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Abstract—In this paper, we consider the setting of large
scale distributed systems, in which each node needs to quickly
process a huge amount of data received in the form of a stream
that may have been tampered with by an adversary. In this
situation, a fundamental problem is how to detect and quantify
the amount of work performed by the adversary. To address
this issue, we have proposed in a prior work, AnKLe, a one pass
algorithm for estimating the Kullback-Leibler divergence of an
observed stream compared to the expected one. Experimental
evaluations have shown that the estimation provided by AnKLe
is accurate for different adversarial settings for which the
quality of other methods dramatically decreases. In the present
paper, considering n as the number of distinct data items
in a stream, we show that AnKLe is an (ε, δ)-approximation

algorithm with a space complexity Õ( 1
ε
+ 1

ε
2 ) bits in “most”

cases, and Õ( 1
ε
+ n−ε

−1

ε
2 ) otherwise. To the best of our

knowledge, an approximation algorithm for estimating the
Kullback-Leibler divergence has never been analyzed before.

Keywords-Data stream; divergence; randomized approxima-
tion algorithm.

I. INTRODUCTION

The main objective of this paper is the analysis of the

quality of a one pass algorithm, AnKLe [1], in estimating

the similarity between an observed data stream and the

expected (i.e. idealized) one, in the context of massive data

streams. This data may correspond to IP network traffic,

sensors readings, nodes identifiers or any other data issued

from distributed applications. In such contexts, nodes need

to quickly process on the fly the flow of data. Moreover,

nodes can only locally store very limited data and perform

few operations on this data. Additionally, it is often the case

that if some data has not been locally stored for further

processing, once it has been read, it cannot be read anymore

(this refers to the one-pass data streaming model). In this

context, each node needs an efficient algorithm to process

its input sequence. An algorithm is efficient [2] if it is

capable of quickly processing a huge amount of data by

using only poly(1/ε, logm, log n) bits of memory, where

ε is the approximation parameter of the function to be

approximated, m the size of the input data stream and n
the (unknown) number of distinct data items in the stream.

Given these constraint settings — a one-pass analysis of

a huge amount of data with limited resources, both in space

and time— AnKLe detects changes in the observed stream

with respect to an expected behavior by relying on sampling

techniques and information-theoretic methods. The metric

used is the Kullback-Leibler (KL) divergence, which can be

viewed as an extension of the Shannon entropy and is often

referred to as the relative entropy [3].

In this paper, we analyze the quality of AnKLe in approx-

imating the KL divergence between the expected stream and

the observed one. An algorithm A is said to be an (ε, δ)-
approximation of a function φ on σ if for any sequence

of items in the input stream σ, A outputs φ̂ such that

P{| φ̂ − φ |> εφ} < δ, where ε, δ > 0 are given as

parameters of the algorithm.

The paper is organized as follows. First, Section II reviews

the related work on the estimation of the relative entropy

of data streams while Section III describes the data stream

model as well as the concepts of information theory that

we intensively use in this work. Section IV briefly presents

the different buildings blocks the AnKLe algorithm relies on,

and finally Section V presents the analysis of this algorithm.

Finally, we conclude in Section VII.

II. RELATED WORK

In this paper, we consider the Kullback-Leibler (i.e., the

relative entropy) estimation problem. In information theory,

the concept of entropy corresponds to the uncertainty of a

random variable, and as a special case, the entropy of a

stream quantifies the randomness of a data stream. On the

other hand, relative entropy measures the difference between

two distributions, and therefore the data stream relative

entropy quantifies the amount of information separating one

specific observed stream from expected ones.

Previous works have proposed efficient algorithms to

accurately estimate the entropy of a data stream. Most of

these works rely on the seminal algorithm designed by

Alon, Matias and Szegedy [4]. Subsequently to this work,

Guha et al. [5] have considered the entropy estimation

problem in the random stream model, in which items are

randomly distributed in the stream. Chakrabarti et al. [6]

have studied the same problem but assuming the adversarial



stream model, that is, a stream in which the items are

ordered according to an adversarial strategy. Furthermore,

Chakrabarti et al. [6], [7] and Lall et al. [8] have considered

the challenging issue of estimating the entropy accurately

when the entropy is strictly less than one. Such streams

have a few items with a high occurrence frequency while

all the other items appear approximately with the same low

frequency. In order to guarantee a small relative estimation

error in this setting, one needs to decompose the analysis

of the stream into two parts, one part keeping the highly

frequent items and the other part comprising the items with

the same low frequency. More details will be given in

Section IV. A fundamental issue is to derive efficient one

pass algorithms to estimate the relative entropy in presence

of huge amount of data.

III. SYSTEM MODEL AND BACKGROUND

A. Data stream model

We consider a system in which a node P receives a large

data stream σ = a1, a2, . . . , am, where the i-th element ai
of the stream is called an item. In the following, we describe

a single instance of P , but clearly multiple instances of

P may co-exist in a system (e.g., in case P represents a

router, a base station in a sensor network). The value u of

an item is assumed to be drawn from a large universe N
(e.g., |N | ∼ 232) and the length of the stream m can be

very large too. Moreover, items can be repeated multiple

times in the stream. The number of distinct items in the

stream is denoted by n, and thus, we have n < m. We

suppose that items arrive regularly and quickly, and due

to memory constraints, need to be processed sequentially

and in an online manner. Therefore, node P can locally

store only a small fraction of the items and perform simple

operations on them. The algorithms we consider in this work

are characterized by the fact that they can approximate some

function on σ with a very limited amount of memory. We

refer the reader to [9] for a detailed description of data

streaming models and algorithms.

B. Preliminaries

1) Entropy: Intuitively, the entropy is a measure of the

randomness of a data stream σ. The entropy Hσ is minimum

(i.e., equal to zero) when all the items in the stream are the

same, and it reaches its maximum (i.e., equal to logm)1

when all the items in the stream are distinct. Specifically,

we have

Hσ = −
∑

u∈N

pu log pu,

where pu = mu/m, for each u ∈ N , with mu = |{j : aj =
u}| representing the number of times the value u appears

in the stream σ (by convention, 0 log 0 = 0). Without loss

of generality, we assume that the items are ordered so that

1Thereafter, we will denote by log the logarithm in base 2.

m1 ≥ m2 ≥ . . . ≥ mn. Note that the number of times mu

item u appears in a stream is commonly called the frequency

of item u. The norm of the entropy is defined as FH =
∑

u∈N mu logmu.

2) Kullback-Leibler divergence: The Kullback-Leibler

(KL) divergence [10], also called the relative entropy, is

a robust metric for measuring the statistical difference be-

tween two data streams. The KL divergence is a member

of a larger class of distances known as the Ali-Silvey

distances [11]. Given two probability distributions on events

p = {p1, . . . , pn} and q = {q1, . . . , qn}, the Kullback-

Leibler divergence between p relative to q is defined as the

expected value of the likelihood ratio with respect to q:

D(p||q) =
∑

u∈N

pu log
pu
qu

= H(p, q)−H(p),

where H(p) = −
∑

pu log pu is the (empirical) entropy of p
and H(p, q) = −

∑

pu log qu is the cross entropy of p and q.

As we use a logarithm in base 2, the divergence is measured

in bits. When pn = qn, the KL divergence is minimal

and is equal to zero. Let p(U) be the uniform distribution

corresponding to a uniform stream (i.e., ∀u ∈ σ, p
(U)
u = 1

n
),

and q be the probability distribution corresponding to the

input stream. In the rest of this paper and according to the

classical use of the KL-divergence, we consider D(q||p(U))
as a measure of the divergence of the current stream from

the ideal one. While all the distance measures in the Ali-

Silvey distances are applicable to quantifying statistical

differences between data streams, the KL divergence is

particularly suited to our context since it gives rise to a small

number of false positives when the two data streams are not

significantly different.

3) Frequency moments: Frequency moments are impor-

tant statistical tools that have been introduced by Alon et

al. [4]. Computing frequency moments Fk allows to quantify

the amount of skew in a data stream. For each k ≥ 0, the k-th

frequency moment Fk of σ is defined as Fk =
∑

u∈N mk
u,

where mu represents the number of occurrences of u in

the stream (c.f. the definition of mu above). Among the

remarkable moments, F0 represents the number n of distinct

elements in a stream while F1 corresponds to the size m of

the stream.

IV. THE ANKLE ALGORITHM

A. Building Blocks

In this section, we briefly describe three algorithms that

form the building blocks of the AnKLe algorithm. All these

algorithms have been designed in the stream data model (cf.

Section III).

1) Estimating the kth Moment of a Stream: The AnKLe

algorithm is inspired from the method of Alon et al. [4]

(called in the following the AMS algorithm), to approximate

the KL divergence of a stream. The AMS algorithm esti-

mates the k-th frequency moment of a stream as follows. It



computes a basic estimator which takes the form of a random

variable X whose mean value is exactly equal to the kth

frequency moment of a stream and whose variance is very

small. Specifically, X is defined as X = m(rk − (r− 1)k),
where r is the exact number of times element v appears in

the stream from a uniformly and randomly chosen position

p (we have ap = v) in the stream onwards. To improve

the accuracy of the estimation, several independent basic

estimators are computed on the stream (specifically s1 × s2
basic estimators Xij , for 1 ≤ i ≤ s1 and 1 ≤ j ≤ s2,

for s1 × s2 positions uniformly chosen at random in the

stream σ), and the final estimator Y is set to be Y =

median1≤j≤s2

(

1
s1

∑s1
i=1 Xij

)

.

Theorem 1 ([4]) For any ε, δ ∈ (0, 1), if s1≥
V ar[X]/(ε2E[X]2) and s2 = 4 log(1/δ), then Y is a (ε, δ)-
approximation of E[X], i.e., P{| E[X]−Y |> εE[X]} < δ.

2) Estimating the Number of Items in the Stream: The

second algorithm due to Kane et al. [12] (referred to as the

KNW algorithm in the following) computes an estimation

F̂0 of the number of distinct items F0 in a stream. The

KNW algorithm builds upon the approaches proposed in [13]

and [14] to optimally estimate F0 both in space and update

time. Briefly, the basic procedure consists in hashing all the

received data items to a bit vector, so that each data item is

mapped to bit i in the vector with probability 2−(i+1). The

returned value of the procedure is a function of r, where r
is such that the r rightmost bits in the bit vector are all 0.

To obtain a good estimator, the median value of k instances

of the same procedure (using different hash functions) is

returned.

Theorem 2 ([12]) For any ε, their algorithm outputs F̂0

such that P{|F̂0−F0| > ε} < δ where δ = 2/3. The worst-

case running time for each input symbol is O(1), and the

total space required by the algorithm is O(1/ε2 + log n)
bits, which makes this algorithm optimal.

3) Determining Frequent Identifiers of a Stream: Misra

and Gries [15] have proposed a deterministic algorithm that

outputs items that occur more than m
k

in a stream. Their

algorithm maintains k counters such that for each counter,

its key is the item read from the stream and its value is

related to the frequency of items. When an item is read from

the stream, if that item has already a counter associated to it,

then this counter is incremented. If this is not the case and if

there are still free counters available, then one of these free

counters is allocated to this new item and its value is set to

1. Otherwise, all the allocated counters are decremented by

one, and if after this operation, some of them are equal to

0 then their keys are erased and the counters are released.

Theorem 3 ([15]) The Misra and Gries [15] algorithm

with parameter k returns for any data item j an estimate

m̂j such that mj−
m
k
≤ m̂j ≤ mj with O(k(logm+log n))

bits of space.

B. The AnKLe algorithm

For self-containment reasons, the pseudo-code of AnKLe

is presented in Figure 1. Its principle stems from a rewriting

of the KL divergence. From Definition 1, we have

D(qσ||p
(U)) =

n
∑

i=1

qi log (qi)−

n
∑

i=1

qi log
(

p
(U)
i

)

= log(n)− log(m) +
1

m

n
∑

i=1

mi log (mi) .

(1)

Thus estimating the KL-divergence amounts in (i) estimating

the number of distinct items in the stream (i.e., F0) in order

to obtain a good approximation of log(n), and (ii) estimating
∑n

i=1 mi log (mi), which corresponds to the norm of the

entropy FH . While the first point is solved by relying on

the KNW [12] algorithm, the second point is tackled by

extending the approach proposed by Alon et al. [4] to deal

with arbitrary distributions of items in the input stream.

The pseudo-code of AnKLe consists of two phases, the

first one (lines 3–11) is executed upon reception of the items

of the stream, while the second one (lines 12–19) is run

when m items have been read from the stream. The first

phase is composed of three tasks (T1, T2 and T3), executed

in parallel. Task T1 estimates the number of distinct items

present in the stream, Task T2 identifies the k most frequent

items in the stream, and Task T3 samples random items

in the stream in order to compute their exact frequency.

Specifically, Task T3 (lines 8–11) consists in running a

sampling estimator X on the stream. The basic estimator

X = Xi,j is designed so that its mean value is equal to

the norm of the entropy FH and its variance is small. More

precisely, we have

X = m(r log r − (r − 1) log(r − 1)) (2)

where r is the random variable representing the number of

occurrence of an item ℓ in the stream. This item ℓ is such

that its position j in the stream is a random number in [m].
The random variable r counts the number of times ℓ appears

in the stream from position j onwards. Formally, r is defined

as

r =| {j : j ≥ ℓ, aj = aℓ} | .

We can show as in [4], [8], that the basic estimator X
is unbiased (i.e., the expectation of X is equal to FH ).

Specifically,

E[X] =
1

m

n
∑

i=1

mi
∑

j=1

m(j log j − (j − 1) log(j − 1))

=
m

m

n
∑

i=1

mi log(mi)

= FH . (3)



Input: An input stream σ of length m, c (number of counters in the Misra-Gries algorithm), s1 and s2 (for the size of

the AMS-based matrix), k
Output: An estimation of D(qσ||p

(U)), the KL divergence between the observed stream and the uniform one

Choose s1 × s2 random integers in [1. .m];1

for u1 ∈ [0. . s1], u2 ∈ [0. . s2] do S[u1, u2]← (⊥,⊥);2

for aj ∈ σ do3

v = aj ;4

Task T1: F̂0 ← KNW Algorithm (Algorithm [12]) fed with v;5

Task T2: F̂ ← Misra-Gries Algorithm (Algorithm [15]) fed with v;6

Task T3:7

forall entries i of matrix S such that (si, ri) 6= (⊥,⊥) do8

if si = v then ri ← ri + 1;9

if j is one the s1 × s2 random integers then10

assign (v, 1) to the first unused entry of S;11

F̂ ← the k most frequent items (si, ri) of F̂ and such that ri > e;12

forall entries i of matrix S do13

if (si,−) ∈ F̂ then (si, ri)← (si,−) ;14

else (si, ri)← (si,m (ri log ri − (ri − 1) log(ri − 1));15

YS ← median1≤j≤s2

(

1
s1

∑s1
i=1 Sij

)

;16

YF̂ ←
∑

(si,ri)∈F̂ ri log ri;17

p← 1−max

(

0,
min

(

Ys, YF̂

)

−m

10 ·m

)

;
18

return D̂ = log F̂0 − logm+ p
m

(

YS + YF̂

)

;19

Figure 1. AnKLe Algorithm

To improve the accuracy of the estimation, s1 × s2 such

basic estimators Xij (for 1 ≤ i ≤ s1 and 1 ≤ j ≤ s2) are

used, each one sampling a random position in the stream.

Tracking these estimators consists in storing s1×s2 counters,

each one counting the number of occurrences of an item

whose position has been randomly chosen in the stream.

Thus for each of these “tracked” items, an exact count of

their frequency is continuously maintained starting from a

random position in the stream.

The post-processing phase of AnKLe algorithm estimates

the KL divergence of the input stream according to Relation

(1). This phase is executed when m items have been read

from the input stream. In this work, we suppose that m is a

parameter of the algorithm, however by using techniques

proposed in Chakrabarti et al. [7] we should be able to

extend our solution to streams whose size is a priori

unknown. To accurately estimate the KL divergence of the

stream, one needs to cope with patterns in which a small

number of items occur with a very high frequency with

respect to the other items. When such patterns occur, the

basic estimator X alone is unable to compute the norm of

the entropy in bounded space [7]. Indeed, by analogy of the

calculation performed in [4], the variance of the estimator

grows with the norm of the entropy. Thus in presence of

high frequency patterns, one needs to estimate the norm

of the entropy using a different approach. AnKLe extends

the solution proposed in Chakrabarti et al., that consists in

decomposing the computation of the entropy as the sum of

the entropy of the k most frequent items and the estimation

of the entropy of the remaining items of the stream.

Note that as previously mentioned, running the algorithm

of Misra-Gries with k counters allows to output items that

occur more than m
k

times in the stream of length m. In our

case, we need a stronger property in the sense that we want

to detect the k most frequent items. This can be achieved by

increasing the number of counters maintained by the Misra-

Gries algorithm so that if the frequency of any two items in

the stream differs by at least εmk then this is reflected in

their estimated frequency value (see Section V).

Hence, the basic estimator X is computed on unfrequent

items (cf., lines 12–15) as done in Relation (2), while the

contribution of the most frequent items on the norm of the

entropy is directly computed as
∑

(si,ri)∈F̂ ri log ri (cf., line

17). Finally, to prevent some of the items to appear in both

terms, we weight the contribution of both terms by p (cf.,

line 18).



V. ANALYSIS

In this section, we analyze the properties of the AnKLe

algorithm given in Figure 1. This analysis is split into

three phases. We first evaluate the quality of YF̂ through

Lemmatta 5, we then evaluate the quality of YS through

Lemmatta 6 and 7, and finally derive the quality of AnKLe

algorithm by combining the previous results with the one

of [12] with Lemma 8.

In order to state the main theorem, we introduce the

following notations: Let K be the set of the most frequent

items i that satisfy m̂i > e (if any) returned at line 12

in Figure 1. Let ns and ms be respectively defined as

ns = n − |K| and ms = m −
∑

k∈K mk. Parameter ns

represents the number of the so-called “sparse” items (i.e.,

the remaining items of the stream after having removed the

most frequent ones as identified by Task T2 and after the

execution of line 12). In the same way, ms represents the

sub-stream of the original stream occupied by these sparse

items. Finally, the norm of the entropy of this sub-stream is

denoted by F s
H .

Theorem 4 For any δ and ε such that 1/3 < δ < 1 and

0 < ε < 1
2 , and for any constant ∆ > 0, the AnKLe algo-

rithm gives an (ε, δ)-approximation of the KL-divergence,

using

O

(

log n+
1

ε2
+

(

1

ε
+

µ

ε2
log

1

δ

)

(log n+ logm)

)

bits of space where µ = (logm+ log e− 1) if F s
H ≥

m2

∆ms

,

and µ = (n− 1
ε
− 1) otherwise.

In particular, taking ∆ to be a constant, we have a poly-

logarithmic space algorithm that works on streams whose

F s
H is not “too small”. Note that this is the case for most of

the streams, as Task T2 aims to remove the most frequent

items, raising then the norm of the entropy of the sparse

sub-stream.

Proof: The first part of the proof is directly derived

from Lemma 8. Regarding the space complexity of AnKLe,

it is given by the sum of the complexity of each Task T1,

T2 and T3 added up with the space required for the post-

processing phase, which is O(1). From respectively [12],

[4], [15], we get that the space complexity of AnKLe is

O (CKNW + CMG + CAMS), where:






CKNW = O
(

log n+ 1
ε2

)

[12]
CMG = O (c(log n+ logm)) [4]
CAMS = O (s1s2(log n+ logm)) [15].

Using Lemmata 5 and 6, and the hypothesis on c, s1 and

s2 presented in Equation 5 (cf., Section V-C), we obtain the

statement of the theorem.

We now show a series of results that prove lemmata 5, 6

and 8.

A. Evaluation of YF̂

The following lemma computes the quality of YF̂ .

Lemma 5 For any ε > 0, we have P{|YF −YF̂ | > εYF } =
0, where YF̂ is defined at line 17 in Figure 1.

Proof: We first show that by running the Misra-Gries

algorithm [15] with c counters (instead of k, with c > k),

we guarantee that the k most frequent items in the stream

can be detected.

From Misra-Gries algorithm [15], we know that for any

item i ∈ [n] the estimated frequency m̂i returned by the

algorithm is lower or equal than the real one mi. Moreover,

the difference between mi and m̂i is no more than m
c

(c.f.,

Theorem 3).

Now, let i and j be two items such that mi−mj ≥
m
c

. We

have m
c
+mj ≤ mi ≤

m
c
+ m̂i. Combined with m̂j ≤ mj ,

we get that m̂i ≥ m̂j . As a consequence, if the number of

counters c satisfies c ≥ 2m
εmk

then for any two items i and j
such that mi ≥ mj+

ε
2mk, we will be able to distinguish that

m̂i ≥ m̂j . Which proves the first part of the lemma. Now, by

extracting the k items with the highest estimated frequency

(among the c ones returned by the algorithm), we guarantee

that these k items are the most frequent items in the stream.

By convention (cf., Section III-B), and by definition of K,

any of these k most frequent items i (if they exist) belong

to K and are such that mi ≥ mk, where mk ≥ e.

The function x 7→ log x
x

is a decreasing function for any

x ≥ e. Thus, for any i ∈ K, mi log m̂i ≥ m̂i logmi. Thus

mi logmi − m̂i log m̂i

= (mi − m̂i) logmi + m̂i(logmi − log m̂i)

≤ (mi − m̂i) logmi + (mi − m̂i) log m̂i

≤ 2(mi − m̂i) logmi

≤ εmk logmi

≤ εmi logmi.

Finally,
∑

i∈K

mi logmi −
∑

i∈K

m̂i log m̂i ≤ ε
∑

i∈K

mi logmi.

Consequently, P{|YF − YF̂ | > εYF } = 0, which ends the

proof of the Lemma.

B. Evaluation of Ys

Let Xs be the same estimator as X (which has been

defined in Section IV-B), but Xs is defined only on sparse

items in the stream. From a derivation similar to the one

used in Relation (1), Xs is an unbiased estimator of F s
H .

Lemma 6 ∀ε, δ > 0, it exists s1 and s2 such that

P{|Ys − F s
H | > εF s

H} < δ.

Proof: By definition, {Xi,j}i∈[s1],j∈[s2] is a collection

of independent random variables with each Xi,j distributed



identically to Xs. We recall form the algorithm that

Ys = medianj∈s2





1

s1

∑

i∈[s1]

Xi,j



 .

Given ε and δ, we show in the following that there exists

a positive constant η such that if s1 = 3V [Xs]
ε2E[Xs]2 and s2 =

η log 1
δ

, we have P{|Ys − F s
H | > εF s

H} < δ.

For each j ∈ [s2], consider Yj = 1
s1

∑

i∈[s1]
Xi,j . Then,

by linearity of expectation, we have E[Yj ] = F s
H . Since the

variables Yi,j are (at least) pairwise independent, we have

V [Yj ] =
1

s1

∑

i∈[s1]

V [Xi,j ] =
V [Xs]

s1
.

Applying Chebyshev’s inequality, we have

P{|Yj − F s
H | > εF s

H} <
V [Yj ]

(εF s
H)2

=
V [Xs]

s1ε2E[Xs]2
=

1

3
.

Given the fact that we run s2 copies of this estimator Yj in

parallel, by a standard Chernoff bound, the probability that

the median of these estimations exceeds 3Xs is 2−Ω(s2).

Similarly, the probability that the median is below Xs

3 is

also 2−Ω(s2). By choosing s2 = Θ(log 1
δ
), we can make the

sum of these two probabilities work out at most δ. Then, it

exists an appropriate choice of η that give us

P{|Ys − F s
H | > εF s

H} < δ

that concludes the proof.

We now derive a relation between E[Xs] and V [Xs] to

deduce an estimation on the size of s1.

Lemma 7 Let us consider the sub-stream ms populated by

sparse items. Then, for any constant ∆ > 0 if F s
H ≥

m2

∆ms

then

V [Xs] ≤ ∆(logm+ log e− 1)E[Xs]2

otherwise

V [Xs] ≤ (ns − 1)E[Xs]2.

Proof: Consider the variance of Xs.

V [Xs] = E[Xs2]− E[Xs]2

= ns





∑

i∈[n]\K

n2m2
i log

2 mi

n2
s



− E[Xs]2

≤ nsE[Xs]2 − E[Xs]2

as the sum of square is lower than the square of the sum.

We can drastically improve this bound when the norm of the

entropy of the sub-stream F s
H is not too small, i.e., when

F s
H ≥

m2

∆ms

, (4)

where ∆ is positive constant. Let g : x 7→ x log x. Following

the same approach as [6], we have:

E[Xs2] =
1

ms

ns
∑

i=1

mi
∑

j=1

m2(g(j)− g(j − 1))2

≤
m2

ms

· max
1≤j≤m

{g(j)− g(j − 1)} · F s
H

=
m2

ms

· sup{g′(x) : x ∈ (0;m]} · F s
H

≤
m2

ms

(log e+ logm)F s
H

≤ ∆(log e+ logm)F s
H

2 (from Equation 4)

≤ ∆(log e+ logm)E[Xs]
2

that conclude the proof.

C. Evaluation of D̂

As |K| < 1/ε, we are now able to explicitly give the

value of all the parameters of tasks T2 and T3:















































c = O

(

1

ε

)

s1 =















O

(

logm+ log e− 1

ε2

)

if F s
H ≥

m2

∆ms

O

(

ns − 1

ε2

)

otherwise

s2 = O

(

log
1

δ

)

(5)

Using these values, we have the necessary material to de-

rive the global quality of AnKLe. First of all, by linearity of

expectation, the random variable D is an unbiased estimator

of D(qσ||p
(U)), given by Equation 1.

Lemma 8 Given ε > 0 and δ > 1
3 , we have

P

{

|D̂ −D(qσ||p
(U))| > εD(qσ||p

(U))
}

< δ.

Proof: Let δ′ = δ − 1
3 . Then we have δ′ > 0.

Combining the independence of Ys and YF̂ and Lem-

mata 5 and 6, we have:

P{|Ys + YF̂ − E[Ys + YF̂ ]| > εE[Ys + YF̂ ]}

≤ P{|Ys − E[Ys]| > εE[Ys]}

+ P{|YF̂ − E[YF̂ ]| > εE[YF̂ ]}

< δ′

By definition of D(qσ||p
(U)) in Relation 1 and D̂ in



AnKLe algorithm at line 19, we have :

P{|D̂ −D(qσ||p
(U))| > εD(qσ||p

(U))]}

≤ P{| log F̂0 − logF0| > ε logF0}

+ P

{

1

m
|F̂H − FH | >

ε

m
E[FH ]

}

≤
1

3
+P

{

1

m
|F̂H − FH | >

ε

m
E[FH ]

}

(from [12])

≤
1

3
+P

{

|Ys + YF̂ − E[Ys + YF̂ ]| > εE[Ys + YF̂ ]
}

<
1

3
+ δ′ = δ

that concludes the proof.

VI. PERFORMANCE EVALUATION

Intensive executions of AnKLe have been presented in [1].

In this paper, we do not recall all these results but summarize

them.

The accuracy of AnKLe has been evaluated by comparing

its estimation of the KL divergence with the exact value

of the KL divergence computed between an observed input

stream and an uniform one. We have also compared AnKLe

to adapted versions of the estimator-based algorithms of

Alon et al. [4] and Chakrabarti et al. [7]. In the former case,

the original estimator computes the k-th frequency moment

of a stream, while in the latter case, the original estimator

measures the entropy of a stream. In both cases, we have

adapted both algorithms to compute instead the norm of the

entropy.

All the experiments have been conducted on synthetic

traces of streams whose distributions are: Uniform, Zipf

(aka power law) with parameter α ∈ {1, 2, 4}, Binomial

and Pascal (aka Negative Binomial).

Figure VI summarizes the results obtained for the AnKLe,

AMS and CCM estimators, averaged over 45,000 exper-

iments (i.e. 750 different settings with 10 repetitions for

each setting, over 6 distributions). For clarity of the Figure,

the average value of CCM for Zipf with α = 1 has been

cropped, as the estimated value of the KL divergence by

CCM is around 8.3.

These results clearly show that AnKLe outperforms the

estimator CCM for all the distributions, even in scenario

in which CCM should excel (i.e., Zipf with α = 4), as this

corresponds to a stream in which a very frequent item exists

in the observed stream. Compared with the AMS estimator,

the results obtained with AnKLe are for most of them better

except for the Zipf distribution with α = 2. But even for this

specific distribution, the standard deviation of AnKLe is four

times smaller than the one of AMS (i.e., 0.09 versus 0.36),

thus demonstrating that AnKLe provides a more robust and

stable estimation than AMS on this distribution.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed the analysis of AnKLe,

a randomized algorithm for estimating the KL divergence

between the observed stream and the expected one. As

initially raised in [1], AnKLe requires a single pass over the

data stream to estimate the KL divergence. In this paper,

we characterize how the different parameters impact the

precision of the estimation and the space complexity of

AnKLe (and vice-versa). We have shown that AnKLe is

an (ε, δ)-approximation algorithm with a space complexity

Õ
(

1
ε2

+ 1
ε

)

bits in “most” of the cases.

While we have supposed so far that the length of the

stream m is a parameter that has to be fixed in advance,

we left as future work the design of an extension of the

algorithm for which the length is not specified in advance

by using windowing techniques as the one proposed by

Chakrabarti et al. [7].
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