P(X k:n > x) -P(X k:n > x) dx dy,

I 4 = R 2 +
P(X l:n > y) -P(X l:n > y) P(X k:n > x) -P(X k:n > x) dx dy.

Let us evaluate each I j , j = 1, . . . , 4, separately. Proceeding analogously as in the proof of Proposition 5 we obtain

|I 2 | ≤ εE X k:n w l , |I 3 | ≤ ε E X l:n w k and |I 4 | ≤ ε 2 w k w l , (23) 
in which

w j = n i=n-j+1 i -1 n -j 1≤k 1 <...<k i ≤n E X 1:k 1 ,...,k i . (24) 
Observe that

I 1 = ∞ 0 y 0 P(X k:n > x, X l:n > y) -P(X k:n > x, X l:n > y) dx dy + ∞ 0 ∞ y P(X k:n > x) -P(X k:n > x) dx dy ≡ I 11 + I 12 . (25) 
Applying formula (4) to the second integral of (25) gives

|I 12 | ≤ ε n i=n-k+1 i -1 n -k 1≤k 1 <...<k i ≤n ∞ 0 ∞ y P(X k 1 > x, . . . , X k i > x) dxdy = εv k /2, (26) 
where

v k = n i=n-k+1 i -1 n -k 1≤k 1 <...<k i ≤n E X 1:k 1 ,...,k i 2 . (27) 
In order to evaluate the first integral I 11 of (25) we use the identity

I(x k:n > x) = n i=n-k+1 (-1) i-(n-k+1) i -1 n -k 1≤k 1 <...<k i ≤n I(x k 1 > x, . . . , x k i > x),
which can be deduced from (4) by putting X k = x k for k = 1, . . . , n. It follows that

P(X k:n > x, X l:n > y) = E n i=n-k+1 n j=n-l+1 a ij 1≤k 1 <...<k i ≤n 1≤l 1 <...<l j ≤n I(X k 1 > x, . . . , X k i > x, X l 1 > y, . . . , X l j > y)
with

a ij = (-1) i+j-(n-k+1)-(n-l+1) i -1 n -k j -1 n -l .
If k s = l z for some s, z, then I(X ks > x, X lz > y) = I(X ks > y) for x < y (cf. the definition of I 11 in (25)). Therefore

|P(X

k:n > x, X l:n > y) -P(X k:n > x, X l:n > y)| ≤ ε n i=n-k+1 n j=n-l+1 |a ij | 1≤k 1 <...<k i ≤n 1≤l 1 <...<l j ≤n P   s∈S ij {X s > x} ∩ z∈Z j {X z > y}   , (28) 
where Z j = {l 1 , . . . , l j } and S ij = {k 1 , . . . , k i } \ Z j . Since 

where X 1:A is the minimal order statistics from the sample of all the X i s which indices are in the set A. Combining (30) with ( 26), ( 25) and (23) leads to (i). The part (ii) is a straightforward consequence of (i) and the last formula in the proof of Proposition 5. Example 3. Let B denote the right-hand side of [START_REF] Wang | Premium calculation by transforming the layer premium density[END_REF]. Combining the Chebychev inequality with [START_REF] Wang | Premium calculation by transforming the layer premium density[END_REF] we obtain the following confidence interval [L -((VarL + B)/α) 1/2 , L + ((VarL + B)/α) 1/2 ] for the expected value of L-statistic from dependent observations with confidence coefficient greater than or equal to 1α.

0 I(X 1 : 0 P(X 1 : 2 <

 01012 1:Z j > y) y 0 I(X 1:S ij > x) dx dy = E ∞ Z j > y) min y, X 1:S ij dy = ∞ Z j > y)E min y, X 1:S ij dy ≤ ∞,(29)we have, by (25), (28) and (29), that|I 11 | ≤ εv kl /2, |a ij | 1≤l 1 <...<l j ≤n E X 1:Z j 2 ,

Example 2 ./i 2 and v kl = 2

 22 If X 1 , . . . , X n have the standard exponential distribution, then the coefficients in the definitions of B kk and B kl in Proposition 6 take the formsw k = n i=n-k+1 C n-k i /i, v k = 2 n i=n-k+1 C n-k i
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