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Spectral Convergence for a General Class of
Random Matrices

Francisco Rubio, Xavier Mestre

Centre Tecnològic de Telecomunicacions de Catalunya
Av. Carl Friedrich Gauss, 7, 08860 Castelldefels (Barcelona), Spain

Abstract

Let X be an M � N complex random matrix with i.i.d. entries having mean
zero and variance 1=N and consider the class of matrices of the type B = A +
R1=2XTXHR1=2, where A, R and T are Hermitian nonnegative de�nite matri-
ces, such that R and T have bounded spectral norm with T being diagonal, and
R1=2 is the nonnegative de�nite square-root of R. Under some assumptions on the
moments of the entries of X, it is proved in this paper that, for any matrix �
with bounded trace norm and for each complex z outside the positive real line,

Tr
h
� (B� zIM )�1

i
� �M (z) ! 0 almost surely as M;N ! 1 at the same rate,

where �M (z) is deterministic and solely depends on �;A;R and T. The previous
result can be particularized to the study of the limiting behavior of the Stieltjes
transform as well as the eigenvectors of the random matrix model B. The study is
motivated by applications in the �eld of statistical signal processing.

Key words: random matrix theory, Stieltjes transform, multivariate statistics,
sample covariance matrix, separable covariance model

Introduction

Consider an M �N random matrix X such that the entries of NX are i.i.d.
standardized complex random variables with �nite 8 + " moment. Further-
more, consider an M �M Hermitian nonnegative de�nite matrix R and its
nonnegative de�nite square-root R1=2. Then, the matrix R1=2XXHR1=2 can
be viewed as a sample covariance matrix constructed using the N columns
of the data matrix R1=2X, namely having population covariance matrix R.
Moreover, consider also an N � N diagonal matrix T with real nonnegative
entries. The matrix R1=2XTXHR1=2 can be interpreted as a sample covari-
ance matrix obtained by weighting the previous multivariate samples with the
entries of T.

Preprint submitted to Elsevier Science 26 July 2010



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

In this paper, we are interested in the asymptotic behaviour of certain spectral
functions of the random matrix model B = A+R1=2XTXHR1=2, where A is
an N � N Hermitian nonnegative de�nite matrix, as the dimensions M and
N grow large at the same rate. Consider the empirical distribution function
of the eigenvalues of B, i.e.,

FMB (�) =
1

M

MX
m=1

I(�m(B)��), (1)

where �m (B) stands for the mth eigenvalue of B and �1 (B) � : : : � �M (B).
From the connection between vague convergence of distributions and point-
wise convergence of Stieltjes transforms (see, e.g., [3] and [7, Proposition 2.2]),
almost sure convergence of the (random) distribution function FMB can be es-
tablished by showing convergence of the associated Stieltjes transform, de�ned
for each z 2 C+ = fz 2 C : Im fzg > 0g as

mF (z) =
Z
R

dFMB
�� z =

1

M

MX
m=1

1

�m (B)� z
=
1

M
Tr
h
(B� zIM)�1

i
. (2)

Under the condition that M=N has a �nite non-zero limit, convergence with
probability one of the empirical spectral distribution (ESD), i.e., the empiri-
cal distribution of the eigenvalues, of some special cases of B towards a limit
nonrandom distribution has been established in the random matrix theory lit-
erature under the assumption of the matricesR;T andA having, in each case,
an ESD which converges almost surely to a probability distribution (possibly
defective in the case of A). More speci�cally, using the fact that the limit
of FMB is uniquely characterized by that of mF (z), vague convergence in the
cases of A = 0M�M and T = IN ; R = IM ; and A = 0M�M is provided in
[13], [14], and [12,9], respectively, by proving tightness of the sequence

n
FMB

o
(the convergence is weakly to a proper probability measure if A = 0M�M).
The reader is also referred to [5] for similar results and other random matrix
models.

In order to extend the previous spectral convergence results to the asymptotic
behavior of the eigensubspaces of B, we can consider the following empirical
distribution function, namely,

HM
B (�) =

MX
m=1

jamj2 I(�m(B)��), (3)

where am is the mth entry of the vector a = UH�, with U 2 CM�M being the
matrix of orthonormal eigenvectors ofB, and � an arbitrary nonrandom vector
in the unit sphere

n
� 2 CN : k�k = 1

o
. Clearly, HM

B is a random probability

2
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distribution function with Stieltjes transform given by

mH (z) =
Z
R

dHM
B (�)

�� z = �H (B� zIM)�1 �. (4)

In particular, spectral functions of the form of (3) or, equivalently, (4) were
considered in [1] (see also references therein) to study the limiting eigenvectors
of sample covariance matrices. Note further that, if am = 1

M
, m = 1; : : : ;M ,

then HM
B and FMB coincide.

Motivated by practical applications, for instance in the �elds of statistical sig-
nal processing, wireless communications and quantitative �nance, where esti-
mates of certain functions of the eigenvalues and eigenvectors of the random
matrix model B are very often of interest, in this paper the convergence of (2)
and (4) is extended to the convergence of more general spectral functions of
B. Moreover, for the purpose of practical applicability in realistic settings, the
assumption of R;T andA having convergent ESD is dropped in the following.

1 Main result

The remainder of the paper is devoted to the proof of the following theorem.

Theorem 1 Assume the following:

(a) X is an M � N random matrix such that the entries of
p
NX are i.i.d.

complex random variables with mean zero, variance one, and �nite 8 + "
moment, for some " > 0.

(c) A and R are M �M Hermitian nonnegative de�nite matrices, with the
spectral norm (denoted by k�k) of R being bounded uniformly inM , and T is
an N �N diagonal matrix with real nonnegative entries uniformly bounded
in N .

(d) B = A+R1=2XTXHR1=2, where R1=2 is the nonnegative de�nite square-
root of R.

(e) � is an arbitrary nonrandom M � M matrix, whose trace norm (i.e.,

Tr
��
�H�

�1=2�
� k�ktr) is bounded uniformly in M .

Then, with probability one, for each z 2 C � R+, as N = N (M) ! 1 such
that 0 < lim inf cM < lim sup cM <1, with cM =M=N ,

Tr
h
�
�
(B� zIM)�1 � (A+ xM (eM)R� zIM)�1

�i
! 0, (5)

3
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where xM (eM) is de�ned as

xM (eM) =
1

N
Tr
h
T (IN + cMeMT)

�1
i
, (6)

and eM = eM (z) is the Stieltjes transform of a certain positive measure on
R+ with total mass 1

M
Tr [R], obtained as the unique solution in C+ of the

equation

eM =
1

M
Tr
h
R (A+ xM (eM)R� zIM)�1

i
. (7)

Corollary 1 (Limiting Stieltjes transform of ESD�s) Let � = 1
M
IM . Then,

Theorem 1 states the asymptotic convergence of the Stieltjes transform of the
ESD of B de�ned in (2).

Remark 1 (Sample covariance matrices) If A = 0M�M and T = IN , then
Corollary 1 is equivalent to the convergence result for the Stieltjes transform
of the ESD of sample covariance matrices provided in [16,4][13, Theorem 1.1].

Remark 2 (Marchenko-Pastur law) If R = IM , then the result in Corollary
1 reduces to that obtained in [10][14, Theorem 1.1] under more general condi-
tions.

Remark 3 (Separable covariance model) If A = 0M�M , then Corollary 1
coincides with the result in [12, Theorem 1] (see also [9, Theorem 2]), which
represents the special case of [7, Theorem 2.5] corresponding to a separable
variance pro�le.

Corollary 2 (Asymptotic convergence of eigenvectors) Let � = ��H , with
� 2 CM being an arbitrary nonrandom unit vector. Then, Theorem 1 estab-
lishes the convergence for the class of Stieltjes transforms de�ned in (4).

Remark 4 The result in Corollary 2 for the cases R = IM ;T = IN and
A = 0M�M ;T = IN has been previously reported in [11, Theorem 1 and
Theorem 5], and [1, Theorem 1] under more generic assumptions.

As a �nal remark, we notice that Theorem 1 holds verbatim if the matrices
A, R, T, X and � have real-valued entries.

2 Applications to Array Signal Processing

The random matrix model introduced in previous sections is of fundamental
interest in applications involving spatio-temporal statistics as well as separable
covariance models. Consider for instance a collection of N narrowband signal
observations that are obtained by sampling across a linear antenna array with

4
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M sensors, and which can be modelled as yn = sns+nn, n = 1; : : : ; N , where
sn 2 C is the signal waveform, s 2 CM is the associated signature vector,
and nn 2 CM models the contribution of the interference and noise. Conven-
tionally, sn and nn are assumed to be Gaussian, temporarily uncorrelated and
mutually independent, with variance and covariance matrix given respectively
by �2s and Rn. Under these assumptions, the observations can be modelled as
yn = R

1=2�n, R = �2sss
H +Rn is the covariance matrix of the array samples,

and the vectors �n 2 CM consist of i.i.d. standardized (i.e., with mean zero
and variance one) Gaussian random entries. In the array processing litera-
ture, the minimum variance distortionless response (MVDR) spatial �lter or

beamformer is de�ned in terms of R as wMVDR =
�
sHR�1s

��1
R�1s (see, e.g.,

[15, Chapter 6]). In practice, the true covariance matrix R is unknown, and
therefore a sample estimate, henceforth denoted by R̂, must be used instead
for implementation purposes. A relevant measure of the �lter performance is
the output signal-to-interference-plus-noise ratio (SINR), which for a given
beamformer ŵ is de�ned as

SINR (ŵ) =

 
ŵHRŵ

�2s jŵHsj2
� 1

!�1
.

We note that SINR (ŵ) is invariant under scaling and consider the �lter ŵ =
R̂�1s, namely de�ned in terms of a generic covariance sample estimator given

by R̂ = �YWYH + �R0, where Y =
�
y1 � � � yN

�
2 CM�N ,W is an N �N

diagonal nonnegative de�nite matrix, R0 is anM�M Hermitian nonnegative
matrix, and �; � 2 R. In particular, if W = IN , � = 1 and R0 = 0M�M ,
then R̂ is the sample covariance matrix or maximum likelihood estimator
of R; moreover, if W is a data windowing diagonal matrix with nth entry
given by wn = exp (N � n), � = 1 and R0 = IM , then ŵ implements the
recursive least-squares beamformer with exponential weighting and diagonal
loading factor � (see, e.g., [15, Chapter 7]); �nally, ifW = IN , R̂ has the form
of a James-Stein shrinkage covariance estimator, where R0 is the shrinkage
target or prior information about R and �; � are the shrinkage intensity para-
meters. Interestingly enough, a uni�ed approach to the analysis of the SINR
performance of the previous MVDR sample beamformers can be provided by
applying Theorem 1 in order to �nd a deterministic asymptotic equivalent of
SINR (ŵ).

3 Preliminary results

In this section, we introduce some preparatory lemmas and auxiliary technical
results that will be needed in the proof of Theorem 1. The �rst one has a

5
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straightforward proof based on Markov�s and Minkowski�s inequalities (see,
e.g., proof of Lemma 4.1 in [6] for details).

Lemma 1 Let
n
y(N)n ; 1 � n � N

o
denote a collection of (possibly dependent)

random variables such that

max
1�n�N

E
h���y(N)n

���pi � Kp

N1+�
,

for some constants p � 1, � > 0 and Kp (in the sequel, constants Kp may
take di¤erent values at each appearance) depending on p but not on N . Then,
almost surely as N !1,

1

N

NX
n=1

���y(N)n

���! 0.

Lemma 2 ([2, Lemma 2.7]) Let � 2 CM denote a random vector with i.i.d.
entries having mean zero and variance one, and C 2 CM�M an arbitrary
nonrandom matrix. Then, for any p � 2,

E
h����HC� � Tr [C]���pi � Kp

��
E
h
j�j4

i
Tr
h
CCH

i�p=2
+ E

h
j�j2p

i
Tr
��
CCH

�p=2��
,

where � denotes a particular entry of � and the constant Kp does not depend
on M , the entries of C, nor the distribution of �.

Lemma 3 Let � and C be de�ned as in Lemma 2. Then, for any p � 2,

E
h����HC����pi � kCkptr �K1;p +K2;pE

h
j�j2p

i�
.

PROOF. Let � and � be two complex random variables with �nite pth-order
moment. Using Jensen�s inequality, note that

E [j�+ �jp] � 2p�1 fE [j�jp] + E [j�jp]g . (8)

Furthermore, consider the following two useful inequalities:

Tr
��
CCH

�p=2�
�
�
Tr
h
CCH

i�p=2
�
�
Tr
��
CCH

�1=2��p
= kCkptr , (9)

and, for B1 and B2 two arbitrary square complex matrices [8, Chapter 3]

jTr [B1B2]j � kB1B2ktr � kB1ktr kB2k , (10)

which will be used repeatedly in the sequel. Now, using (8) we write

E
h����HC����pi � 2p�1 nE h����HC� � Tr [C]���pi+ jTr [C]jpo . (11)

6
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Moreover, using the �rst inequality in (9) and Jensen�s inequality as Ep=2
h
j�j4

i
�

E
h
j�j2p

i
, from Lemma 2 we get

E
h����HC� � Tr [C]���pi � Kp

�
Tr
h
CCH

i�p=2
E
h
j�j2p

i
. (12)

Finally, the result of the lemma follows by applying to (11) the inequality (12)
along with the �rst inequality in (10) with B1 = C and B2 = IM .

Lemma 4 Let U =
n
�n 2 CM ; 1 � n � N

o
denote a collection of i.i.d. ran-

dom vectors de�ned as in Lemma 2, and whose entries are assumed to have
�nite 4+ " moment, " > 0. Furthermore, consider a collection of random ma-
trices

n
C(n) 2 CM�M ; 1 � n � N

o
such that, for each n, C(n) may depend on

all the elements of U except for �n, and



C(n)





tr
is uniformly bounded for all

M . Then, almost surely as N !1,
����� 1N

NX
n=1

�Hn C(n)�n � Tr
h
C(n)

i�����! 0. (13)

PROOF. Write �n = �Hn C(n)�n�Tr
h
C(n)

i
and let Fn denote the �-�eld gen-

erated by the random vectors f�1; �2; : : : ; �ng. Now, notice that f�n; 1 � n � Ng
forms a martingale di¤erence array with respect to the �ltration fFn; 1 � n � Ng.
Indeed, since E

h
�n�

H
n jFn�1

i
= IM , observe that

E [�n jFn�1 ] = E
h
�Hn C(n)�n jFn�1

i
� E

h
Tr
h
C(n)

i
jFn�1

i
= 0.

Consequently, Burkholder�s inequality (see, e.g., [2, Lemma 2.1]) implies

E

24�����
NX
n=1

�n

�����
p
35 � Kp

8<:E
24 NX

n=1

E
h
j�nj2 jFn�1

i!p=235+ E " NX
n=1

j�njp
#9=; ,

for any p � 2. Then, since �n and C(n) are independent for each n, using (12)
and the properties of conditional expectation, it is easy to check that

E
h
j�nj2 jFn�1

i
= E

�����Hn C(n)�n � Tr
h
C(n)

i���2 jFn�1 � � KpE
h
j�j4

i
,

where we have used the fact that the random variable Tr
h
C(n)C

H
(n)

i
�



C(n)


2

tr
is bounded uniformly in M by assumption. Similarly, we also get

E [j�njp] = E
h����Hn C(n)�n � Tr hC(n)

i���pi � KpE
h
j�j2p

i
.

7
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Hence, we can �nally write

E

24����� 1N
NX
n=1

�n

�����
p
35 � 1

Np

�
K1;p

�
NE

h
j�j4

i�p=2
+K2;pNE

h
j�j2p

i�
� E

h
j�j2p

i �K1;p

Np=2
+
K2;p

Np�1

�
,

and the result follows from the Borel-Cantelli lemma with p = 2+ "=2, " > 0.

Lemma 5 ([2, Lemma 2.7]) Consider two N �N matrices B1 and B2, with
B2 being Hermitian, and � 2 R, q 2 CN . Then, for each z 2 C+,����Tr �B1 �(B2 � zIM)�1 � �B2 + �qqH � zIM��1������

=

������qH (B2 � zIM)
�1B1 (B2 � zIM)�1 q

1 + �qH (B2 � zIM)�1 q

����� � kB1k
Im fzg .

Lemma 6 Let m (z) be the Stieltjes transform of a certain measure on R+,
and � 2 R+. Then, for each z 2 C+,����� �

1 + �m (z)

����� � � jzj
Im fzg .

PROOF. The bound follows from the fact that, for any � 2 R+, � �
z(1+�m(z))

is the Stieltjes transform of a measure on R+ with total mass � [12], whose
absolute value is therefore bounded by �= Im fzg [7, Proposition 2.2].

4 Proof of Theorem 1

In this section, we give a proof of Theorem 1. Let � =
p
NX and write

1

N
R1=2�T�HR1=2 =

1

N

NX
n=1

tnR
1=2�n�

H
n R

1=2 � 1

N

NX
n=1

yny
H
n ,

where tn is the nth diagonal entry of T, and �n 2 CM is the nth column
vector of �. Moreover, let B(n) = B� 1

N
yny

H
n , and consider the map xM (e) =

1
N
Tr
h
T (IN + cMeT)

�1
i
: C+ ! C� = fz 2 C : Im fzg < 0g. Indeed, note

that

Im fxM (e)g = � Im feg
1

N

NX
n=1

cM t
2
n

j1 + tncMej2
. (14)

For the sake of notational convenience, we will use the following de�nitions:

Q (z) = (B� zIM)�1 , Q(n) (z) =
�
B(n) � zIM

��1
, P (e) = (A+ x (e)R� zIM)�1 .

8
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It is easy to see that both kQ (z)k and



Q(n) (z)




 are upper-bounded by
1= Im fzg. Equivalently, de�ne � = A + Re fx (e)gR � Re fzg IM and � =
Im fzg IM � Im fx (e)gR, which are, respectively, Hermitian and Hermitian
positive de�nite, and note that

kP (e)k =




���1=2���1=2 � i IM��1��1





 � 


��1



 � 1

Im fzg . (15)

Furthermore, let êM (z) = 1
M
Tr [RQ (z)], and notice (see, e.g., [7,12]) that

êM = êM (z) is the Stieltjes transform of a certain measure on R+ with to-
tal mass M�1Tr [R] � kRksup, where with the subscript sup we denote the
supremum of the sequence, i.e., here, kRksup = supM�1 kRk (in the sequel, we
will similarly use inf for the in�mum).

Now, consider the equality

Q�1 (z) = B�zIM = A+xM (êM)R�zIM+
1

N
R1=2�T�HR1=2�xM (êM)R.

We proceed by factoring the di¤erence of inverses as

P (êM)�Q (z) = P (êM)
�
1

N
R1=2�T�HR1=2 � xM (êM)R

�
Q (z) , (16)

where we have used the resolvent identity, i.e., B1�B2 = B1
�
B�12 �B�11

�
B2.

Furthermore, the middle factor on the RHS of (16) can be expanded as

�
1

N
R1=2�T�HR1=2 � xM (êM)R

�
Q (z) =

1

N

NX
n=1

tnR
1=2�n�

H
n R

1=2Q (z)� xM (êM)RQ (z)

=
1

N

NX
n=1

tnR
1=2�n�

H
n R

1=2Q (z)� tnRQ (z)

1 + tncM êM (z)

=
1

N

NX
n=1

tnR
1=2�n�

H
n R

1=2Q(n) (z)

1 + tn
1
N
�Hn R

1=2Q(n) (z)R1=2�n
� tnRQ (z)

1 + tncM êM (z)
,

where, in the last equality, we have used the Sherman-Morrison-Woodbury
identity for rank augmenting matrices in order to write

Q(z) = Q(n)(z)�
tn

1
N
Q(n)(z)R

1=2�n�
H
n R

1=2Q(n) (z)

1 + tn
1
N
�Hn R

1=2Q(n) (z)R1=2�n
, (17)

along with the following useful inequality (see [14, Eq. (2.2)])

�Hn R
1=2
�
Q�1
(n)(z) + tn

1
N
R1=2�n�

H
n R

1=2
��1

=
1

1 + tn
1
N
�Hn R

1=2Q(n) (z)R1=2�n
�Hn R

1=2Q(n)(z):

9
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Accordingly, observe that we can further write

�
1

N
R1=2�T�HR1=2 � xM (êM)R

�
Q (z) =

=
1

N

NX
n=1

tn
1 + tncM êM (z)

R
�
Q(n) (z)�Q (z)

�

+
1

N

NX
n=1

tn
1 + tncM êM (z)

tn
�
1
N
Tr [RQ (z)]� 1

N
�Hn R

1=2Q(n) (z)R
1=2�n

�
1 + tn

1
N
�Hn R

1=2Q(n) (z)R1=2�n
R1=2�n�

H
n R

1=2Q(n) (z)

+
1

N

NX
n=1

tn
1 + tncM êM (z)

�
R1=2�n�

H
n R

1=2Q(n) (z)�RQ(n) (z)
�
.

Let �M (e) = 1
M
Tr [RP (e)] be a function mapping C+ into C+ and fM (e) =

e��M (e). Moreover, we de�ne D =
(
z 2 C+ : jzj

Im fzg � K
)
, for some �nite,

positive K large enough. Next, we prove that, almost surely as M;N ! 1
with 0 < lim inf cM < lim sup cM <1, for each z 2 D,

Tr [� (Q (z)�P (êM))]! 0, (18)

and
fM (êM)! 0. (19)

To that e¤ect, note that it is enough to show the following almost sure con-
vergence to zero on D of the following quantities:����� 1N

NX
n=1

tn
1 + tncM êM (z)

Tr
h
~�R

�
Q(n) (z)�Q (z)

�i����� , (20)������ 1N
NX
n=1

tn
1 + tncM êM (z)

�
1

N
Tr [RQ (z)]� 1

N
�Hn R

1=2Q(n) (z)R
1=2�n

�
tn�

H
n R

1=2Q(n) (z) ~�R
1=2
�n

1 + tn
1
N
�Hn R

1=2Q(n) (z)R1=2�n

������ ,
(21)����� 1N

NX
n=1

tn
1 + tncM êM (z)

Tr
h
~�
�
R1=2�n�

H
n R

1=2Q(n) (z)�RQ(n) (z)
�i����� , (22)

where ~� = 	P (êM), with	 being anM�M matrix with uniformly bounded
trace norm, which can either be 	 = � or 	 = 1

M
R (note that kM�1Rktr =

M�1Tr [R] � kRksup). Before proceeding, we note that Lemma 6 yields

max
1�n�N

����� tn
1 + tncM êM (z)

����� � jzj kTksup
Im fzg . (23)

Consider the convergence of (20). First, notice that, for each n, 1
N
�Hn R

1=2Q(n) (z)R
1=2�n

can be viewed as the Stieltjes transform of a certain measure on R+ (see, e.g.,

10
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[12]). Hence, from Lemma 6 we have

max
1�n�N

����� tn
1 + tn

1
N
�Hn R

1=2Q(n) (z)R1=2�n

����� � jzj kTksup
Im fzg . (24)

Now, applying (17) to expand the term Q(n) (z) � Q (z) and using (23) and
(24), the result follows readily by Lemma 1 with p � 2 together with the fact
that, for each z 2 D,

max
1�n�N

E
h����Hn R1=2Q(n) (z) ~�Z(n)R

1=2�n
���pi � Kp, (25)

for any M � M matrix Z(n) independent of �n such that



Z(n)


p

sup
� Kp,

in particular for Z(n) = RQ(n) (z). Let us now prove (25). Let ê(n)M (z) =
1
M
Tr
h
RQ(n) (z)

i
, which is a Stieltjes transform with same properties as êM (z),

and notice by applying twice the resolvent identity to P (êM)�P
�
ê
(n)
M

�
that

P (êM) = P
�
ê
(n)
M

�
+�M

�
êM ; ê

(n)
M

� cM
M
Tr
h
R
�
Q (z)�Q(n) (z)

�i
P (êM)RP

�
ê
(n)
M

�
,

(26)
where we have de�ned

�M (e1; e2) =
1

N
Tr
h
T2 (IN + cMe1T)

�1 (IN + cMe2T)
�1
i
,

and note from Lemma 6 that

����M �
êM ; ê

(n)
M

���� � max
1�n�N

����� tn

1 + tncM ê
(n)
M (z)

�����
����� tn
1 + tncM êM (z)

����� �
 jzj kTksup
Im fzg

!2
.

(27)
Now, we write ~� = 	P (êM) using the two terms on the RHS of (26). From
the �rst term, by Lemma 3 with C = R1=2Q(n) (z)	P

�
ê
(n)
M

�
Z(n)R

1=2, we
obtain

max
1�n�N

E
h����Hn R1=2Q(n) (z)	P

�
ê
(n)
M

�
Z(n)R

1=2�n
���pi � Kp kRkpsup k	k

p
tr;sup

(Im fzg)2p
.

(28)
Regarding the second term in (26), i.e., P (êM) � P

�
ê
(n)
M

�
, from (27) and

Lemma 5 we have




�P (êM)�P �ê(n)M ��
Z(n)Q(n) (z)




p � Kp

�
jzj kRksup kTksup

�2p
Np (Im fzg)6p

. (29)

11
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Hence, from the second term we get

max
1�n�N

E
h����Hn R1=2Q(n) (z)	

�
P (êM)�P

�
ê
(n)
M

��
Z(n)R

1=2�n
���pi

(a)

�
Kp

�
jzj kRksup kTksup

�2p
k	ktr;sup

(Im fzg)6p
max
1�n�N

E
��
1

N
�Hn R�n

�p�
(b)

�
Kp kRk3psup

�
jzj kTksup

�2p
k	kptr;sup

(Im fzg)6p
, (30)

where (a) in (30) follows by the Cauchy-Schwarz inequality along with (29) and
the second inequality in (10), and (b) follows by Lemma 3 with C = N�1R.
Finally, (25) follows by applying (8) together with (28) and (30).

We now prove the convergence of (21). Using the Cauchy-Schwartz inequality,
we write

E

24������
�
1

N
Tr [RQ (z)]� 1

N
�Hn R

1=2Q(n) (z)R
1=2�n

�
tn�

H
n R

1=2Q(n) (z) ~�R
1=2
�n

1 + tn
1
N
�Hn R

1=2Q(n) (z)R1=2�n

������
p35

� E1=2
"���� 1N Tr [RQ (z)]� 1

N
�Hn R

1=2Q(n) (z)R
1=2�n

����2p
#
E1=2

264
������ tn�

H
n R

1=2Q(n) (z) ~�R
1=2
�n

1 + tn
1
N
�Hn R

1=2Q(n) (z)R1=2�n

������
2p
375 .

Now, notice that from (24) and (25) with Z(n) = IM the second factor of the
RHS of the previous inequality is uniformly bounded on D for any p � 1.
Furthermore, regarding the �rst factor, we rewrite Q (z) by using the two
terms on the RHS of (17) and get, on the one hand (cf. Lemma 5),

max
1�n�N

E

24����� 1N tn
1
N
�Hn R

1=2Q(n) (z)RQn(z)R
1=2�n

1 + tn
1
N
�Hn R

1=2Q(n) (z)R1=2�n

�����
2p
35 � 1

N2p

 kRksup
Im fzg

!2p
,

(31)
and on the other hand, using (12) with C = N�1=2R1=2Q(n) (z)R

1=2 we get

max
1�n�N

E
"���� 1N Tr

h
RQ(n) (z)

i
� 1

N
�Hn R

1=2Q(n) (z)R
1=2�n

����2p
#
� 1

Np

 
Kp kRksup
Im fzg

!2p
.

(32)
Finally, the result follows from Lemma 1 with p � 2 by applying (8) along
with (31) and (32).

In order to prove the convergence of (22), by the triangular inequality, it is
enough to show the almost sure convergence to zero on D of the following

12
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quantities:

����� 1N
NX
n=1

 
tn

1 + tncM êM (z)
� tn

1 + tncM ê
(n)
M (z)

!�
�Hn R

1=2Q(n) (z) ~�R
1=2
�n � Tr

h
RQ(n) (z) ~�

i������ ,
(33)����� 1N

NX
n=1

tn

1 + tncM ê
(n)
M (z)

�
�Hn R

1=2Q(n) (z)	P
�
ê
(n)
M

�
R1=2�n � Tr

h
RQ(n) (z)	P

�
ê
(n)
M

�i������ ,
(34)����� 1N

NX
n=1

tn

1 + tncM ê
(n)
M (z)

�Hn R
1=2Q(n) (z)	

�
P (êM)�P

�
ê
(n)
M

��
R1=2�n

����� , (35)����� 1N
NX
n=1

tn

1 + tncM ê
(n)
M (z)

Tr
h
RQ(n) (z)	

�
P
�
ê
(n)
M

�
�P (êM)

�i����� . (36)

Regarding (33), using (27) along with Lemma 5, note �rst that

tn
1 + tncM êM (z)

� tn

1 + tncM ê
(n)
M (z)

=
1

N

cM t
2
nTr

h
R
�
Q(n) (z)�Q (z)

�i
(1 + tncM êM (z))

�
1 + tncM ê

(n)
M (z)

� � kRksup
�
jzj kTksup

�2
N (Im fzg)3

.

(37)
Convergence of (33) follows by Lemma 1 with p � 2 by applying (37) and (8)
along with (25) with Z(n) = IM and

���Tr hRQ(n) (z) ~�
i��� � kRk jzj k	ktr;sup = (Im fzg)2

(cf. inequality (10)). On the other hand, convergence of (34) follows directly

by Lemma 4 with C(n) = tn
�
1 + tncM ê

(n)
M (z)

��1
R1=2Q(n) (z)	P

�
ê
(n)
M

�
R1=2.

Convergence of (35) follows from Lemma 1 with p � 2 by applying (26) and
using (23) and (27) along with Lemma 5, and (25) with Z(n) = RP

�
ê
(n)
M

�
.

Finally, (36) vanishes almost surely by Lemma 1 with p � 2 using (23) along
with (cf. inequality (10))

���Tr hRQ(n) (z)	
�
P
�
ê
(n)
M

�
�P (êM)

�i���p � cpM kRk
3p
sup

�
jzj kTksup

�2p
k	kptr;sup

Np (Im fzg)6p
,

where we have used (29) with Z(n) = R. This proves (18) and (19).

We next show that P (êM) in (18) and (19) can be replaced by P (eM), where
eM is the unique deterministic equivalent in the statement of Theorem 1. From
(19) and fM (eM) = 0 we clearly have that fM (êM) � fM (eM) ! 0, for each
z 2 D, and so we only need to show that this implies êM � eM ! 0. Indeed,
notice that fM (êM)�fM (eM) = (êM � eM) (1� �M (êM ; eM)), where we have
de�ned

�M (e1; e2) = �M (e1; e2)
1

M
Tr [RP (e1)RP (e2)] . (38)

Observe that �M (eM ; eM) = 1. Moreover, after some algebraic manipulations

13
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we get fM (êM)� fM (eM) = (êM � eM)2 
M (êM ; eM), where


M (êM ; eM) =
1

N

NX
n=1

c2M t
3
n

(1 + tncMeM)
2 (1 + tncM êM)

1

M
Tr [RP (eM)RP (êM)]

� �M (êM ; eM)
1

N

NX
n=1

�
cM tn

1 + tncMeM

�2 1
M
Tr
h
(RP (eM))

2RP (êM)
i
,

such that, using the fact that eM is the Stieltjes transform of a certain measure
on R+ (cf. Section 4.2), by the triangular inequality and the application of
Lemma 6 as in (23) along with inequality (10),

j
M (êM ; eM)j �

�
cM kRksup

�2 �
jzj kTksup

�3
(Im fzg)5

 
1 +

jzj kRksup kTksup
(Im fzg)2

!
.

This implies that êM � eM ! 0 almost surely for each z of a countable family
with an accumulation point in a compact subset of D. Now, as a consequence
of being Stieltjes transforms of bounded measures on R+, we have that both
êM (z) and eM (z) are analytic on C�R+ (see [7, Proposition 2.2]), and so is
hM (z) = êM (z)� eM (z). Moreover, we have that jhM (z)j � 2

dist(z;R+) , where
dist stands for the Euclidean distance (see again [7, Proposition 2.2]). Thus,
fhMg is a normal family and by Montel�s theorem there exists a subsequence
which converges uniformly on each compact subset of C � R+ to an analytic
function which, from above, vanishes almost surely on C�R+. Thus, the entire
sequence converges uniformly to zero on each compact subset of C�R+, and
so jhM (z)j ! 0 for each z 2 C� R+.

De�ne gM (e) = Tr [�P (e)]. The fact that gM (êM) � gM (eM) ! 0 for each
z 2 C� R+ follows �nally by observing that

gM (êM)� gM (eM) = (eM � êM) �M (êM ; eM) Tr [�P (êM)RP (eM)] ,

and noting from (27) and jTr [�P (êM)RP (eM)]j � kRksup k�ktr;sup = (Im fzg)
2

(cf. inequality (10)) that the factor multiplying eM�êM in the RHS is bounded
in absolute value uniformly in M .

4.1 Uniqueness of the limit

In order to prove uniqueness in C+ of the solution of equation (7), assume
that we have two solutions e1; e2 2 C+ and, using the resolvent identity, write

e1�e2 = � (xM (e1)� xM (e2))
1

M
Tr [RP (e1)RP (e2)] = (e1 � e2) �M (e1; e2) .

14
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Assume e1 6= e2, so that, necessarily, �M = �M (e1; e2) = 1. Using the Cauchy-
Schwarz inequality, we have j�M j2 � 'M (e1)'M (e2), where

'M (ei) =
1

N

NX
n=1

cM t
2
n

j1 + tncMeij2
1

M
Tr
h
PH (ei)RP (ei)R

i
, i = 1; 2. (39)

Then, from (14) we note that

1

N

NX
n=1

cM t
2
n

j1 + tncMeij2
= �Im fx (ei)g

Im feig
. (40)

On the other hand, using the fact that x (e) 2 C� for each z 2 C+ along with

Im feig
Im fxM (ei)g

=
Im fzg

Im fxM (ei)g
1

M
Tr
h
PH (e1)RP (e1)

i
� 1

M
Tr
h
PH (e1)RP (e1)R

i
,

we can conclude that

1

M
Tr
h
PH (e1)RP (e1)R

i
< � Im feig

Im fx (ei)g
. (41)

Hence, it is clear from (39) by using (40) and (41) that 'M (ei) < 1, i =
1; 2, and so �M < 1, contradicting the fact that �M = 1. Therefore we must
necessarily have e1 = e2.

4.2 Existence of a deterministic asymptotic equivalent

We use the �xed point theorem to show that the equation e = �M (e) presents
at least one solution inC+. Let �M = max1�m�M j�m (A)� zj, which is strictly
positive by assumption for allM and each z 2 C�R+. Consider the open set:


 =

8<:e 2 C+ : Im feg > kRksup
2cinf�inf

241 +
vuut1 + 4cinf�infkRksup

359=; .
We show that, for any two values e1; e2 2 
, j�M (e1)� �M (e2)j < je1 � e2j,
so that the mapping �M is contractive when constrained to 
. The �xed point
theorem guarantees that �M presents a �xed point in 
, which guarantees the
existence of a solution of the equation e = �M (e) in 
 � C+.

Observe �rst that we can write, using the resolvent identity, �M (e1)��M (e2) =
(e1 � e2) �M (e1; e2). Hence, it is su¢ cient to see that j�M (e1; e2)j < 1, or alter-
natively, from the Cauchy-Schwarz inequality, that 'M (e) < 1 for any e 2 
.
Note that we can write

1

M
Tr
h
PH (e)RP (e)R

i
�



R1=2P (e)R1=2




 = kRk kA+ x (e)R� zIMk�1 .
(42)
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Now, using kB1k � kB2k � kB1 +B2k � kB1k+ kB2k, together with

jIm fxgj � jx (e)j � 1

N

NX
n=1

tn
j1 + tncMej

� 1

N

NX
n=1

tn
tncM Im feg

� 1

cinf Im feg
,

(43)
and the fact that kA� zIMk � �inf , we have

kA+ x (e)R� zIMk�1 � �inf �
1

cinf Im feg
, (44)

which is clearly positive on 
 by assumption. Now, using (14) and the above
inequalities, in order to show that 'M (e) < 1, it is su¢ cient to prove that

jIm fx (e)gj
Im feg

kRksup
�inf � 1

cinf Imfeg
< 1,

or, equivalently, cinf�inf Im2 feg� Im feg kRksup�kRksup > 0, which is always
the case for each e 2 
, and this concludes the proof of the existence of eM .

Finally, we show that eM (z) is the Stieltjes transform of a certain bounded
measure on R+ with total mass 1

M
Tr [R]. Indeed, notice that eM (z) is analytic

on C+ and, additionally,

Im feMg =
Im fzg 1

M
Tr
h
PH (eM)RP (eM)

i
1� 'M (eM)

,

and

Im fzeMg =
Im fzg

 
1
M
Tr
h
PH (eM)RP (eM)A

i
+ 1

N

NP
n=1

tn

j1 + tncMeM j2
1
M
Tr
h
PH (eM)RP (eM)R

i!
1� 'M (eM)

.

Now, since 'M (eM) < 1 on C+ (cf. Section 4.1) and since A is assumed to
be nonnegative de�nite, we conclude that both eM (z) and zeM (z) map C+
into C+, and the claim follows from [7, Proposition 2.2] using the fact that
(y = Im fzg) limy!+1� i yeM (i y) = 1

M
Tr [R].
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