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 for the independence and the total dependence of the univariate marginals of a multivariate extreme value distribution to its multivariate marginals. We also deal with the problem of how to measure the strength of the dependence among multivariate extremes. By presenting new definitions for the extremal coefficient, we propose measures that summarize the dependence between two multivariate extreme value distributions and preserve the main properties of the known bivariate coefficient for two univariate extreme value distributions. Finally, we illustrate these contributions to model the dependence among multivariate marginals with examples.

Introduction

Consider a random vector X = (X 1 , . . . , X p+q ) with multivariate extreme value distribution G X , G Xj being its j-th univariate marginal distribution.

For each integer d > 1, let (x 1 , . . . , x d ) ∈ IR d be denoted by x (d) and, for a (d) , b (d) ∈ IR d and c ∈ IR, a (d) + cb (d) = (a 1 + cb 1 , . . . , a d + cb d ), a (d) c = (a c 1 , . . . , a c d ), a (d) ≤ b (d) if and only if a j ≤ b j for all j = 1, . . . , d, and a (d) ≤ b (d) if and only if a j > b j for some j = 1, . . . , d. [START_REF] Takahashi | Characterization of a multivariate extreme value distribution[END_REF] proved that G X (x (p+q) ) = p+q j=1 G Xj (x j ), for each x (p+q) ∈ IR p+q , if and only if there exists y (p+q) ∈ IR p+q such that G X (y (p+q) ) = p+q j=1 G Xj (y j ) ∈ (0, 1).

The condition for the total positive dependence is G X (x (p+q) ) = min 1≤j≤p+q G Xj (x j ), for each x (p+q) ∈ IR p+q , if and only if there exists y (p+q) ∈ IR p+q such that G X (y (p+q) ) = G X1 (y 1 ) = . . . = G Xp+q (y p+q ) ∈ (0, 1).

Let X (p) = (X 1 , . . . , X p ) and X (q) = (X p+1 , . . . , X p+q ) be two sub-vectors of X. We show that the above simple conditions can be extended to characterize the independence and the total dependence of X (p) and X (q) . We state the results for two vectors for sake of simplicity. They can be rewritten for several vectors including the case of p + q variables corresponding to the result of Takahashi. However the arguments in the proof of the characterization of the independence or the total dependence of univariate marginals do not apply to the analogous characterization for vectors in a straightforward way.

Both parametric and nonparametric modelling of dependence has been well established and probabilistic as well statistical aspects of the problem laid out. However, in order to quantify such dependence, the extremal coefficient and the tail dependence coefficients defined for bivariate or multivariate distributions have been considered to model dependence among univariate marginals (see [START_REF] Joe | Multivariate Models and Dependence Concepts[END_REF], [START_REF] Schmidt | Tail dependence for elliptically contoured distributions[END_REF]), Frahm (2006), [START_REF] Schmid | Multivariate conditional versions of Spearman's rho and related measures of tail dependence[END_REF] and refeences therein).

The problem of evaluating the strength of dependence between two or more multivariate extreme value distributions arises when dealing with rare events of a max-stable random field occurring at disjoints sets of locations. If we consider dependence between multivariate marginals it can be defined tail dependence coefficients which give the probability that the realization of several random variables are extremely large under the condition that other variables are also extremely large positive values. An analogous lower tail dependence coefficient can be defined for extremely large negative realizations. These measures summarize the asymptotic dependence of two multivariate extreme value distributions and have the useful tail dependence coefficient λ [START_REF] Joe | Parametric family of multivariate distributions with given margins[END_REF], [START_REF] Li | Orthant tail dependence of multivariate extreme value distributions[END_REF], [START_REF] Schmidt | Tail dependence for elliptically contoured distributions[END_REF]) as a special case.

We will extend the extremal coefficient [START_REF] Sibuya | Bivariate extreme[END_REF]) in two directions and explore its relations with tail dependence coefficients.

Both coefficients, presented in Sections 3 and 4, give information about the contribution of a part of the random vector in the strength of dependence of the multivariate extreme value (MEV) distribution. The results of section 4 can also be stated for two or more vectors.

In section 6 we compute some coefficients in two simple examples. A directory of such coefficients for distributions with practical interest will be presented in a forthcoming work.

Characterisation of independence and total dependence

Throughout this paper G Y and D Y denote the distribution function and the dependence function (or copula) of a random vector Y = (Y 1 , . . . , Y d ), respectively. We shall consider vectors Y with MEV distribution.

The dependence function of Y is defined by

D Y (u 1 , . . . , u d ) = P (G Y1 (Y 1 ) ≤ u 1 , . . . , G Y d (Y d ) ≤ u d ), u (d) ∈ [0, 1] d .
Complete characterizations of the extreme value dependence functions are given by [START_REF] Sibuya | Bivariate extreme[END_REF], [START_REF] Deheuvels | Caractérisation complète des lois extrêmes multivariées et de la convergence aux types extrêmes[END_REF] and [START_REF] Hsing | Extreme value theory for multivariate stationary sequences[END_REF], among others.

The following propositions present a characterization for the independence and the total dependence of the multivariate marginals X (p) and X (q) of X with MEV distribution. Proposition 2.1 For X = (X 1 , . . . , X p+q ) with a MEV distribution, X (p) = (X 1 , . . . , X p ) and X (q) = (X p+1 , . . . , X p+q ), it holds that G X (x (p+q) ) = G X (p) (x (p) )G X (q) (x (q) ) for all x (p+q) ∈ IR p+q if and only if there exists y

(p+q) ∈ IR p+q such that 0 < G X (p) (y (p) ) < 1, 0 < G X (q) (y (q) ) < 1 and G X (y (p+q) ) = G X (p) (y (p) )G X (q) (y (q) ). Proof: Suppose that x i ≥ y i , i = 1, . . . , p + q. Let {a (p+q) n > 0} n≥1 , {b (p+q) n } n≥1 and {X (p+q) n } n≥1 be such that P n (X (p+q) 1 ≤ a (p+q) n x (p+q) + b (p+q) n ) n→∞ -→ G X (x (p+q) ), x (p+q) ∈ IR p+q . (2.1) Since n 1 -P (X (p) 1 ≤ a (p) n y (p) + b (p) n , X (q) 1 ≤ a (q) n y (q) + b (q) n ) n→∞ -→ -log G X (p) (y (p) ) -log G X (q) (y (q) ), (2.2) we have nP (X (p) 1 ≤ a (p) n x (p) + b (p) n , X (q) 1 ≤ a (q) n x (q) + b (q) n ) ≤ nP (X (p) 1 ≤ a (p) n y (p) + b (p) n , X (q) 1 ≤ a (q) n y (q) + b (q) n ) n→∞ -→ 0
and then (2.2) holds for x (p+q) . This implies that (2.1) holds with G X (x q) ). Therefore we have proved that D X (u

(p+q) ) = G X (p) (x (p) )G X (q) (x (
(p+q) ) = D X (p) (u (p) )D X (q) (u (q)
), for all u (p+q) such that u j ≥ G Xj (y j ), j = 1, . . . , p + q. If u j < G Xj (y j ) for some j then, from the max-stability of each G Xj , there exists s > 0 such that u 1/s j ≥ G Xj (y j ), j = 1, . . . , p + q, and we also have

D X (u (p+q) ) = D s X (u (p+q) 1/s ) = D s X (p) (u (p) 1/s )D s X (q) (u (q) 1/s ) = D X (p) (u (p) )D X (q) (u (q) ).
Proposition 2.2 Let X = (X 1 , . . . , X p+q ) have a MEV distribution.

i) If there exists y (p+q) ∈ IR p+q such that G X (y (p+q) ) = G X1 (y 1 ) = . . . = G Xp+q (y p+q ) = a ∈ (0, 1) then, for each two sub-vectors X (s) and X (t) of X, with s+t = p+q, it holds G X (x q) )} for all x (p+q) ∈ IR p+q then there exists y (p+q) ∈ IR p+q such that G X (y (p+q) ) = G X (p) (y (p) ) = G X (q) (y (q) ) = G X1 (y 1 ) = . . . = G Xp+q (y p+q ) = a ∈ (0, 1).

(p+q) ) = min{G X (s) (x (s) ), G X (t) (x (t) )} for all x (p+q) ∈ IR p+q . ii) If G X (x (p+q) ) = min{G X (p) (x (p) ), G X (q) (x ( 
Proof: (i) The result can be obtained as a corollary of the Takahashi's characterization for total positive dependence of the marginals of X. However we present a direct proof. Let z = min{G X (p) (x (p) ), G X (q) (x (q) )} and s > 0 such that a s = z. We have, for each j = 1, . . . , p + q,

G Xj (x j ) ≥ z = G s Xj (y j )
and then q) )} for all x (p+q) ∈ IR p+q then, by applying the Theorem 3.5.3 in [START_REF] Nelsen | An introduction to copulas Lecture Notes in Statistics[END_REF], it holds G X (p) (x (p) ) = min{G Xj (x j ), j = 1, . . . , p} for all x (p) ∈ IR p , G X (q) (x (q) ) = min{G Xj (x j ), j = p+1, . . . , q} for all x (q) ∈ IR q and the marginals of X are totally dependent. Therefore, by applying again the Takahashi's result there exists y (p+q) ∈ IR p+q such that G X (y (p+q) ) = G X1 (y 1 ) = . . . = G Xp+q (y p+q ) = a ∈ (0, 1). For such y (p+q) we also have

z ≥ G X (x (p+q) ) = D X (G X1 (x 1 ), . . . , G Xp+q (x p+q )) ≥ D X (G s X1 (y 1 ), . . . , G s Xp+q (y p+q )) = D s X (G X1 (y 1 ), . . . , G Xp+q (y p+q )) = a s = z. (ii) If G X (x (p+q) ) = min{G X (p) (x (p) ), G X (q) (x ( 
G X (p) (y (p) ) = G X (q) (y (q) ) = a.
The example presented at the end of the Section 4 shows that the existence of a point y (p+q) ∈ IR p+q such that G X (y (p+q) ) = G X (p) (y (p) ) = G X (q) (y (q) ) = a is not sufficient to guarantee that X (p) and X (q) are totally dependent.

3 The coefficient (X (p) ,X (q) ) X (p) Hereinafter let F = G Xj , j = 1, . . . , p + q and x (s) = (x, . . . , x) ∈ IR s . The extremal coefficient considered by [START_REF] Smith | Max-stable processes and spatial extremes[END_REF] is defined as the constant ∈

[1, d] such that G X (x, . . . , x) = F (x), x ∈ IR. (3.3)
This expressive indicator of extremal dependence generalizes the one considered by Tiago de Oliveira (1962/63) for bivariate extreme distributions and is a particular case of the function considered in [START_REF] Buishand | Bivariate extreme-value data and the station-year method[END_REF]. It takes the extreme values 1 or d if and only if X has totally dependent or independent marginals, respectively.

We shall denote the coefficient in (3.3) for a vector X by X . Since

P (X (p) ≤ x (p) , X (q) ≤ x (q) ) = F X (x) = D α X (p) (F (x), . . . , F (x))
with α = X X (p) , we shall consider this parameter to measure the contribution of X (p) in the dependence structure of X. Definition 3.1 Let X = (X 1 , . . . , X p+q ) have a MEV distribution with equal marginal distributions and X (p) and X (q) be sub-vectors of X. The coefficient

(X (p) ,X (q) ) X (p)
is defined as

(X (p) ,X (q) ) X (p) = X X (p) .
When p = q = 1 we find in the above definition the extremal coefficient for bivariate distributions and its properties are also stated in the next proposition. Proposition 3.1 Let X = (X 1 , . . . , X p+q ) have a MEV distribution with equal marginal distributions and X (p) and X (q) be sub-vectors of X. The coefficient

(X (p) ,X (q) ) X (p) satisfies i) (X (p) ,X (q) ) X (p) = lim u→1 log D X (u (p+q) ) log D X (p) (u (p) ) . ii) 1 ≤ (X (p) ,X (q) ) X (p) ≤ 1 + X (q)
X (p) ≤ 1 + q.

Proof: (i) follows from the definition of the extremal coefficient .

(ii) Since X (p) ≤ X for each sub-vector X (p) of X, we have the first inequality. The association of X (p) and X (q) implies X ≤ X (p) + X (q) which leads to the second inequality.

The upper bound 1 + q in (ii) can be attained. Consider for instance X = (X 1 , X 2 , X 3 , X 4 ), X (p) = (X 1 , X 2 ) and X (q) = (X 3 , X 4 ) with X 1 = X 2 = Y , X 3 = Z and X 4 = W independent and with the same extreme value distribution. Then X (p) = 1, X (q) = 2 and X = 3. The lower bound is attained if for example X has totally dependent marginals.

4 The coefficient (X (p) ,X (q) ) Since P (X (p) ≤ x (p) , X (q) ≤ x (q) ) = (G X (p) (x (p) )G X (q) (x (q) )) β with β = X X (p) + X (q)
we propose to measure the dependence between X (p) and X (q) by using this coefficient. Definition 4.1 Let X = (X 1 , . . . , X p+q ) have a MEV distribution with equal marginal distributions and X (p) and X (q) be sub-vectors of X. The coefficient (X (p) ,X (q) ) is defined as

(X (p) ,X (q) ) = X X (p) + X (q) .
When p = q and G X (p) = G X (q) it holds (X (p) ,X (q) ) = 1 2 (X (p) ,X (q) ) X (p) . We emphasize that, when p = q = 1, it holds G X (x, x) = (F (x)F (x))

X /2 and we shall call X /2 ∈ [ 1 2 , 1] the rescaled extremal coefficient. Therefore the definition proposed here is a generalization of the rescaled extremal coefficient and the main properties of this coefficient are stated in the following proposition. Both coefficients, the Smith's extremal coefficient and its generalization here proposed, are decreasing with respect to the strength of dependence.

Proposition 4.1 Let X = (X 1 , . . . , X p+q ) have a MEV distribution with equal marginal distributions and X (p) and X (q) be sub-vectors of X. The coefficient (X (p) ,X (q) ) satisfies i) (X (p) ,X (q) ) = lim

u→1 log D X (u (p+q) ) log D X (p) (u (p) ) + log D X (q) (u (q) ) . ii) (X (p) ,X (q) ) ∈ [ 1 2 , 1].
iii) (X (p) ,X (q) ) = 1 if and only if X (p) and X (q) are independent.

iv) If X (p) and X (q) are totally dependent then (X (p) ,X (q) ) = 1 2 .

v)

(X (p) ,X (q) ) -1 = (X (p) ,X (q) ) X (p) -1 + (X (p) ,X (q) ) X (q)
-1

.

The proof of (iii) and (iv) applies the definition of the coefficients and the propositions 2.1 and 2.2. To obtain (ii) we apply the arguments used in (ii) of the previous proposition.

We remark that if (X (p) ,X (q) ) = 1 2 then we can not guarantee that X (p) and X (q) are totally dependent as show the following example. Let X = (X 1 , X 2 , X 3 , X 4 , X 5 , X 6 ), X (p) = (X 1 , X 2 , X 3 ) and X (q) = (X 4 , X 5 , X 6 ) where X 1 = X 4 = X 5 = Y and X 2 = X 3 = X 6 = Z with Y and Z Gumbel independent variables. Then X (p) = X (q) = X = 2 and we can easly find x (6) ∈ IR 6 ( for example

x 1 = x 2 = x 3 = x 4 = x 5 = 0 > x 6 ) for which G X (x (6) ) = min{G X (p) (x (p)
), G X (q) (x (q) )}. We can also present y (6) (for example with all the components equal to zero) such that G X (y (6) ) = G X (p) (y (p) ) = G X (q) (y (q) ) = a ∈ (0, 1). Therefore the existance of such kind of point is not sufficient to guarantee that X (p) and X (q) are totally dependent.

Relations with tail dependence

For X = (X 1 , X 2 ) and G X1 = G X2 = F , the tail dependence coefficient [START_REF] Sibuya | Bivariate extreme[END_REF], [START_REF] Joe | Parametric family of multivariate distributions with given margins[END_REF]) is defined by λ = lim

x→ω(F ) P (X 2 > x|X 1 > x) (5.4)
where ω(F ) denotes the upper end point of F . It holds The following definition for tail dependence coefficient generalizes (5.4) and its interpretation.

λ = 2 -lim u→1 log D G X (u, u) log u ( 
Definition 5.1 Let X = (X 1 , . . . , X p+q ) have a MEV distribution with equal marginal distributions and X (p) and X (q) be sub-vectors of X. The coefficient λ X (q) X (p) is defined as λ X (q) X (p) = lim x→ω(F ) P (X (q) > x (q) |X (p) > x (p) ), provided the limit exists.

If, for some vectors X (s) and X (t) , with s + t = p + q, the above limit is positive then the random vector X is said multivariate tail dependent accordingly the definition 7.1 in [START_REF] Schmidt | Tail dependence for elliptically contoured distributions[END_REF]. If this limit is zero for all subvectors this author considers that the random vector is multivariate tail independent. 1 -P (X (s) > x (s) ) 1 -P (X (s) ≤ x (s) ) > 0, s = p, q, and β (p,q) = lim x→ω(F )

1 -P (X (p) > x (p) , X (q) > x (q) ) 1 -P (X ≤ x (p+q) ) , then the coefficient λ X (q) X (p) satisfies:

i) λ X (q) X (p) = 1 + α (q) α (p) lim u→1 log D X (q) (u (q) ) log D X (p) (u (p) ) -β (p,q) α (p) lim u→1 log D X (u (p+q) ) log D X (p) (u (p) ) .

ii) λ X (q) X (p) = 1 + α (q) α (p) X (q)

X (p) -β (p,q) α (p) (X (p) ,X (q) ) X (p) .

iii) If p = q, G X (p) = G X (q) and α (p) > 0 then (X (p) ,X (q) ) X (p) = (X (p) ,X (q) ) X (q) , λ X (q) X (p) = λ X (p) X (q) and λ X (q) X (p) = 2 -

(X (p) ,X (q) ) .

Proof: Since, for each j, lim x→ω(F ) P (X (p+q) > x (p+q) , X j > x) = 0 we have lim p+q) ) and then

) .

The others relations follows now from i) and the definitions of the coefficients of the previous sections.

The rates α (s) , s = p, q and β (p,q) are not in general equal to one, as is illustrated in the last example of Section 6. When p = q = 1 we find in the above proposition the relation (5.5).

Examples

The two examples we will consider are particular cases of the dependence function of Family MM3 in [START_REF] Joe | Multivariate Models and Dependence Concepts[END_REF].

Example 6.1. Let the MEV dependence function D X defined by

where z j = -log u j , p j ≥ 0 and δ ij > 0 are constants, i, j = 1, . . . , 4. The bivariate tail dependence coefficient λ for (X i , X j ) is

) -1/δij , i, j = 1, . . . , 4. (6.6)

Consider the copula obtained by taking 2p

and, for X (p) = (X 1 , X 2 ) and X (q) = (X 3 , X 4 ), we have

Moreover we obtain (X (p) ,X (q) ) = 1 and then λ X (p) X (q) = 0, as expected from the choice of δ ij and (6.6). If we take for instance p 4 = 2 then X (p) and X (q) have the same distribution and p) ,X (q) ) X (q) . Example 6.2. Let the MEV dependence function D X defined by

where z j = -log u j , j = 1, . . . , 3, and θ ≥ 1 is constant. Then, for X (p) = (X 1 , X 2 ) and X (q) = X 3 , we have

= 1, X = 3 1/θ , (X (p) ,X (q) ) = 3 1/θ 2 1/θ + 1 .

Moreover, it holds α (p) = -1 + 2 2 1/θ , α (q) = 1 and β (p,q) = -1 + 2+2 1/θ 3 1/θ . Then, for θ > 1, we find λ X (q) X (p) = 1-2×2 1/θ +3 1/θ 2-2 1/θ . For θ = 1 it holds λ X (q) X (p) = 1 as expected.