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The limit behaviour of scan statistics in a form of maxima of moving sum processes with changing window size for detecting a transient change is studied. Approximate critical values obtained from tail behaviour of the limit variables that are maxima of some locally homogeneous Gaussian fields are compared with critical values obtained by simulation.

Introduction

In many situations we observe at equidistant time points a sequence of random vectors {X i , i = 1, . . . , n}, or on a grid in a square {(i, j), i = 1, . . . , n; j = 1, . . . , n} an array of vectors {X ij , i = 1, . . . , n; j = 1, . . . , n}. The question may arise whether all observed vectors have the same mean or whether for some i ∈ [t 1 , t 2 ], resp. for (i, j) ∈ A ⊂ [x 1 , x 2 ] × [y 1 , y 2 ], at least one coordinate of the mean vector is different. For example, components of vectors {X i } may represent signals that are transmitted through several channels and we are interested to detect the transient change in signal values. In medicine the one-dimensional variables {X i } may represent numbers per day of new cases of a disease and an increase of their mean value for a certain time period means an epidemic outbreak. In the control of a homogeneity of a textile fabric the variables {X ij } may represent values of a pixel with the coordinates (i, j) in a digital black and white photo. The goal is to detect a speck (a region of a fabric) where a mean gray level is different. The useful tools in statistical inference are scan statistics based on moving sum process {S [t, t + a] = t+a i=t (X i -X), t = 1, . . . , n -a}, resp. {S [t, t + a] × [s, s + b] = t+a i=t s+b j=s (X ij -X), t = 1, . . . , na; s = 1, . . . , n -b}, where X is the overall mean, for more details see [START_REF] Glaz | Scan statistics[END_REF]. Sometimes, it is difficult to say how long an epidemic may last or how large a speck of a different grey level may be. In such a case the window width is not specified in advance but scan statistics with varying window width are considered. This corresponds to the situation studied in our paper.

The problem may be generalized to a search for a transient change in parameters of a regular distribution or for a transient change in an intensity of a Poisson process.

In the scope of mathematical statistics a decision whether parameters of interest changed is based on hypotheses testing where the null hypothesis claims that there is no change while the alternative claims that during some time interval or in some place the observed variables or vectors are distributed according to a distribution with different parameters. The described problem belongs to the change point analysis and maximum type test statistics based on standardized partial moving sum process may be applied. For applying them we need to know corresponding critical values. As an exact distribution under the null hypothesis is very complex we usually apply an asymptotic distribution. As always, the maximum type test statistics tend to infinity and to get a limit distribution we have to consider their "trimmed versions". In such a case the limit variables correspond to maxima of Gaussian fields on compact sets.

The exact distributions of limit variables are unknown, but approximate critical values may be obtained from their tail behaviour. The exceedance probability of Gaussian fields of this type (as the exceedance level tends to infinity) was studied by [START_REF] Siegmund | Approximate tail probabilities for the maxima of some random fields[END_REF] and [START_REF] Siegmund | Tail probabilities for the null distribution of scanning statistics[END_REF]. [START_REF] Yao | Boundary-crossing probabilities of some random fields related to likelihood ratio tests for epidemic alternatives[END_REF] obtained an approximation for detecting a transient change in mean of normally distributed random variables while [START_REF] Loader | Large -deviation approximations to the distribution of scan statistics[END_REF] obtained an approximation for a special case of detecting a transient change in an intensity of a one and two-dimensional Poisson process. We obtained tail approximations of the limit variables by the double-sum method for locally homoge-neous Gaussian fields suggested by [START_REF] Piterbarg | Asymptotic methods in the theory of Gaussian processes and fields[END_REF]. More precisely, we have shown that the conditions of Theorem 7.1, Chapter 2 of Piterbarg (1996) are satisfied. A recently published paper by [START_REF] Chan | Maxima of asymptotically Gaussian random fields and moderate deviation approximations to boundary crossing probabilities of sums of random variables with multidimensional indices[END_REF] presents similar ideas of tail approximation for nonhomogeneous Gaussian fields. As a consequence of their Theorem 2.1, see Example 2.2, they obtained a highlevel exceedance probability for a maximum of standardized increments of a Wiener process. It is clear that Theorem 2.1. of [START_REF] Chan | Maxima of asymptotically Gaussian random fields and moderate deviation approximations to boundary crossing probabilities of sums of random variables with multidimensional indices[END_REF] could be also applied to obtain a high-level exceedance probability for a maximum of standardized increments of a Brownian bridge, i.e., the limit variable of our test statistic in one-dimensional case. We would like to thank the referee to bring our attention to the paper by [START_REF] Chan | Maxima of asymptotically Gaussian random fields and moderate deviation approximations to boundary crossing probabilities of sums of random variables with multidimensional indices[END_REF].

Our paper shows how the new probabilistic results concerning Gaussian fields may be applied in statistics. To show how accurate the approximations are, we included a small simulation study where we compare critical values obtained by simulation with critical values obtained by the suggested approximations.

Mathematical formulation of problem

One -dimensional case Suppose that we observe a sequence of d-dimensional random vectors X 1 , . . . , X n . We would like to test the null hypothesis H 01 against the alternative A 1 :

H 01 : X i = µ + e i , i = 1, . . . , n, (1) 
A 1 : ∃ 0 ≤ k * 1 < k * 2 ≤ n satisfying αn ≤ k * 2 -k * 1 ≤ (1 -β) n such that X i = µ + e i , i = 1, . . . , k * 1 ; X i = µ + δ + e i , i = k * 1 + 1, . . . , k * 2 ; X i = µ + e i , i = k * 2 + 1, . . . , n.
We suppose that µ and δ = 0 are unknown real vectors. The error terms {e i } are i.i.d. and E e i = 0, V ar e i = Σ (known) and E e i 2+∆ < ∞. The problem was introduced by [START_REF] Levin | The cusum test of homogeneity with an application to spontaneous abortion epidemiology[END_REF] and studied in a general setting by [START_REF] Antoch | Tests and estimators for epidemic alternatives[END_REF].

For 0 ≤ k 1 < k 2 ≤ n we introduce S(k 1 , k 2 ) = k2 i=k1+1 (X i -X) = k2 i=1 (X i -X) - k1 i=1 (X i -X),
where X denotes an average of all observed vectors. The test statistic has a form:

T 2 1 = max 0≤k1<k2≤n [α n]≤k2-k1≤[(1-β) n] S(k 1 , k 2 ) T Σ -1 S(k 1 , k 2 ) (k 2 -k 1 ) 1 -(k 2 -k 1 )/n (2) 
For l = 1, . . . , d we introduce zero mean unit variance Gaussian fields

Y l (x 1 , x 2 ) = B l (x 2 ) -B l (x 1 ) (x 2 -x 1 ) 1 -(x 2 -x 1 ) , 0 < x 1 < x 2 < 1 , where { B 1 (x), . . . , B d (x) T , 0 ≤ x ≤ 1 } is a d-dimensional Gaussian pro-
cess whose coordinates are independent Brownian bridges.

Then, under H 0 it holds:

T 2 1 D → max 0≤x1<x2≤1 α≤x2-x1≤(1-β) d l=1 Y l (x 1 , x 2 ) 2 as n → ∞. (3) 
The assertion (3) may be proved using Theorem 3 of [START_REF] Bickel | Convergence criteria for multiparameter stochastic processes and some applications[END_REF].

The exact distribution of (2) is unknown. In one-dimensional case Yao (1993) derived an accurate tail approximation for normally distributed random variables {X i }. The exact distribution of the limit variable given by the righthand side of (3) is also unknown but it is again possible to derive its "tail behaviour".

In what follows the sign "∼" means an asymptotic equivalence.

Theorem 1. Under the above set up

P max 0≤x1<x2≤1 α≤x2-x1≤(1-β) d l=1 Y l (x 1 , x 2 ) 2 > u 2 ∼ 1 2 d/2-1 Γ(d/2) C 1 (α, β) u 2+d e -u 2 /2 (4)
as u → ∞, where

C 1 (α, β) = 1 4 log (1 -β)(1 -α) βα + 1 α - 1 1 -β . ( 5 
)
Proof. We introduce a locally homogeneous Gaussian field

{Y P (x 1 , x 2 , θ 1 , . . . , θ d-1 ), 0 < x 1 < x 2 < 1, - π 2 ≤ θ k ≤ π 2 , k = 1, . . . , d -2, -π ≤ θ d-1 ≤ π} by Y P (x 1 , x 2 , θ 1 , . . . , θ d-1 ) = Y 1 (x 1 , x 2 ) u 1 (θ 1 , . . . ,θ d-1 ) + . . . + Y d (x 1 , x 2 ) u d (θ 1 , . . . , θ d-1 ),
where

u 1 (θ 1 , . . . , θ d-1 ) = sin θ 1 , . . . , u d (θ 1 , . . . , θ d-1 ) = cos θ d-1 • • • cos θ 1 are spherical coordinates. Clearly, max 0≤x1<x2≤1 α≤x2-x1≤(1-β) d l=1 Y l (x 1 , x 2 ) 2 = max Q Y P (x 1 , x 2 , θ 1 , . . . , θ d-1 ),
where

Q = {(x 1 , x 2 , θ 1 , . . . , θ d-1 ), 0 < x 1 < x 2 < 1, α ≤ x 2 -x 1 ≤ (1 - β), -π 2 ≤ θ k ≤ π 2 , k = 1, . . . , d -2, -π ≤ θ d-1 ≤ π}. The correlation function of {Y P (x 1 , x 2 , θ 1 , . . . , θ d-1 )} satisfies E Y P (x 1 + h 1 , x 2 + h 2 , θ 1 + ψ 1 , . . . , θ d-1 + ψ d-1 ) Y P (x 1 , x 2 , θ 1 , . . . , θ d-1 ) = 1 - 1 2(x 2 -x 1 ) 1 -(x 2 -x 1 ) |h 1 | - 1 2(x 2 -x 1 ) 1 -(x 2 -x 1 ) |h 2 | - - 1 2 ψ 2 1 - 1 2 cos 2 θ 1 ψ 2 2 -• • • - 1 2 cos 2 θ 1 • • • cos 2 θ d-2 ψ 2 d-1 + o |h 1 | + |h 2 |+ + ψ 2 1 + • • • + ψ 2 d-1 as h 1 → 0, h 2 → 0, ψ 1 → 0, . . . , ψ d-1 → 0.
Using Theorem 7.1 (see also Corollary 7.5) of [START_REF] Piterbarg | Asymptotic methods in the theory of Gaussian processes and fields[END_REF] it holds (as u → ∞)

P max Q Y P (x 1 , x 2 , θ 1 , . . . , θ d-1 ) > u ∼ H 1,1,2,...,2 u 2+d 1 √ 2π e -u 2 /2 × Q 1 4(x 2 -x 1 ) 2 1 -(x 2 -x 1 ) 2 d-2 i=1 1 2 cos 2i θ d-1-i dθ 1 . . . θ d-1 dx 1 dx 2 .
We get (4) as

H 1,1,2,...,2 = 1/π (d-1)/2 , C 1 (α, β) = 0≤x1<x2≤1 α≤x2-x1≤(1-β) 1 4(x 2 -x 1 ) 2 1 -(x 2 -x 1 ) 2 dx 1 dx 2 = 1-β α 1-x 0 1 4 x 2 (1 -x) 2 dξ dx = 1-β α 1 4 x 2 (1 -x) dx = 1 4 log (1 -β)(1 -α) βα + 1 α - 1 1 -β and 1 2 (d-1)/2 π -π . . . π/2 -π/2 d-2 i=1 cos i θ d-1-i dθ 1 . . . dθ d-1 = 1 2 (d-1)/2 2π d/2 Γ(d/2)
.

For n large the approximation (4) may serve to find approximate critical values of the test statistic (2).

Remark 1. In case the variance-covariance matrix Σ is unknown, it can be replaced by any consistent estimator.

Remark 2. For d = 1 we can also consider a one-sided alternative (e.g. δ > 0). The test statistic

T 1 = max 0≤k1<k2≤n [α n]≤k2-k1≤[(1-β) n] S(k 1 , k 2 ) σ (k 2 -k 1 ) 1 -(k 2 -k 1 )/n (6) converges (as n → ∞) in distribution to max 0≤x1<x2≤1 α≤x2-x1≤(1-β) B 1 (x 2 ) -B 1 (x 1 ) (x 2 -x 1 ) 1 -(x 2 -x -1)
.

To find approximate critical values we may apply the approximation (valid for u large) that follows from the limit behaviour as y → ∞:

P max 0≤x1<x2≤1 α≤x2-x1≤(1-β) B 1 (x 2 ) -B 1 (x 1 ) (x 2 -x 1 ) 1 -(x 2 -x -1) > u ∼ C 1 (α, β)u 3 φ(u), (7) 
where φ(u) is the density of a standard normal distribution. As it has been already mentioned, [START_REF] Levin | The cusum test of homogeneity with an application to spontaneous abortion epidemiology[END_REF] can be also obtained using Theorem 2.1 and Lemma 2.3 of [START_REF] Chan | Maxima of asymptotically Gaussian random fields and moderate deviation approximations to boundary crossing probabilities of sums of random variables with multidimensional indices[END_REF].

Remark 3. We can consider a more general alternative supposing that a shift in mean may occur not only in one interval but in a union of a fixed number of intervals. For such a case a test statistic as well as its limit behaviour that enables to calculate approximate critical values can be derived analogously. However, with an increase number of change points the convergence to a limit distribution will be slower and approximate critical values less accurate.

Two -dimensional case

Suppose that on two-dimensional grid {(i, j), i = 1, . . . , n; j = 1, . . . , n} we observe a d-dimensional array {X ij , i = 1, . . . , n, j = 1, . . . , n}. We would like to test the following hypotheses testing problem

H 02 : X ij = µ + e ij , i = 1, . . . , n, j = 1, . . . , n (8) 
A 2 : ∃ 0 ≤ k * 1 < k * 2 ≤ n and 0 ≤ m * 1 < m * 2 < n satisfying αn 2 ≤ (k * 2 -k * 1 )(m * 2 -m * 1 ) ≤ (1 -β) n 2 such that X ij = µ + e ij , (i, j) / ∈ [k * 1 , k * 2 ] × [m * 1 , m * 2 ], X ij = µ + δ + e ij , (i, j) ∈ [k * 1 , k * 2 ] × [m * 1 , m * 2 ].
We suppose that µ and δ = 0 are unknown real vectors. The error terms {e ij } are i.i.d. and E e ij = 0, V ar e ij = Σ (known) and

E e ij 2+∆ < ∞. Denote S(k 1 , m 1 , k 2 , m 2 ) = k2 i=k1 m2 j=m1 X ij -X where X = 1 n 2 n i=1 n j=1 X ij . The test statistic has a form T 2 2 = max 0≤k1<k2≤n;0≤m1<m2≤n [α n 2 ]≤(m2-m1)(k2-k1)≤[(1-β) n 2 ] 1 n S(k 1 , m 1 , k 2 , m 2 ) T Σ -1 S(k 1 , k 2 , m 1 , m 2 ) (k2-k1) n (m2-m1) n 1 -(k2-k1)(m2-m1) n 2
.

(9) For l = 1, . . . , d we introduce zero mean Gaussian fields {Z l (x 1 , y 1 , x 2 , y 2 ), 0 < x 1 < x 2 < 1, 0 < y 1 < y 2 < 1} defined by

Z l (x 1 , y 1 , x 2 , y 2 ) = W l (x 2 , y 2 ) -W l (x 2 , y 1 ) -W l (x 1 , y 2 ) + W l (x 1 , y 1 ) -(x 2 -x 1 )(y 2 -y 1 )W l (1, 1) (x 2 -x 1 )(y 2 -y 1 ) 1 -(x 2 -x 1 )(y 2 -y 1 )
where { W 1 (x, y), . . . , W d (x, y)

T , x ≥ 0, y ≥ 0} is a zero mean Gaussian field whose coordinates are independent Gaussian fields with a covariance structure

E W l (x 1 , y 1 ) W l (x 2 , y 2 ) = min(x 1 , x 2 ) min(y 1 , y 2 ), l = 1, . . . , d.
We also introduce a subset

A of R 4 by A = {0 ≤ x 1 < x 2 ≤ 1, 0 ≤ y 1 < y 2 ≤ 1, α ≤ (x 2 -x 1 )(y 2 -y 1 ) ≤ (1 -β)}.
Applying again results by Bickel and Wichura (1971) we get

T 2 2 D → max (x1,y1,x2,y2)∈A d l=1 Z l (x 1 , y 1 , x 2 , y 2 ) 2 as n → ∞. ( 10 
)
Theorem 2. Under the above set up

P max (x1,y1,x2,y2)∈A d l=1 Z l (x 1 , y 1 , x 2 , y 2 ) 2 > u 2 ∼ C 2 (α, β) 1 2 d/2-1 Γ(d/2) u 6+d e -u 2 /2 , ( 11 
)
as u → ∞, where

C 2 (α, β) = 1-β α -2(1 -ξ) -(1 + ξ) log ξ 16 ξ 2 (1 -ξ) 4 dξ. ( 12 
)
Proof. The zero mean Gaussian field

ZP (x 1 , y 1 , x 2 , y 2 , θ 1 , . . . , θ d-1 ) = Z 1 (x 1 ,y 1 , x 2 , y 2 )u 1 (θ 1 , . . . , θ d-1 )+ + Z d (x 1 , y 1 , x 2 , y 2 )u d (θ 1 , . . . , θ d-1 ) is locally homogeneous. Denote x = x 2 -x 1 , y = y 2 -y 1 . The correlation function of {ZP (x 1 , y 1 , x 2 , y 2 , θ 1 , . . . , θ d-1 )} satisfies E ZP (x 1 + h 1 , y 1 + f 1 , x 2 + h 2 , y 2 + f 2 , θ 1 + ψ 1 , . . . , θ d-1 + ψ d-1 ) ZP (x 1 , y 1 , x 2 , y 2 , θ 1 , . . . , θ d-1 ) = 1 - 1 2 x(1 -xy) |h 1 | - 1 2 x(1 -xy) |h 2 | -- 1 2 y(1 -xy) |f 1 | - 1 2 y(1 -xy) |f 2 |- - 1 2 ψ 2 1 - 1 2 cos 2 θ 1 ψ 2 2 -• • • - 1 2 cos 2 θ 1 • • • cos 2 θ d-1 ψ 2 d-1 + + o |h 1 | + |h 2 | + |f 1 | + |f 2 | + ψ 2 1 + • • • + ψ 2 d-1 , as h 1 → 0, h 2 → 0, f 1 → 0, f 2 → 0, ψ 1 → 0, . . . , ψ d-1 → 0.
The assertion follows again from Theorem 7.1 of [START_REF] Piterbarg | Asymptotic methods in the theory of Gaussian processes and fields[END_REF], where

C 2 (α, β) = A 1 16 (x 2 -x 1 ) 2 (y 2 -y 1 ) 2 1 -(y 2 -y 1 )(x 2 -x 1 ) 4 dx 1 dx 2 dy 1 dy 2 = α≤x y≤(1-β) (1 -x)(1 -y) 16 x 2 y 2 (1 -xy) 4 dx dy = 1-β α 1 16 ξ 2 (1 -ξ) 4 dξ 1 ξ (η -ξ)(1 -η) η 2 dη = (12).
For n large the approximation (11) may serve for finding approximate critical values of the test statistic [START_REF] Piterbarg | Asymptotic methods in the theory of Gaussian processes and fields[END_REF].

Remark 4. In case the variance-covariance matrix Σ is unknown it can be replaced by any consistent estimator.

Remark 5. For d = 1 we can also consider a one-sided alternative (e.g. δ > 0). The test statistic

T 2 = max 0≤k1<k2≤n;0≤m1<m2≤n [α n 2 ]≤(m2-m1)(k2-k1)≤[(1-β) n 2 ] 1 σ 1 n S(k 1 , m 1 , k 2 , m 2 ) (k2-k1) n (m2-m1) n 1 -(k2-k1)(m2-m1) n 2 , ( 13 
) converges as (n → ∞) in distribution to max (x1,y1,x2,y2)∈A Z 1 (x 1 , y 1 , x 2 , y 2 ) and P max (x1,y1,x2,y2)∈A Z 1 (x 1 , y 1 , x 2 , y 2 ) > u ∼ C 2 (α, β) u 7 φ(u) as u → ∞. (14) 
The limit behaviour (14) may be also obtained as a consequence of Theorem 2.1 and Lemma 2.3 of [START_REF] Chan | Maxima of asymptotically Gaussian random fields and moderate deviation approximations to boundary crossing probabilities of sums of random variables with multidimensional indices[END_REF].

Remark 6. We can again consider a more general alternative supposing that a shift in mean can occur on a more complex set A. For applications a limit distribution of a corresponding test statistic, if the set A has a form of an ellipsoid, may be of interest. This may be a goal for our future research.

Transient change in a parameter of a distribution

The problem (1) can be called a test for an "epidemic type of change" in mean. However, it can be formulated in more general way as a transient change in a multidimensional parameter θ of a distribution. More precisely, we suppose that X 1 , . . . , X n are independent vectors distributed according to distributions with densities f (

x 1 ; θ 1 , η 1 ), . . . , f (x n ; θ n , η n ) where θ 1 , . . . , θ n ∈ Θ (1) ⊂ R d and η 1 , . . . , η n ∈ Θ (2)
⊂ R c are parameters. We would like to test the null hypothesis H 03 against the alternative A 3 :

H 03 : θ 1 = • • • = θ n and η 1 = • • • = η n = η (15) A 3 : ∃ 0 ≤ k * 1 < k * 2 ≤ n satisfying αn ≤ k * 2 -k * 1 ≤ (1 -β) n such that θ 1 = • • • = θ k * 1 = θ k * 1 +1 = • • • = θ k * 2 = θ k * 2 +1 = • • • = θ n , θ 1 = • • • = θ k * 1 = θ k * 2 +1 = • • • = θ n , η 1 = • • • = η n = η,
where θ 1 , . . . , θ n are parameters of interest while η 1 , . . . , η n are nuisance parameters, see [START_REF] Csörgő | Limit Theorems in Change Point Analysis[END_REF]. If we consider the log-likelihood ratio test statistic in the form

L 2 = max 0≤k1<k2≤n [α n]≤k2-k1≤[(1-β) n] -2 log Λ k1,k2 (16) 
with

Λ k1,k2 = sup θ,η 1≤i≤n f (X i ; θ, η) sup θ 1 ,θ2,η 1≤i≤k1 k2<i≤n f (X i ; θ 1 , η) k1<i≤k2 f (X i ; θ 2 , η) ,
then under the condition C.1 -C.9 (or their analogues) of [START_REF] Csörgő | Limit Theorems in Change Point Analysis[END_REF] we get again

L 2 D → max 0≤x1<x2≤1 α≤x2-x1≤(1-β) d l=1 Y l (x 1 , x 2 ) 2 as n → ∞. (17) 
For instance, if we test for a transient change in the one-dimensional parameter θ of an exponential distribution (two-sided alternative) the test statistic ( 16) is equivalent to the test statistic

|T e | = max 0≤k1<k2≤n [α n]≤k2-k1≤[(1-β) n] |S(k 1 , k 2 )| X (k 2 -k 1 ) 1 -(k 2 -k 1 )/n . ( 18 
)
For one-sided alternative, the test statistic has a form

T e = max 0≤k1<k2≤n [α n]≤k2-k1≤[(1-β) n] S(k 1 , k 2 ) X (k 2 -k 1 ) 1 -(k 2 -k 1 )/n . ( 19 
)
The test statistic (18), resp. (19), may be applied for testing a transient change in an intensity λ of a one-dimensional Poisson process because intervals between successive events have an exponential distribution. Instead of (18) we may use for a two-sided alternative a test statistic

|P 1 | = max 0≤t1<t2≤T α T ≤t2-t1≤(1-β) T |N (t 1 , t 2 ) -(t 2 -t 1 )N (0, T ) /T | N (0, T ) t2-t1 T 1 -t2-t1 T , (20) 
and for a one-sided alternative a test statistic

P 1 = max 0≤t1<t2≤T α T ≤t2-t1≤(1-β) T N (t 1 , t 2 ) -(t 2 -t 1 )N (0, T ) /T N (0, T ) t2-t1 T 1 -t2-t1 T , (21) 
where N(A) denotes a number of events in a set A. Under the null hypothesis of no change in an intensity it holds (by applying [START_REF] Bickel | Convergence criteria for multiparameter stochastic processes and some applications[END_REF])

|P 1 | D → max 0≤x1<x2≤1 α≤x2-x1≤(1-β) |Y 1 (x 1 , x 2 )|, P 1 D → max 0≤x1<x2≤1 α≤x2-x1≤(1-β) Y 1 (x 1 , x 2 ) (22) 
as T → ∞.

The same asymptotic results were obtained by Loader (1991) together with a more accurate approximation (for smaller value of T ) based on large deviations theory. The analogue test statistics may be derived for testing a transient change in an intensity of a Poisson process in a plane, more precisely for a two-sided alternative

|P 2 | = max 1≤t1<t2≤T 1≤s1<s2≤T α T 2 ≤(t2-t1)(s2-s1)≤(1-β) T 2 |N([t 1 , t 2 ] × [s 1 , s 2 ]) -(t2-t1)(s2-s1) T 2 N([0, T ] 2 )| N([0, T ] 2 ) (t2-t1)(s2-s1) T 2 1 -(t2-t1)(s2-s1) T 2 , ( 23 
) resp. for a one-sided alternative

P 2 = max 1≤t1<t2≤T 1≤s1<s2≤T α T 2 ≤(t2-t1)(s2-s1)≤(1-β) T 2 N([t 1 , t 2 ] × [s 1 , s 2 ]) -(t2-t1)(s2-s1) T 2 N([0, T ] 2 ) N([0, T ] 2 ) (t2-t1)(s2-s1) T 2 1 -(t2-t1)(s2-s1) T 2 . ( 24 
)
Under the null hypothesis of no change in a intensity it holds

|P 2 | D → max (x1,y1,x2,y2)∈A |Z 1 (x 1 , y 1 , x 2 , y 2 )|, (25) 
and

P 2 D → max (x1,y1,x2,y2)∈A Z 1 (x 1 , y 1 , x 2 , y 2 ) (26)
as T → ∞.

The results (25) and (26) were again obtained by Loader (1991) together with a better approximation for smaller value of T .

Simulation study

The quality of the suggested approximations is affected by distribution (under H 0 ) of observations, and by a choice of α and β. The agreement is worse for smaller value of α, resp. β. For comparison Table 1 and 2 present the 5 % critical values of T 1 and T e , (i.e. d = 1 and one sided-alternative) for normally and exponential distributed variables for several choice of α and β, obtained by [START_REF] Levin | The cusum test of homogeneity with an application to spontaneous abortion epidemiology[END_REF] and by simulations. All simulated critical values were obtained from 5000 repetitions.

  trimmed portions (7) n = 1000 n = 2000 n = 4000 α = 0.01, β = 0.01 4

Table 1 .

 1 The 5% critical values of T 1 for normally distributed observations.

	trimmed portions (7) n = 1000 n = 2000 n = 4000
	α = 0.01, β = 0.01 4.44	5.20	4.96	4.84
	α = 0.20, β = 0.20 3.57	3.54	3.56	3.61
	α = 0.01, β = 0.95 4.02	5.14	4.94	4.80

Table 2 .

 2 The 5% critical values of T e for exponentially distributed observations. Table3shows the agreement between the 5 % critical values of |T 1 | obtained by (4) and by simulations with normally distributed random vectors for d = 1, 2, 3 and α = β = 0.01.

	trimmed portions (4) n = 1000 n = 2000 n = 4000
	d = 1	4.62	4.31	4.41	4.46
	d = 2	5.05	4.76	4.82	4.87
	d = 3	5.38	5.06	5.11	5.19

Table 3 .

 3 The 5% critical values of |T 1 | for normally distributed observations. Table4shows the 5% critical values of T 2 obtained by (14) and by a simulation study when the variables are normally distributed. trimmed portions (14) n 2 = 1600 n 2 = 3600 α = 0.20, β = 0.20 4.72

	4.09	4.12

Table 4 .

 4 The 5% critical values of T 2 for normally distributed observations.
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