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Kernel Adjusted Density Estimation

Ramidha Srihera, Winfried Stute

Dept. of Mathematics and Statistics, Thammasat University, Pathum Thani, Thailand and
Mathematical Institute, University of Giessen, Arndtstr. 2, D-35392 Giessen, Germany

Abstract

We propose and study a kernel estimator of a density in which the kernel is
adapted to the data but not fixed. The smoothing procedure is followed by
a location-scale transformation to reduce bias and variance. The new method
naturally leads to an adaptive choice of the smoothing parameters which avoids
asymptotic expansions.

Key words: Kernel density estimator, adaptive choice

Running Title: Kernel Adjusted Density Estimation

1. Introduction and Main Results

Since Rosenblatt (1956) and Parzen (1962) introduced the kernel estimator of an
unknown density f , there have been numerous authors who studied various of its
finite and large sample properties. To be more precise, let K be a given function
on the real line, the “kernel”, and let h > 0 be a given bandwidth or window
size. Then, if X1, . . . , Xn denotes an independent sample from f , the associated
kernel estimator is defined as

fn(x) =
1

nh

n∑
j=1

K

(
x−Xj

h

)
.

To obtain a “bona fide” estimator, i.e., one which is itself a density, one has to
require

K ≥ 0 and

∫
K(u)du = 1.

Silverman (1986) and Wand and Jones (1995) became standard reference books
on kernel methodology. To cite only one of the many properties of fn(x), recall
that for the mean square error (MSE), we have, when

∫
uK(u)du = 0 and f is

twice continuously differentiable in a neighborhood of x, that

Biasfn(x) := Efn(x)− f(x)

=
1

2
f ′′(x)h2

∫
u2K(u)du+O(h3)
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and

Varfn(x) =
1

nh
f(x)

∫
K2(u)du+ o

(
1

nh

)
whenever n→∞ and h→ 0 such that nh→∞. This implies that

MSEfn(x) = Bias2fn(x) + Varfn(x)

∼ 1

4
(f ′′(x))2h4

[∫
u2K(u)du

]2

+
1

nh
f(x)

∫
K2(u)du (1.1)

The optimal choice of h minimizing the last expression satisfies

h5
opt ∼

1

n

f(x)
∫
K2(u)du

[f ′′(x)
∫
u2K(u)du]2

. (1.2)

If, rather than MSEfn(x) at a fixed x, one considers the integrated MSE as a
measure of fit, i.e.,

MISE =

∫
MSEfn(x)dx,

then the optimal h satisfies, up to remainders,

h5
opt =

1

n

∫
K2(u)du∫

[f ′′(x)]2dx[
∫
u2K(u)du]2

. (1.3)

It is known, see Silverman (1986), that the choice of K has little effect on MSE
and MISE. Rather, the unknown f(x) and f ′′(x) are crucial and prevent one
from a straightforward application of (1.2) or (1.3). One possibility is to choose
a preliminary h1, estimate f(x) and f ′′(x) and then compute an adapted version
of hopt. Another strategy is to determine h in a fully adaptive way by mini-
mizing a cross-validated deviation between fn and f . Finally, a third popular
method consists in referring

∫
[f ′′(x)]2dx in (1.3) to a standard distribution, i.e.,

to compute the integral for a parametric family of centered densities with scale
parameter σ, and then to apply (1.3) with an estimated σ. Silverman (1986)
pointed out that this method may lead to incorrect results when the reference
densities are symmetric at zero but the true but unknown f is multimodal and
thus typically has larger curvature relative to scale. Also, the first method is
not fully satisfactory since it requires the subjective choice of a preliminary h1.
Finally, the cross-validated h is known to be asymptotically optimal but may
show a poor behavior when sample size is small or moderate. See Feluch and
Koronacki (1992).

It is the purpose of this paper to propose and study a fully adaptive approach
which takes into account a modified version of the third method, in which the ref-
erence densities are associated with the true f . In other words, we shall consider
the location scale family generated by the true f . Interestingly enough, to deal
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with bias issues, it will not be necessary to incorporate estimators of f ′′ based
on preliminary choices of h. Also, we shall be able to get estimates of MSE and
MISE and hence adaptive choices of the smoothing parameters.

To begin with, let K0 be a kernel from the location-scale family associated with
f , i.e.,

K0(u) = K0(u, θ, σ) = σf(σu+ θ). (1.4)

For (1.1), with θ = EX and σ = 1, we then get, e.g.,

MSEfn(x) ∼ 1

4
(f ′′(x))2h4Var2X +

1

nh
f(x)

∫
f 2(u)du. (1.5)

The interesting point about (1.5) is that the bias and variance parts contain terms
which reflect both the local and global behavior of f , namely f ′′(x), f(x) and,
respectively, VarX and

∫
f 2. Similarly for MISE.

For example, since typically VarX is small when f ′′(x) is large, (1.5) demonstrates
that rather than choosing a fixed K, a properly chosen kernel from (1.4) may
decrease the bias. The scaling factor σ gives us more flexibility. As will be seen
later this will enable us to choose K0 so as to minimize MSE. Of course, since
f in (1.4) is not available, we have to replace it by fn from above. Hence our
estimator becomes

f̂n(x) ≡ f̂n(x, θ, σ) =
σ

nh

n∑
i=1

fn

(
σ
x−Xi

h
+ θ

)
=

σ

n2h2

n∑
j=1

n∑
i=1

K

(
σx− σXi + θh− hXj

h2

)
.

In other words, the f̂n constitute kernel estimators with the kernels taken from
the location-scale family associated with a classical kernel estimator. The choice
of h, σ and θ will be discussed later.

To reduce a possible bias, our final estimator will be

f̂n(x) =
σ

n(n− 1)h2

∑
i 6=j

K

(
σx− σXi + θh− hXj

h2

)
. (1.6)

We first study the bias and the variance of f̂n(x) for fixed θ and σ. For this, the
following regularity assumptions for K and f will be required:

(A1): K is a symmetric density with compact support, i.e., satisfies

K(−u) = K(u) for all u ∈ R.

3
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(A2): f is twice continuously differentiable in a neighborhood U of x.

Theorem 1.1. Under (A1) and (A2), assume that EX2 <∞. Then, if n→∞
and h→ 0 such that nh→∞, we have

Biasf̂n(x) = σ−1f ′(x)h

∫
f(y)(θ−y)dy+

f ′′(x)h2

2σ2

∫
f(y)(θ−y)2dy+O(h3) (1.7)

and

nhVarf̂n(x) = σf(x)

∫
f 2(y)dy + o(1). (1.8)

Both expansions hold true uniformly in (θ, σ) as long as θ ranges in a compact
set and σ > 0 is bounded away from zero.

The support condition on K is needed to exploit the local structure of the data.
As a consequence, only regularity of f in a neighborhood of x is required. The
assertion of Theorem 1.1 also holds for more general kernels, in which case we also
need some mild regularity conditions for f outside of U . In particular, Theorem
1.1 holds if instead of (A1) and (A2) the following conditions hold:

(B1): K is a bounded symmetric density satisfying∫
|u|3K(u)du <∞.

(B2): f is twice continuously differentiable in a neighborhood of x.

(B3): f is bounded and continuous on the real line.

If we set θ = EX, then the bias reduces to

Biasf̂n(x) =
f ′′(x)h2

2σ2
VarX +O(h3).

Furthermore, if h = o(n−1/5), the bias is negligible and the overall error is domi-
nated by noise. In particular, we get the following result

Theorem 1.2. Under the conditions of Theorem 1.1, if θ = EX and h =
o(n−1/5), then

(nh)1/2[f̂n(x)− f(x)]→ N (0, ρ2) in distribution,

where

ρ2(x) = σf(x)

∫
f 2(y)dy.

4
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In the following result we study the distributional convergence of f̂n(x) when
unknown parameters are estimated, i.e., our estimator equals

f̂n(x) = f̂n(x, θ̂, σ̂). (1.9)

Here, θ̂ = n−1
∑n

i=1Xi and σ̂ is a pre-specified σ or an estimator such that, e.g.,
σ̂ → σ. It is not difficult to see that as a process in (θ, σ)

(nh)1/2[f̂n(x, θ, σ)− f(x)]

is tight in the space of continuous functions, when θ ranges in a compact set, σ is
bounded away from zero and in addition K is continuously differentiable. From
this, the following result is immediate.

Theorem 1.3. Under the conditions of Theorem 1.2., if EX2 < ∞ and σ̂ → σ
in probability, then

(nh)1/2[f̂n(x, θ̂, σ̂)− f(x)]→ N (0, ρ2) in distribution,

where as before

ρ2(x) = σf(x)

∫
f 2(y)dy.

Theorems 1.1 – 1.3 deal with f̂n at a given point x. We only mention in passing
that corresponding results may also be obtained for MISE. This, however, is
beyond the scope of the present paper.

2. Optimal Choice Of Smoothing Parameters

Theorems 1.2 and 1.3 have analogues in the classical kernel estimation literature.
Choosing suboptimal h also there leads to limit distributions with expectation
zero. In such a situation the scale parameter σ should be chosen as small as
possible to make also ρ2(x) small.

It is the purpose of this section to discuss the delicate question how to choose,
in a fully adaptive way and for finite sample size, the smoothing parameter h
and the scale parameter σ so as to minimize MSE and MISE. We only discuss
MSE, the other case requiring similar arguments. Now, the optimal choice of the
smoothing parameters is obtained by minimizing the sum of the leading terms of
(1.7) (squared) and (1.8) at θ = EX:

MSE = Bias2 + Var

=
[f ′′(x)]2h4

4σ4
Var2X +

σf(x)
∫
f 2(y)dy

nh
. (2.1)

5
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The sum depends on h and σ only through a = h/σ. It is minimal when

a5 =
f(x)

∫
f 2

n[f ′′(x)VarX]2
.

This may be achieved by setting h = n−1/5 and

σ5 =
[f ′′(x)VarX]2

f(x)
∫
f 2

. (2.2)

Our last observation should be compared with what happens in the case of the
classical kernel density estimator. There the optimal bandwidth satisfies, see
(1.2),

h5
opt =

f(x)
∫
K2(u)du

n[f ′′(x)
∫
u2K(u)du]2

≡ cn−1

with the (unknown) c depending on f and f ′′. In our case the optimal h is
specified only up to a constant so that h = n−1/5 is feasible. The role of the
critical c is taken by the scale parameter σ, which though is not part of the
original fn. Hence in what follows we may set w.l.o.g. h = n−1/5. Also set, as
before, θ̂ = 1

n

∑n
i=1Xi. Hence MSE is only a function of σ. To find its minimizer,

we shall not, as in classical kernel density estimation, dwell on the expansion of
MSE. Rather we shall employ explicit expressions of Bias and Var. As will be
shown in Section 4, we have

Bias(σ) ≡ Bias =

∫∫
K(u)f(y)f

(
x+

θh− hy − h2u

σ

)
dydu− f(x)

=

∫∫
K(u)f

(
x+

θh− hy − h2u

σ

)
F (dy)du− f(x),

where F denotes the distribution function pertaining to f . Furthermore, it will
be shown there that the variance of f̂n(x) may be approximated by the variance
of its Hájek projection f̂ 0

n(x), namely

σ2h−4n−1Var

[∫
K

(
σx− σX1 + θh− hy

h2

)
F (dy) +

∫
K

(
σx− σz + θh− hX1

h2

)
F (dz)

]
.

See (4.1) below. To estimate these quantities, we introduce the empirical distri-
bution function

Fn(y) =
1

n

n∑
i=1

1{Xi≤y}, y ∈ R.

Then Bias(σ) at θ = EX is estimated by

B̂ias(σ) =

∫∫
K(u)fn

(
x+

θ̂h− hy − h2u

σ

)
Fn(dy)du− fn(x),

6
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while the variance is estimated by the sample variance Vâr of the quantities∫
K

(
σx− σXi + θ̂h− hy

h2

)
Fn(dy) +

∫
K

(
σx− σz + θ̂h− hXi

h2

)
Fn(dz),

i = 1, . . . , n. Our final choice of σ then is the minimizer of

M̂SE(σ) = B̂ias
2
(σ) + σ2h−4n−1V̂ar(σ). (2.3)

For the classical kernel estimator, the variance part also presents no problems and
can be estimated, for each h > 0, through sample variances. The bias, however,
equals

1

h

∫
K

(
x− y
h

)
F (dy)− f(x).

A simple plug-in strategy as for f̂n, replacing F and f by Fn and fn, respectively,
yields B̂ias = 0. Hence the bias problem cannot be easily solved for fn, having led
researchers to (1.1). This, however, constitutes only an analytic approximation of
MSE. The appearance of f ′′ makes things even more complicated, and most of the
work on kernel density estimation in the 1990’s dealt with statistical estimation
of the analytic approximations of MSE and MISE. See Das Gupta (2008) for a
short review. As we have seen in this section, for our new estimator the expansion
(2.1) is of use only to discuss the roles of h and σ. The relevant question of how
to choose σ in a fully adaptive way does not take into account any analytic
approximations but relies on purely statistical arguments yielding (2.3).

It is also of interest to compare the two expressions for MSE, i.e., (1.1) and (2.1),
after an affine transformation of X to a new scale, say X → αX +β, α > 0. The
resulting variable then has density α−1f(x−β

α
). In (1.1), on the new scale, (f ′′(x))2

now needs to be replaced by α−6
(
f ′′(x−β

α
)
)2

, inflating the contribution of the bias
part when α < 1. Compared with that, in (2.1), since Var(αx + β) = α2VarX,
both parts of MSE depend on α in the same way, since they are both functions
of α−2.

3. A Simulation Study

In this section we report on a small simulation study which is designed to show

that the minimizer of M̂SE(σ) in (2.3) yields a reliable choice of σ. In each case
the data came from a standard normal density f . Also the smoothing kernel K
was a standard normal density. Finally, in each case we set x = 0. As argued in
the previous section, for the smoothing parameter h we may set h = n−1/5. In a
simulation study, when we know the true f , we may compute the true bias and
variance and hence MSE. As a consequence the true hopt minimizing MSEfn(0) is

available. Alternatively, we may compute our new estimator f̂n for h = n−1/5 and

7
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with σ varying along the positive real line. Figure 1 below depicts, for a selected

sample, the ingredients of (2.3). We see that B̂ias
2
(σ) decreases as σ increases,

while the variance part increases with σ. As a result, the graph of MŜEf̂n(0) as
a function of σ is a slightly disturbed convex function.

Figure 1: The ingredients of MŜE as a function of σ

In the table to follow we compare, for different sample sizes, the optimal MSE
of fn(0), which is unknown in a real world situation, with MSEf̂n(0) obtained
from minimizing (2.3). Actually, the tables contain summary statistics of Bîas(σ),

Vâr(σ) and MŜE(σ) obtained from M = 1000 replications of samples of size n. It
becomes clear that our adaptive choice of f̂n(0) leads to estimators whose quality
is close to that of the kernel estimator with optimal but unknown bandwidth.

8
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Table 1: Comparison of fn(0) and f̂n(0)

Biasfn(0) Bîasf̂n(0) Varfn(0) Vârf̂n(0) MSEfn(0) MŜEf̂n(0)
n = 20 -0.0426 -0.0512 0.0042 0.0068 0.0060 0.0094
n = 50 -0.0304 -0.0316 0.0024 0.0029 0.0033 0.0039
n = 100 -0.0244 -0.0248 0.0015 0.0018 0.0021 0.0025
n = 200 -0.0188 -0.0187 0.0010 0.0013 0.0014 0.0016

4. Lemmas and Proofs

Proof of (1.7). From (1.6), we have

Ef̂n(x) = σh−2

∫∫
K

(
σx− σz + θh− hy

h2

)
f(y)f(z)dydz.

Putting

u =
σx− σz + θh− hy

h2
,

we obtain, upon noticing that
∫
uK(u)du = 0,

Ef̂n(x) =

∫∫
K(u)f(y)f

(
x+

θh− hy − h2u

σ

)
dydu

=

∫∫
K(u)f(y)

[
f(x) + f ′(x)

θh− hy − h2u

σ
+

1

2
f ′′(x)

(
θh− hy − h2u

σ

)2
]
dydu+O(h3)

= f(x) + σ−1f ′(x)h

∫∫
K(u)f(y)(θ − y)dydu

+
f ′′(x)h2

2σ2

∫∫
K(u)f(y)(θ − y)2dydu+O(h3)

= f(x) + σ−1f ′(x)h

∫
f(y)(θ − y)dy +

f ′′(x)h2

2σ2

∫
f(y)(θ − y)2dy +O(h3),

whence the assertion. �

To study the variance and the distributional behavior of f̂n(x), we introduce its
Hájek projection f̂ 0

n(x) defined as

f̂ 0
n(x) =

σ

nh2

n∑
i=1

[ ∫
K

(
σx− σXi + θh− hy

h2

)
f(y)dy +

∫
K

(
σx− σz + θh− hXi

h2

)
f(z)dz

−
∫ ∫

K

(
σx− σz + θh− hy

h2

)
f(z)f(y)dzdy

]
.

Note that f̂ 0
n(x) is a sum of i.i.d. random variables with

Ef̂ 0
n(x) = Ef̂n(x).

9
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Its variance equals

Varf̂ 0
n(x)

= σ2h−4n−1E
{∫

K

(
σx− σX1 + θh− hy

h2

)
f(y)dy +

∫
K

(
σx− σz + θh− hX1

h2

)
f(z)dz

− 2

∫ ∫
K

(
σx− σz + θh− hy

h2

)
f(z)f(y)dzdy

}2

. (4.1)

In the following Lemma we provide, after a proper scaling, the limit of Varf̂ 0
n(x).

Lemma 4.1. As h→ 0 such that nh→∞, we have

nhVarf̂ 0
n(x) = σf(x)

∫
f 2(y)dy + o(1).

Lemma 4.1 will be an easy consequence of Lemmas 4.3 - 4.5. Together with
Lemma 4.2., this will provide the proof of (1.8) and Theorem 1.2. First we show
that f̂n(x) and f̂ 0

n(x) are, after a proper scaling, asymptotically equivalent.

Lemma 4.2. Under the assumptions of Theorem 1.1, we have

nhE[f̂n(x)− f̂ 0
n(x)]2 → 0 as n→∞, h→ 0 such that nh→∞.

Proof. By definition of f̂n and f̂ 0
n, we have

f̂n(x)− f̂ 0
n(x) =

σ

n(n− 1)h2

∑
i 6=j

[
K

(
σx− σXi + θh− hXj

h2

)
−
∫
K

(
σx− σXi + θh− hy

h2

)
f(y)dy

−
∫
K

(
σx− σz + θh− hXj

h2

)
f(z)dz

+

∫∫
K

(
σx− σz + θh− hy

h2

)
f(z)f(y)dzdy

]
≡ σ

n(n− 1)h2

∑
i 6=j

Hh(Xi, Xj).

It is readily seen that the last sum is a degenerate U -statistic of degree two, i.e.,

E[Hh(Xi, Xj)Hh(Xk, Xj)|Xj] = 0

and

E[Hh(Xi, Xj)Hh(Xi, Xk)|Xi] = 0

10
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for i 6= j 6= k. Conclude that

E[f̂n(x)− f̂ 0
n(x)]2 =

σ2

n(n− 1)h4
EH2

h(X1, X2).

It follows from arguments similar to those used for (1.7) that each of the four
terms in Hh admits a second moment of the order O(h2). Hence

nhE[f̂n(x)− f̂ 0
n(x)]2 = O((nh)−1) = o(1).

�

Lemma 4.3. We have, as h→ 0,

h−3

∫ [∫
K

(
σx− σz + θh− hy

h2

)
f(y)dy

]2

f(z)dz

→ σ−1f(x)

∫
f 2(y)dy.

Proof. The integral equals∫∫∫
K

(
σx− σz + θh− hy1

h2

)
K

(
σx− σz + θh− hy2

h2

)
f(y1)f(y2)f(z)dy1dy2dz.

After putting

u =
σx− σz + θh− hy1

h2
z = x+

θh− hy1 − uh2

σ

it becomes

h2

σ

∫∫∫
K(u)K

(
u+

y1 − y2

h

)
f(y1)f(y2)f

(
x+

θh− hy1 − uh2

σ

)
dy1dy2du.

Another substitution

v =
y1 − y2

h
y2 = y1 − hv

leads to

h3

σ

∫∫∫
K(u)K(u+ v)f(y1)f(y1 − hv)f

(
x+

θh− hy1 − uh2

σ

)
dy1dvdu.

As h→ 0, the last integral tends to∫∫∫
K(u)K(u+ v)f 2(y1)f(x)dy1dvdu = f(x)

∫
f 2(y)dy.

This completes the proof. �
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Lemma 4.4. As h→ 0, we have

h−4

∫ [∫
K

(
σx− σz + θh− hy

h2

)
f(z)dz

]2

f(y)dy

→ σ−2f 2(x).

Proof. The integral equals∫∫∫
K

(
σx− σz1 + θh− hy

h2

)
K

(
σx− σz2 + θh− hy

h2

)
f(z1)f(z2)f(y)dz1dz2dy.

Putting

v =
σx− σz1 + θh− hy

h2
ṽ =

σx− σz2 + θh− hy
h2

the integral becomes

σ−2h4

∫∫∫
K(v)K(ṽ)f

(
x+

θh− hy − vh2

σ

)
f

(
x+

θh− hy − ṽh2

σ

)
f(y)dvdṽdy

∼ σ−2h4

∫∫∫
K(v)K(ṽ)f 2(x)f(y)dvdṽdy = σ−2h4f 2(x),

whence the assertion. �

Lemma 4.5. As h→ 0, we have

h−4

∫∫∫
K

(
σx− σu+ θh− hy

h2

)
K

(
σx− σz + θh− hu

h2

)
f(y)f(z)f(u)dudydz

→ σ−2f 2(x).

Proof. Substituting

w̃ =
σx− σz + θh− hu

h2
,

the above integral becomes

σ−1h2

∫∫∫
K

(
σx− σu+ θh− hy

h2

)
K(w̃)f(y)f(u)f

(
x+

θh− hu− h2w̃

σ

)
dudydw̃.

The substitution

ṽ =
σx− σu+ θh− hy

h2

leads to

σ−2h4

∫∫∫
K(ṽ)K(w̃)f(y)f

(
x+

θh− hy − h2ṽ

σ

)
f

(
x+

θh− hu(ṽ)− h2w̃

σ

)
dydṽdw̃

∼ σ−2h4f 2(x).

12
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�
Proof of Lemma 4.1. It follows from the proof of (1.7) that the third integral in
(4.1) is of the order h2. Conclude from Lemmas 4.3 - 4.5 that

nhVarf̂ 0
n(x) ∼ σ2h−3E

{∫
K

(
σx− σX1 + θh− hy

h2

)
f(y)dy

}2

→ σf(x)

∫
f 2(y)dy.

�

Proof of (1.8). By Hájek’s (1968) lemma,

nh
[
Varf̂n(x)− Varf̂ 0

n(x)
]

= nhE
[
f̂n(x)− f̂ 0

n(x)
]2
.

The conclusion therefore follows from Lemma 4.1 and Lemma 4.2 . �

Theorem 1.2 follows from the fact that under h = o(n−1/5) the bias is negligible
compared with the variance part. Secondly f̂n(x) − f̂ 0

n(x) = o((nh)−1/2) by
Lemma 4.2. Hence it suffices to show asymptotic normality for f̂ 0

n(x). But this
constitutes a sum of i.i.d. random variables, to which the CLT applies. The limit
variance follows from Lemma 4.1. This concludes the proof of Theorem 1.2.

5. Conclusions

Classical kernel estimation faces the problem of estimating and minimizing the
MSE. This is why one often considers an analytic approximation which itself
needs to be approximated. In the present paper we propose and study a new
kernel estimator, which avoids these problems and allows for a direct statistical
analysis of MSE without using analytic expansions. We study the large sample
properties of our estimator, discuss the adaptive choice of smoothing parameters
and show in a small simulation study, that the methodology is reliable already
for small sample sizes.
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