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We propose and study a kernel estimator of a density in which the kernel is adapted to the data but not fixed. The smoothing procedure is followed by a location-scale transformation to reduce bias and variance. The new method naturally leads to an adaptive choice of the smoothing parameters which avoids asymptotic expansions.

Introduction and Main Results

Since [START_REF] Rosenblatt | Remarks on some nonparametric estimates of a density function[END_REF] and [START_REF] Parzen | On the estimation of a probability density function and the mode[END_REF] introduced the kernel estimator of an unknown density f , there have been numerous authors who studied various of its finite and large sample properties. To be more precise, let K be a given function on the real line, the "kernel", and let h > 0 be a given bandwidth or window size. Then, if X 1 , . . . , X n denotes an independent sample from f , the associated kernel estimator is defined as

f n (x) = 1 nh n j=1 K x -X j h .
To obtain a "bona fide" estimator, i.e., one which is itself a density, one has to require K ≥ 0 and K(u)du = 1. [START_REF] Silverman | Density Estimation for Statistics and Data Analysis[END_REF] and Wand and Jones (1995) became standard reference books on kernel methodology. To cite only one of the many properties of f n (x), recall that for the mean square error (MSE), we have, when uK(u)du = 0 and f is twice continuously differentiable in a neighborhood of x, that

Biasf n (x) := Ef n (x) -f (x) = 1 2 f (x)h 2 u 2 K(u)du + O(h 3 ) A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT and Varf n (x) = 1 nh f (x) K 2 (u)du + o 1 nh
whenever n → ∞ and h → 0 such that nh → ∞. This implies that

MSEf n (x) = Bias 2 f n (x) + Varf n (x)

∼ 1 4 (f (x)) 2 h 4 u 2 K(u)du 2 + 1 nh f (x) K 2 (u)du (1.1)
The optimal choice of h minimizing the last expression satisfies

h 5 opt ∼ 1 n f (x) K 2 (u)du [f (x) u 2 K(u)du] 2 .
(1.2)

If, rather than MSEf n (x) at a fixed x, one considers the integrated MSE as a measure of fit, i.e., MISE = MSEf n (x)dx, then the optimal h satisfies, up to remainders,

h 5 opt = 1 n K 2 (u)du [f (x)] 2 dx[ u 2 K(u)du] 2 .
(1.3)

It is known, see [START_REF] Silverman | Density Estimation for Statistics and Data Analysis[END_REF], that the choice of K has little effect on MSE and MISE. Rather, the unknown f (x) and f (x) are crucial and prevent one from a straightforward application of (1.2) or (1.3). One possibility is to choose a preliminary h 1 , estimate f (x) and f (x) and then compute an adapted version of h opt . Another strategy is to determine h in a fully adaptive way by minimizing a cross-validated deviation between f n and f . Finally, a third popular method consists in referring [f (x)] 2 dx in (1.3) to a standard distribution, i.e., to compute the integral for a parametric family of centered densities with scale parameter σ, and then to apply (1.3) with an estimated σ. [START_REF] Silverman | Density Estimation for Statistics and Data Analysis[END_REF] pointed out that this method may lead to incorrect results when the reference densities are symmetric at zero but the true but unknown f is multimodal and thus typically has larger curvature relative to scale. Also, the first method is not fully satisfactory since it requires the subjective choice of a preliminary h 1 . Finally, the cross-validated h is known to be asymptotically optimal but may show a poor behavior when sample size is small or moderate. See [START_REF] Feluch | A note on modified cross-validation in density estimation[END_REF].

It is the purpose of this paper to propose and study a fully adaptive approach which takes into account a modified version of the third method, in which the reference densities are associated with the true f . In other words, we shall consider the location scale family generated by the true f . Interestingly enough, to deal with bias issues, it will not be necessary to incorporate estimators of f based on preliminary choices of h. Also, we shall be able to get estimates of MSE and MISE and hence adaptive choices of the smoothing parameters.

To begin with, let K 0 be a kernel from the location-scale family associated with f , i.e., K 0 (u) = K 0 (u, θ, σ) = σf (σu + θ).

(1.4)

For (1.1), with θ = EX and σ = 1, we then get, e.g.,

MSEf n (x) ∼ 1 4 (f (x)) 2 h 4 Var 2 X + 1 nh f (x) f 2 (u)du.
(1.5)

The interesting point about (1.5) is that the bias and variance parts contain terms which reflect both the local and global behavior of f , namely f (x), f (x) and, respectively, VarX and f 2 . Similarly for MISE.

For example, since typically VarX is small when f (x) is large, (1.5) demonstrates that rather than choosing a fixed K, a properly chosen kernel from (1.4) may decrease the bias. The scaling factor σ gives us more flexibility. As will be seen later this will enable us to choose K 0 so as to minimize MSE. Of course, since f in (1.4) is not available, we have to replace it by f n from above. Hence our estimator becomes fn (x) ≡ fn (x, θ, σ) = σ nh

n i=1 f n σ x -X i h + θ = σ n 2 h 2 n j=1 n i=1 K σx -σX i + θh -hX j h 2 .
In other words, the fn constitute kernel estimators with the kernels taken from the location-scale family associated with a classical kernel estimator. The choice of h, σ and θ will be discussed later.

To reduce a possible bias, our final estimator will be fn

(x) = σ n(n -1)h 2 i =j K σx -σX i + θh -hX j h 2 . (1.6)
We first study the bias and the variance of fn (x) for fixed θ and σ. For this, the following regularity assumptions for K and f will be required:

(A1): K is a symmetric density with compact support, i.e., satisfies

K(-u) = K(u) for all u ∈ R. (A2): f is twice continuously differentiable in a neighborhood U of x.
Theorem 1.1. Under (A1) and (A2), assume that EX 2 < ∞. Then, if n → ∞ and h → 0 such that nh → ∞, we have

Bias fn (x) = σ -1 f (x)h f (y)(θ-y)dy+ f (x)h 2 2σ 2 f (y)(θ-y) 2 dy+O(h 3 ) (1.7) and nhVar fn (x) = σf (x) f 2 (y)dy + o(1). (1.8)
Both expansions hold true uniformly in (θ, σ) as long as θ ranges in a compact set and σ > 0 is bounded away from zero.

The support condition on K is needed to exploit the local structure of the data. As a consequence, only regularity of f in a neighborhood of x is required. The assertion of Theorem 1.1 also holds for more general kernels, in which case we also need some mild regularity conditions for f outside of U . In particular, Theorem 1.1 holds if instead of (A1) and (A2) the following conditions hold:

(B1): K is a bounded symmetric density satisfying

|u| 3 K(u)du < ∞.
(B2): f is twice continuously differentiable in a neighborhood of x.

(B3): f is bounded and continuous on the real line.

If we set θ = EX, then the bias reduces to

Bias fn (x) = f (x)h 2 2σ 2 VarX + O(h 3 ). Furthermore, if h = o(n -1/5
), the bias is negligible and the overall error is dominated by noise. In particular, we get the following result

Theorem 1.2. Under the conditions of Theorem 1.1, if θ = EX and h = o(n -1/5 ), then (nh) 1/2 [ fn (x) -f (x)] → N (0, ρ 2 ) in distribution, where ρ 2 (x) = σf (x) f 2 (y)dy.
In the following result we study the distributional convergence of fn (x) when unknown parameters are estimated, i.e., our estimator equals fn (x) = fn (x, θ, σ).

(1.9)

Here, θ = n -1 n i=1 X i and σ is a pre-specified σ or an estimator such that, e.g., σ → σ. It is not difficult to see that as a process in (θ, σ)

(nh) 1/2 [ fn (x, θ, σ) -f (x)]
is tight in the space of continuous functions, when θ ranges in a compact set, σ is bounded away from zero and in addition K is continuously differentiable. From this, the following result is immediate.

Theorem 1.3. Under the conditions of Theorem 1.2., if EX 2 < ∞ and σ → σ in probability, then (nh) 1/2 [ fn (x, θ, σ) -f (x)] → N (0, ρ 2 ) in distribution,
where as before

ρ 2 (x) = σf (x) f 2 (y)dy.
Theorems 1.1 -1.3 deal with fn at a given point x. We only mention in passing that corresponding results may also be obtained for MISE. This, however, is beyond the scope of the present paper.

Optimal Choice Of Smoothing Parameters

Theorems 1.2 and 1.3 have analogues in the classical kernel estimation literature. Choosing suboptimal h also there leads to limit distributions with expectation zero. In such a situation the scale parameter σ should be chosen as small as possible to make also ρ 2 (x) small. It is the purpose of this section to discuss the delicate question how to choose, in a fully adaptive way and for finite sample size, the smoothing parameter h and the scale parameter σ so as to minimize MSE and MISE. We only discuss MSE, the other case requiring similar arguments. Now, the optimal choice of the smoothing parameters is obtained by minimizing the sum of the leading terms of (1.7) (squared) and (1.8) at θ = EX:

MSE = Bias 2 + Var = [f (x)] 2 h 4 4σ 4 Var 2 X + σf (x) f 2 (y)dy nh .
(2.1)
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The sum depends on h and σ only through a = h/σ. It is minimal when

a 5 = f (x) f 2 n[f (x)VarX] 2 .
This may be achieved by setting h = n -1/5 and

σ 5 = [f (x)VarX] 2 f (x) f 2 . (2.2)
Our last observation should be compared with what happens in the case of the classical kernel density estimator. There the optimal bandwidth satisfies, see (1.2),

h 5 opt = f (x) K 2 (u)du n[f (x) u 2 K(u)du] 2 ≡ cn -1
with the (unknown) c depending on f and f . In our case the optimal h is specified only up to a constant so that h = n -1/5 is feasible. The role of the critical c is taken by the scale parameter σ, which though is not part of the original f n . Hence in what follows we may set w.l.o.g. h = n -1/5 . Also set, as before, θ = 1 n n i=1 X i . Hence MSE is only a function of σ. To find its minimizer, we shall not, as in classical kernel density estimation, dwell on the expansion of MSE. Rather we shall employ explicit expressions of Bias and Var. As will be shown in Section 4, we have

Bias(σ) ≡ Bias = K(u)f (y)f x + θh -hy -h 2 u σ dydu -f (x) = K(u)f x + θh -hy -h 2 u σ F (dy)du -f (x),
where F denotes the distribution function pertaining to f . Furthermore, it will be shown there that the variance of fn (x) may be approximated by the variance of its Hájek projection f 0 n (x), namely

σ 2 h -4 n -1 Var K σx -σX 1 + θh -hy h 2 F (dy) + K σx -σz + θh -hX 1 h 2 F (dz) .
See (4.1) below. To estimate these quantities, we introduce the empirical distribution function

F n (y) = 1 n n i=1 1 {X i ≤y} , y ∈ R.
Then Bias(σ) at θ = EX is estimated by

Bias(σ) = K(u)f n x + θh -hy -h 2 u σ F n (dy)du -f n (x),
while the variance is estimated by the sample variance V ar of the quantities

K σx -σX i + θh -hy h 2 F n (dy) + K σx -σz + θh -hX i h 2 F n (dz), i = 1, . . . , n.
Our final choice of σ then is the minimizer of

MSE(σ) = Bias 2 (σ) + σ 2 h -4 n -1 Var(σ). (2.3)
For the classical kernel estimator, the variance part also presents no problems and can be estimated, for each h > 0, through sample variances. The bias, however, equals

1 h K x -y h F (dy) -f (x).
A simple plug-in strategy as for fn , replacing F and f by F n and f n , respectively, yields Bias = 0. Hence the bias problem cannot be easily solved for f n , having led researchers to (1.1). This, however, constitutes only an analytic approximation of MSE. The appearance of f makes things even more complicated, and most of the work on kernel density estimation in the 1990's dealt with statistical estimation of the analytic approximations of MSE and MISE. See Das Gupta ( 2008) for a short review. As we have seen in this section, for our new estimator the expansion (2.1) is of use only to discuss the roles of h and σ. The relevant question of how to choose σ in a fully adaptive way does not take into account any analytic approximations but relies on purely statistical arguments yielding (2.3).

It is also of interest to compare the two expressions for MSE, i.e., (1.1) and (2.1), after an affine transformation of X to a new scale, say X → αX + β, α > 0. The resulting variable then has density α -1 f ( x-β α ). In (1.1), on the new scale, (f (x)) 2 now needs to be replaced by α -6 f ( x-β α ) 2 , inflating the contribution of the bias part when α < 1. Compared with that, in (2.1), since Var(αx + β) = α 2 VarX, both parts of MSE depend on α in the same way, since they are both functions of α -2 .

A Simulation Study

In this section we report on a small simulation study which is designed to show that the minimizer of MSE(σ) in (2.3) yields a reliable choice of σ. In each case the data came from a standard normal density f . Also the smoothing kernel K was a standard normal density. Finally, in each case we set x = 0. As argued in the previous section, for the smoothing parameter h we may set h = n -1/5 . In a simulation study, when we know the true f , we may compute the true bias and variance and hence MSE. As a consequence the true h opt minimizing MSEf n (0) is available. Alternatively, we may compute our new estimator fn for h = n -1/5 and with σ varying along the positive real line. Figure 1 below depicts, for a selected sample, the ingredients of (2.3). We see that Bias 2 (σ) decreases as σ increases, while the variance part increases with σ. As a result, the graph of M SE fn (0) as a function of σ is a slightly disturbed convex function. In the table to follow we compare, for different sample sizes, the optimal MSE of f n (0), which is unknown in a real world situation, with MSE fn (0) obtained from minimizing (2.3). Actually, the tables contain summary statistics of B ias(σ), V ar(σ) and M SE(σ) obtained from M = 1000 replications of samples of size n. It becomes clear that our adaptive choice of fn (0) leads to estimators whose quality is close to that of the kernel estimator with optimal but unknown bandwidth. 
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Lemmas and Proofs

Proof of (1.7). From (1.6), we have

E fn (x) = σh -2 K σx -σz + θh -hy h 2 f (y)f (z)dydz. Putting u = σx -σz + θh -hy h 2 ,
we obtain, upon noticing that uK(u)du = 0,

E fn (x) = K(u)f (y)f x + θh -hy -h 2 u σ dydu = K(u)f (y) f (x) + f (x) θh -hy -h 2 u σ + 1 2 f (x) θh -hy -h 2 u σ 2 dydu + O(h 3 ) = f (x) + σ -1 f (x)h K(u)f (y)(θ -y)dydu + f (x)h 2 2σ 2 K(u)f (y)(θ -y) 2 dydu + O(h 3 ) = f (x) + σ -1 f (x)h f (y)(θ -y)dy + f (x)h 2 2σ 2 f (y)(θ -y) 2 dy + O(h 3 ),
whence the assertion.

To study the variance and the distributional behavior of fn (x), we introduce its Hájek projection f 0 n (x) defined as

f 0 n (x) = σ nh 2 n i=1 K σx -σX i + θh -hy h 2 f (y)dy + K σx -σz + θh -hX i h 2 f (z)dz - K σx -σz + θh -hy h 2 f (z)f (y)dzdy .
Note that f 0 n (x) is a sum of i.i.d. random variables with E f 0 n (x) = E fn (x).
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Its variance equals

Var f 0 n (x) = σ 2 h -4 n -1 E K σx -σX 1 + θh -hy h 2 f (y)dy + K σx -σz + θh -hX 1 h 2 f (z)dz -2 K σx -σz + θh -hy h 2 f (z)f (y)dzdy 2 . (4.1)
In the following Lemma we provide, after a proper scaling, the limit of Var f 0 n (x). Lemma 4.1. As h → 0 such that nh → ∞, we have

nhVar f 0 n (x) = σf (x) f 2 (y)dy + o(1).
Lemma 4.1 will be an easy consequence of Lemmas 4.3 -4.5. Together with Lemma 4.2., this will provide the proof of (1.8) and Theorem 1.2. First we show that fn (x) and f 0 n (x) are, after a proper scaling, asymptotically equivalent. Lemma 4.2. Under the assumptions of Theorem 1.1, we have

nhE[ fn (x) -f 0 n (x)] 2 → 0 as n → ∞, h → 0 such that nh → ∞.
Proof. By definition of fn and f 0 n , we have fn

(x) -f 0 n (x) = σ n(n -1)h 2 i =j K σx -σX i + θh -hX j h 2 -K σx -σX i + θh -hy h 2 f (y)dy -K σx -σz + θh -hX j h 2 f (z)dz + K σx -σz + θh -hy h 2 f (z)f (y)dzdy ≡ σ n(n -1)h 2 i =j H h (X i , X j ).
It is readily seen that the last sum is a degenerate U -statistic of degree two, i.e.,

E[H

h (X i , X j )H h (X k , X j )|X j ] = 0 and E[H h (X i , X j )H h (X i , X k )|X i ] = 0 A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT for i = j = k. Conclude that E[ fn (x) -f 0 n (x)] 2 = σ 2 n(n -1)h 4 EH 2 h (X 1 , X 2 ).
It follows from arguments similar to those used for (1.7) that each of the four terms in H h admits a second moment of the order O(h 2 ). Hence

nhE[ fn (x) -f 0 n (x)] 2 = O((nh) -1 ) = o(1).
Lemma 4.3. We have, as h → 0,

h -3 K σx -σz + θh -hy h 2 f (y)dy 2 f (z)dz → σ -1 f (x) f 2 (y)dy.
Proof. The integral equals K σx -σz + θh -hy 1 h 2 K σx -σz + θh -hy 2 h 2 f (y 1 )f (y 2 )f (z)dy 1 dy 2 dz.

After putting u = σx -σz + θh -hy 1 h 2 z = x + θh -hy 1 -uh 2 σ it becomes h 2 σ K(u)K u + y 1 -y 2 h f (y 1 )f (y 2 )f x + θh -hy 1 -uh 2 σ dy 1 dy 2 du.

Another substitution v = y 1 -y 2 h y 2 = y 1 -hv leads to h 3 σ K(u)K(u + v)f (y 1 )f (y 1 -hv)f x + θh -hy 1 -uh 2 σ dy 1 dvdu.

As h → 0, the last integral tends to K(u)K(u + v)f 2 (y 1 )f (x)dy 1 dvdu = f (x) f 2 (y)dy.

This completes the proof. Proof. The integral equals K σx -σz 1 + θh -hy h 2 K σx -σz 2 + θh -hy h 2 f (z 1 )f (z 2 )f (y)dz 1 dz 2 dy.

Putting v = σx -σz 1 + θh -hy h 2 ṽ = σx -σz 2 + θh -hy h 2 the integral becomes σ -2 h 4 K(v)K(ṽ)f x + θh -hy -vh 2 σ f x + θh -hy -ṽh 2 σ f (y)dvdṽdy ∼ σ -2 h 4 K(v)K(ṽ)f 2 (x)f (y)dvdṽdy = σ -2 h 4 f 2 (x), whence the assertion.

Lemma 4.5. As h → 0, we have

h -4 K σx -σu + θh -hy h 2 K σx -σz + θh -hu h 2 f (y)f (z)f (u)dudydz → σ -2 f 2 (x).
Proof. Substituting w = σx -σz + θh -hu h 2 , the above integral becomes

σ -1 h 2 K σx -σu + θh -hy h 2 K( w)f (y)f (u)f x + θh -hu -h 2 w σ dudyd w.
The substitution ṽ = σx -σu + θh -hy h 2 leads to σ -2 h 4 K(ṽ)K( w)f (y)f x + θh -hy -h 2 ṽ σ f x + θh -hu(ṽ) -h 2 w σ dydṽd w ∼ σ -2 h 4 f 2 (x).

Figure 1 :

 1 Figure 1: The ingredients of M SE as a function of σ

Table 1 :

 1 Comparison of f n (0) and fn (0)

		Biasf n (0) B ias fn (0) Varf n (0) V ar fn (0) MSEf n (0) M SE fn (0)
	n = 20	-0.0426	-0.0512	0.0042	0.0068	0.0060	0.0094
	n = 50	-0.0304	-0.0316	0.0024	0.0029	0.0033	0.0039
	n = 100	-0.0244	-0.0248	0.0015	0.0018	0.0021	0.0025
	n = 200	-0.0188	-0.0187	0.0010	0.0013	0.0014	0.0016
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Proof of Lemma 4.1. It follows from the proof of (1.7) that the third integral in (4.1) is of the order h 2 . Conclude from Lemmas 4.3 -4.5 that

Proof of (1.8). By Hájek's (1968) lemma,

The conclusion therefore follows from Lemma 4.1 and Lemma 4.2 .

Theorem 1.2 follows from the fact that under h = o(n -1/5 ) the bias is negligible compared with the variance part. Secondly fn (x) -

) by Lemma 4.2. Hence it suffices to show asymptotic normality for f 0 n (x). But this constitutes a sum of i.i.d. random variables, to which the CLT applies. The limit variance follows from Lemma 4.1. This concludes the proof of Theorem 1.2.

Conclusions

Classical kernel estimation faces the problem of estimating and minimizing the MSE. This is why one often considers an analytic approximation which itself needs to be approximated. In the present paper we propose and study a new kernel estimator, which avoids these problems and allows for a direct statistical analysis of MSE without using analytic expansions. We study the large sample properties of our estimator, discuss the adaptive choice of smoothing parameters and show in a small simulation study, that the methodology is reliable already for small sample sizes.