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MOMENT EXPLOSION IN THE LIBOR MARKET MODEL

STEFAN GERHOLD

Abstract. In the LIBOR market model, forward interest rates are log-normal
under their respective forward measures. This note shows that their distribu-
tions under the other forward measures of the tenor structure have approxi-
mately log-normal tails.

1. Introduction

The LIBOR market model [3] is one of the most popular models for pricing
and hedging interest rate derivatives. Its state variables are forward interest rates
Fn(t) := F (t; Tn−1, Tn), spanning time periods [Tn−1, Tn], where

0 < T0 < T1 < · · · < TM

is a fixed tenor structure. Under the TM -forward measure QM , which has as nu-
meraire the zero coupon bond maturing at TM , the dynamics of the forward rates
are

dFn(t) = −σn(t)Fn(t)
M∑

j=n+1

ρnjτjσj(t)Fj(t)
1 + τjFj(t)

dt + σn(t)Fn(t)dWn(t),

1 ≤ n < M,

dFM (t) = σM (t)FM (t)dWM (t).

Here, σn are some positive deterministic volatility functions, and W is a vector of
standard Brownian motions with instantaneous correlations dWi(t)dWj(t) = ρijdt.
Moreover, τn = τ(Tn−1, Tn) denotes the year fraction between the tenor dates Tn−1

and Tn.
Note that FM is a geometric Brownian motion under QM . More generally, each

rate Fn is a geometric Brownian motion under its own forward measure, while it has
a stochastic drift under the other forward measures. Therefore, pricing derivatives
with the LIBOR market model often requires a Monte Carlo simulation. To avoid
this, a popular approximation of the above dynamics is obtained by “freezing the
drift” [2, 4]:

dF fd
n (t) = −σn(t)F fd

n (t)
M∑

j=n+1

ρnjτjσj(t)Fj(0)
1 + τjFj(0)

dt + σn(t)F fd
n (t)dWn(t),

1 ≤ n < M,

dF fd
M (t) = σM (t)F fd

M (t)dWM (t).

Since the log-drifts are now deterministic, the new rates F fd
n are just geometric

Brownian motions, which allow for explicit pricing formulas for many interest-
linked products. As a piece of evidence for the quality of this approximation, we
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show in the present note that, for fixed t > 0, the distribution of F fd
n (t) has roughly

the same tail heaviness as the distribution of Fn(t).

2. Main Result

If X is any log-normal random variable, so that log X ∼ N (µ, σ2) for some real µ
and positive σ, then

(1) sup{v : E[ev log2 X ] < ∞} =
1

2σ2
.

This follows from

E[ev log2 X ] =
1√

1 − 2σ2v
exp

(
µ2v

1 − 2σ2v

)
, v <

1
2σ2

.

Our main result shows that Fn(t) has approximately log-normal tails, in the sense
that the left-hand side of (1) is finite and positive if X is replaced by Fn(t). Fur-
thermore, this “critical moment” is the same for Fn(t) and the frozen drift approxi-
mation F fd

n (t). We write En for the expectation w.r.t. the Tn-forward measure Qn.

Theorem 1. In the log-normal LIBOR market model, we have for all t > 0 and
all 1 ≤ n ≤ M

sup{v : EM [ev log2 Fn(t)] < ∞} = sup{v : EM [ev log2 F fd
n (t)] < ∞}

=
1

2
∫ t

0 σn(s)2ds
.

Proof. Note that the latter equality is obvious from (1), since F fd
n (t) is log-normal

with log-variance parameter σ2 =
∫ t

0 σn(s)2ds. We now show the first equality.
Recall that the measure change from the Tn-forward measure to the Tn−1-forward
measure is effected by the likelihood process [1]

dQn

dQn−1

∣∣∣∣
Ft

=
1 + τnFn(0)
1 + τnFn(t)

.

Therefore, putting φ(x) = exp(log2 x), we obtain

EM [φ(Fn(t))v] = EM −1

[
φ(Fn(t))v × 1 + τMFM (0)

1 + τMFM (t)

]

= · · · =

= En

[
φ(Fn(t))v

M∏

i=n+1

1 + τiFi(0)
1 + τiFi(t)

]

≤ En[φ(Fn(t))v]
M∏

i=n+1

(1 + τiFi(0)),

hence
sup{v : En[φ(Fn(t))v] < ∞} ≤ sup{v : EM [φ(Fn(t))v] < ∞}.

On the other hand, for 1 < k ≤ M and v ∈ R we have

Ek−1[φ(Fn(t))v] = Ek

[
φ(Fn(t))v × 1 + τkFk(t)

1 + τkFk(0)

]

=
1

1 + τkFk(0)
(
Ek[φ(Fn(t))v] + τkEk[Fk(t)φ(Fn(t))v]

)
.

Now let ε > 0 be arbitrary, and define q by 1
q + 1

1+ε = 1. Then Hölder’s inequality
yields

Ek[Fk(t)φ(Fn(t))v ] ≤ Ek[Fk(t)q]1/q × Ek[φ(Fn(t))v(1+ε)]1/(1+ε).
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By the finite moment assumption, we obtain the implication

Ek[φ(Fn(t))v(1+ε)] < ∞ =⇒ Ek−1[φ(Fn(t))v] < ∞, v ∈ R.

(Note that the left-hand side implies Ek[φ(Fn(t))v] < ∞.)
Inductively, this leads to the implication

EM [φ(Fn(t))v(1+ε)M −n

] < ∞ =⇒ En[φ(Fn(t))v] < ∞, v ∈ R.

Therefore, we find

sup{v : En[φ(Fn(t))v ] < ∞} ≥ sup{v : EM [φ(Fn(t))v(1+ε)M −n

] < ∞}

=
1

(1 + ε)M −n
sup{v : EM [φ(Fn(t))v] < ∞}.

Since ε was arbitrary,

sup{v : En[φ(Fn(t))v] < ∞} ≥ sup{v : EM [φ(Fn(t))v] < ∞}
follows, which finishes the proof. �

The following corollary explicitly shows the implication of Theorem 1 on the
distribution tails of Fn(t): At least one of the two tails is log-normal, and neither
tail is heavier than log-normal. We are talking here about the dominating factor of
the tail asymptotics; a lower order factor (a power of x, e.g.) could make the tails
(slightly) heavier or lighter than log-normal. These refined asymptotics are left for
future research. Note also that our result does so far not exclude the possibility
that one of the two tails is (significantly) lighter than log-normal.

Corollary 2. Under the assumptions of Theorem 1, the supremum of all real v
that satisfy the condition

P[Fn(t) > x] + P[Fn(t) < 1
x ] = O(e−v log2 x), x → ∞,

is given by

v∗ =
1

2
∫ t

0
σn(s)2ds

.

The same holds for F fd
n (t) instead of Fn(t).

Proof. From Theorem 1 we obtain

v∗ = sup{v : P[elog2 Fn(t) > x] = O(x−v)}.

Now for x > 1 we have

P[elog2 Fn(t) > x] = P[Fn(t) > e
√

log x] + P[Fn(t) < e− √
log x],

and the claim follows after replacing x by exp(log2 x). The same reasoning works
for the frozen drift rate F fd

n (t). �
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