
HAL Id: hal-00725096
https://hal.science/hal-00725096

Submitted on 23 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

DYNAM: Proceedings of the 1st International
Workshop on Dynamicity

Lélia Blin, Yann Busnel

To cite this version:
Lélia Blin, Yann Busnel. DYNAM: Proceedings of the 1st International Workshop on Dynamicity.
LAAS / CNRS, pp.22, 2011. �hal-00725096�

https://hal.science/hal-00725096
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

DYNAM

Proceedings of the 1st International Workshop on Dynamicity

Collocated with OPODIS 2011 / Toulouse, France

Editors: Lélia Blin and Yann Busnel

December 12, 2011

Contents

I Foreword 3

1 Scope 4

2 Chairs and committee 5

3 Author Index 6

II Papers 7

A Dynamic mechanism for solving Interfering Adaptations in Ubiquitous

Computing Environment 8

Sana Ben Abdenneji Fathallah, Stéphane Lavirotte and Jean- Yves Tigli

Member Classification and Party Characteristics in Twitter during UK Elec-

tion 10

Antoine Boutet and Eiko Yoneki

A distributed algorithm for path maintaining in dynamic networks 12

Farah El Ali and Bertrand Ducourthial

Towards Temporal Mobility Markov Chains 14

Sebastien Gambs, Marc-Olivier Killijian and Miguel Nunez Del Prado Cortez

Towards dynamic graph analysis: a position note 16

Erwan Le Merrer and Gilles Trédan

1

Toward a Solution to Partitionable Group Membership for MANETs 18

Léon Lim and Denis Conan

Understanding community evolution in Complex systems science 20

Qinna Wang and Eric Fleury

2

Part I

Foreword

3

Chapter 1

Scope

Dynamicity is a fundamental aspect of today’s distributed applications. Large-scale sys-
tems and networks are now standard, yet designing, analyzing and taking into account
their dynamicity raises many challenges.

The DYNAM workshop aims at fostering discussion on theoretical aspects of dynamicity
among participants from different research areas like algorithm theory, distributed systems,
networks and databases. The goal of DYNAM is to bring together researchers from such
diverse fields of expertise.

Topics of interest cover all aspects of dynamicity, including, without being limited to:

• Large-scale dynamic distributed systems

• Modeling dynamic environment

• Distributed algorithms in dynamic networks

• Self-* dynamic computation

• Complexity measures and analysis of dynamic algorithms

• Performance modeling and prediction based on analytic approaches

• Application field of dynamicity: P2P, Sensor and Mobile networks, Social networks

• Fault-tolerance, reliability, availability in dynamic environment

The workshop is looking for contributions addressing research, ongoing work, ideas, con-
cepts, and critical questions related to algorithmic and modeling aspects of dynamic com-
puting. The final workshop program will include both talks presenting novel contributions
and keynote presentations.

4

Chapter 2

Chairs and committee

General co-chairs

Lélia Blin, Universit d’Evry Val d’Essonne, LIP6, France

Yann Busnel, Universit de Nantes, LINA, France

Program Committee

Lélia Blin Université d’Evry Val d’Essonne, LIP6
Yann Busnel University de Nantes
Shantanu Das The Technion-Israel Institute of Technology
Fabiola Greve Federal University of Bahia (UFBA)
David Ilcinkas CNRS Bordeaux
Anne-Marie Kermarrec INRIA, Rennes Bretagne Atlantique
Mikel Larrea University of the Basque Country
Leonardo Querzoni Sapienza, Università di Roma
Etienne Rivière Université de Neuchâtel
Gilles Tredan Technische Universität Berlin

5

Chapter 3

Author Index

Ben Abdenneji Fathallah, Sana 1
Boutet, Antoine 3

Conan, Denis 7

Ducourthial, Bertrand 4

El Ali, Farah 4

Fleury, Eric 9

Gambs, Sebastien 5

Killijian, Marc-Olivier 5

Lavirotte, Stéphane 1
Le Merrer, Erwan 6
Lim, Léon 7

Nunez Del Prado Cortez, Miguel 5

Tigli, Jean- Yves 1
Trédan, Gilles 6

Wang, Qinna 9

Yoneki, Eiko 3

6

Part II

Papers

7

Toward a Solution to Partitionable Group Membership for MANETs

Léon Lim and Denis Conan

Institut Télécom, Télécom SudParis

UMR CNRS Samovar

{Leon.Lim,Denis.Conan}@telecom-sudparis.eu

Keywords: MANETs, dynamic partitionable systems, partitionable group membership, abortable consensus.

Context of the study

Ubiquitous computing environments are characterised by a diversity of mobile nodes and networks, and in
particular, mobile ad-hoc networks. Mobile Ad-hoc NETworks (MANETs) are self-organising networks that lack
a fixed infrastructure, and due to nodes arrivals, departures, crashes and movements, they are very dynamic
networks. The topology changes occur both rapidly and unexpectedly and nodes (processes) can dynamically
enter and leave the system. Thus, a distributed system built over MANETs can be partitioned. Distributed
systems that are built over MANETs must be partition-tolerant, that is network partitioning may result in a
degradation of services, but not necessarily in their unavailability. Fault-tolerant applications in partitionable
system models generally rely on the two services of Group Communication System: (1) group membership service
and (2) reliable multicast service. Informally, group membership specifies the view a process has on the current
group it belongs to whereas reliable multicast provides reliable message diffusion within the same group. In
this work, we focus on the group membership service, and more precisely, on group membership services for
partitionable systems built over MANETs.

Group membership in dynamic and partitionable systems

Group membership consists of two sub-problems [10]: (i) determining the set of processes that are currently
up, and (ii) ensuring that processes agree on the successive value of the this set. In the literature, two types
of group membership services have emerged: primary-partition [9] and partitionable [5, 2]. Roughly speaking,
primary-partition group membership maintains a single agreed view of the group. Such a group membership is
intended for classical not-partition-tolerant systems. Since only a single view of the group can exist, primary-
partition group membership requires strong assumptions on the system to satisfy the agreement property. These
assumptions are strong enough to show that group membership is impossible in systems with crash failures [4].
In contrast to primary-partition ones, partitionable group memberships allow processes to disagree on the current
membership of the group. Collaborative applications [3], resource allocation management [1], and distributed
monitoring [7] are examples of applications that support permanent partitioning and thus go on running on
multiple partitions. Such partitions may present some eventual stability [6] so that liveness of the computation
can be guaranteed, that is a stability period lasts long enough so that eventually all the participant nodes of
the partition are connected to each other and can communicate in a timely manner. Partitions can merge into
larger partitions when the communication links between them are re-established. Thus, partitionable group
memberships allow split and merge operations on partitions. By allowing disagreement, they escape from the
impossibility result of [4]. However, they run into another fundamental issue. Specifying partitionable group
membership for partitionable systems faces two orthogonal goals [4, 8]: (1) the specification must be weak
enough to be solvable (implementable); and (2) it must be strong enough to simplify the design of fault-tolerant
distributed applications in partitionable systems.

Open issues in the specification of partitionable group membership

To be useful, a partitionable group membership service must ensure at least the virtual synchrony property which
is considered in the literature to be a basic property of partitionable membership services [5]. Two prominent
specifications of partitionable group membership that ensure virtual synchrony are [5] and [2]. They sketch the
two categories of partitionable group membership specifications which have been proposed in the literature and
which differ about their liveness property: (1) liveness must hold only in stable partitions [5], and (2) liveness

1
8

must be ensured in every partition [2]. In [5], the authors define a completely stable partition as “a set of processes
that are eventually alive and connected to each other, and the link from any process in this set to any process
outside the set is down”. The specification of [5] does not ensure liveness of the system when two processes p

and q are forever intermittently reachable. This unstable case disappears in the specification of [2] with the
consideration of fair channels, and thus [2] guarantees liveness not only in stable partitions. However, as shown
in [8], these two specifications are not satisfactory. For instance, the specification in [5] can be satisfied by a
“trivial but useless implementation” and the specification in [2] cannot be implemented without strong synchrony
assumptions. Furthermore, the system model in both [5, 2] is static and the network is initially fully connected.

Partitionable group membership as a sequence of abortable consensus

In our work, we propose a system model that characterises the dynamic behaviour of stable partitions in MANETs.
Nodes that stay in a partition during a period that lasts enough are said to be stable, and unstable otherwise. In
our model, the liveness property of partitions can be guaranteed even if they are not completely stable. To this
means, we have defined a weak stability condition based upon the application-dependant parameter α which is
a threshold value used to capture the liveness property of a partition. In each partition, α stable processes are
required to execute distributed computations. Then, we propose a way to solve group membership in partitionable
systems built over MANETs by adapting the Paxos protocol for such systems. This results in a specification
of a form of consensus for partitionable systems called abortable consensus. Abortable consensus (AC) is a
combination of two abstractions: eventual α partition-participant detector (♦PPD

α) and eventual register per
partition (♦RPP). ♦PPD

α is specified to abstract liveness in a partition whereas ♦RPP encapsulates safety
in the same partition. The role of ♦PPD

α is to make trade-offs between agreement and progress by eventually
detecting the stability condition of α processes in a partition and eventually providing the leader among them.
The participating nodes are selected among reachable nodes by some stability criterion that may satisfy the
stability condition. A stability criterion is a parameter that is used to determine which nodes are the most stable
ones. Finally, ♦RPP provides a distributed storage in a partition with a write-once semantics. The acts of
locking and storing a value in the register can fail in two cases: (1) in case of contention or (2) in case of non-
satisfied stability condition. The first case is the same as in the original Paxos algorithm: a proposer abandons
a proposal if some proposer has begun trying to issue a higher-numbered one, but the consensus instance is not
necessarily abandoned. In the second case, the proposer not only abandons the proposal but also the consensus
instance if there is no α stable processes in its partition.

Then, the partitionable group membership problem is solved by a transformation into a sequence of AC, where
each AC is executed by the participant nodes in the current view. When the decision returned by the abortable
consensus is a set of processes α-Set, these processes are the members of the next view. However, unlike a regular
consensus, the returned value is not necessarily a value that was proposed by some process. It could be a specific
value abort meaning that the consensus has aborted because the stability condition is not satisfied. In this case,
processes re-compute their own α-Set, and then begin executing a new AC instance.

References

[1] T. Anker, D. Dolev, and I. Keidar. Fault tolerant video on demand services. In Proc. 19th IEEE ICDCS, pages
244–252, 1999.

[2] Ö. Babaoǧlu, R. Davoli, and A. Montresor. Group Communication in Partitionable Systems: Specification and
Algorithms. IEEE Transactions on Software Engineering, 27(4):308–336, April 2001.

[3] K.P. Birman, R. Friedman, M. Hayden, and I. Rhee. Middleware support for distributed multimedia and collaborative
computing. Software: Practice and Experience, 29(14):1285–1312, 1999.

[4] T.D. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost. On the impossibility of group membership. In ACM
PODC, pages 322–330, 1996.

[5] G.V. Chockler, I. Keidar, and R. Vitenberg. Group Communication Specifications: A Comprehensive Study. ACM
Computing Surveys, 33(4):427–469, December 2001.

[6] A. Mostefaoui, M. Raynal, C. Travers, S. Patterson, D. Agrawal, and A. El Abbadi. From Static Distributed Systems
to Dynamic Systems. In Proc. 24th IEEE SRDS, pages 109–118, Florianpolis, Brazil, October 2005.

[7] P. Murray. A Distributed State Monitoring Service for Adaptive Application Management. In Proc. IEEE DSN,
pages 200–205, 2005.

[8] S. Pleish, O. Rütti, and A. Schiper. On the Specification of Partitionable Group Membership. In Proc. 7th EDCC,
pages 37–45, May 2008.

[9] A. Schiper. Brief announcement: dynamic group communication. In ACM PODC, page 113, 2003.
[10] A. Schiper and S. Toueg. From Set Membership to Group Membership: A Separation of Concerns. IEEE Transactions

on Dependable and Secure Computing, 3(1):2, 2006.

2
9

A Dynamic mechanism for solving Interfering

Adaptations in Ubiquitous Computing Environment

Sana Fathallah Ben Abdenneji
1
, Stéphane Lavirotte

1
, Jean-Yves Tigli

1
,

Gaëtan Rey1, Michel Riveill1

1I3S Laboratory, 930 Route des Colles, 06903 Sophia-Antipolis France

{fathalla, stephane.lavirotte, jean-yves.tigli, gaetan.rey, michel.riveill}@unice.fr

Abstract. Dynamic adaptation is a central need in Ubiquitous computing. In

this kind of system, it is frequent to see the appearance of interference, when

there are several adaptations to be applied on the application. In this paper, we

present an automatic mechanism for dynamic interference resolving. Applica-

tions and adaptations will be represented by graphs; then we apply graph trans-

formation rules to compute at runtime the solution.

Keywords: self-adaptation, software composition, interference resolution,

graph transformation.

1 Introduction

Ubiquitous computing relies on objects of our daily life. These devices are able to

communicate together and they constitute the software infrastructure, on which the

ubiquitous system is based. In such kind of systems, applications are designed based

on components assembly or orchestration of services. They can be represented using

graphs where nodes are the entities (components or services) and edges model the

interaction between these entities. Because of devices mobility, the graph modeling

the application must be continually adapted to consider the changes of the environ-

ment (appearance/disappearance of devices). So, the system should react automatical-

ly and transparently by applying adaptations. An adaptation, which can also be mod-

eled as a graph, specifies behaviors to be integrated into the initial graph (application).

As a consequence, an adaptation changes the graph structure of the application by

adding or modifying links and/or nodes. In addition, adaptations have to be written

without a priori knowledge of the other adaptations of the system. So, during the step

of adaptation, it is possible to have some modifications which can be attached in

common points of the graph: we call these interferences.

Researchers in self adaptation applications have used different techniques to deal

with interferences. Zhang et al. [2] specify adaptations precedence at modeling level.

However, interferences occur at runtime; so the resolution must be applied at runtime.

Dinkelaker et al. [1] propose to dynamically change the adaptation composition strat-

egies according to the runtime state of application. In this approach, if we add a new

adaptation to the system, the developer should study its relationship with the other

adaptations, which is a complex task. From these works, we can conclude that the

proposed techniques cannot remove all interferences. To alleviate this problem, we

propose to merge automatically interfering adaptations without preventing interfe-

rences explicitly. Our mechanism guarantee the independence between adaptations

that can be composed whatever their order, and that can be added or removed easily to

the system.

10

2 Merging interfering adaptations using Graph Transformation

Since adaptations are designed independently, they can interfere. Our solution is
to merge them. This is possible due to the knowledge of the semantic of some nodes
of the graph. Our graphs have two classes of nodes. Whitebox nodes (are operators
that explain their semantics) and Blackbox node (are devices; they encapsulate the
functionalities that can be only accessed by their ports, without knowing their seman-
tics). The interference resolution process can be divided into two steps. The first step
is the interference detection. The input of this step is the graph G which is obtained
from the superposition of all graphs of adaptations on the graph of the initial applica-
tion. On the graph G, we add a specific component 8 (Fus) to mark all interference
problems. The second step is interference resolution. Since we work at graph level,
the resolution will be a transformation of the graph G to the graph G'. Therefore, we
need to define graph transformation rules that specify how to merge all known seman-
tic nodes. We have defined a set of merging rules which derived from previous works
[3]. A graph transformation rule has the form of r:LÆR. It can be performed if there
is an occurrence of L in the host graph G. The rule execution implies to: (1) remove L
and (2) add the R graph. The figure 1 represents an example of the graph transforma-
tion rule. It shows the merging of the semantic known operator IF (the conditional
behavior) and a message send. The conditional behaYLRU� ³IF´� LV� VSHFified by three
SDUWV��³;´ node represents the condition to be evaluated. When ³X´ is True, we ex-
ecute the node ³$´� oWKHUZLVH�³B´�ZLOO�EH�Hxecuted.

Our composition mechanism is independent IURP� DSSOLFDWLRQ¶V� LPSOHPHQWDWLRQ�

because it occurs on the graph G, which abstracts all details. The main property of our
composition is the symmetric. This property consists of three sub-properties: associa-
tivity, commutativity and idempotency. It means that there is no order in which com-
position process should be applied. As a consequence, adaptations are independent of
each other and it can be composed in an unanticipated manner. These properties allow
the adaptation process to be deterministic. To enable the merging of these interfering
rules with the previous properties, we constrain the adaptation language. Whatever the
language used to write the adaptation, it must be based on a limited set of operators
with a well-known semantic that can be merged. In our implementation, 6 operators
were defined; which implies the definition of 16 graph transformation rules.

References

1. Dinkelaker T., Mezini M., and Bockisch C.: The art of the meta-aspect protocol. In Proceedings
of the 8th ACM international conference on Aspect-oriented software development, pp. 51±62.
ACM, (2009).

2. Zhang J., Cottenier T., Van Den Berg A., and Gray J. : Aspect composition in the motorola
aspect-oriented modeling weaver . In Journal of Object Technology , (2007).

3. Tigli J. Y., Lavirotte S., Rey G., Hourdin V., Cheung-Foo-Wo D., Callegari E., and Riveill M.
WComp Middleware for Ubiquitous Computing: Aspects and Composite Event-based Web
Services. In Annals of Telecom, pp. 197-214, (2009).

11

Understanding community evolution in Complex

systems science

Qinna Wanga and Eric Fleuryb
aqinna.wang@ens-lyon.fr

b eric.fleury@inria.fr

LIP ENS-LYON
D-NET INRIA

Université de lyon
46 Allée d’Italie Lyon 69364 France

Complex systems is a new approach in science that studying organized be-
haviours in computer science, biology, physics, chemistry, and many other fields.
By collecting articles containing topic keywords relevant for the field of complex
networks from ISI Web of knowledge during 1985-2009, we construct a science
network, which connects ∼ 215000 articles according to the proportion of shared
references. Moreover, articles’ publication time makes it dynamically evolve in
time. We here use a two-step approach [3] to explore community evolution and
study underlying information behind community changes. We firstly detect com-
munities by applying Louvain algorithm [2] on each snapshot graph, and secondly
construct relationships between partitions at successive snapshot graphs [1].

Communities may change, like fusion, split, disappearance and emergence. To
construct relationships between communities, we use community predecessor and

successor : given a community Ci(t) found at time t, its predecessor is community
Cj(t− 1), which has the maximum overlap size among all communities at time
t−1, such as Cj(t−1) = argmaxCk(t−1)⊆P(t−1) |Ck(t− 1) ∩ Ci(t)|; its successor is
community Cj(t+1), which has the maximum overlap size among all communities
at time t+1, such as Cj(t+1) = argmaxCk(t+1)⊆P(t+1) |Ck(t+ 1) ∩ Ci(t)|. Given
a pair of clusters (X,Y), we use X → Y to denote that Y is X’s successor while
X ← Y to denote that X is Y ’s predecessor. Besides, we define community
Ci(t)’s survival is community Cj(t+ 1) such as C(i)(t) ⇆ Cj(t+ 1), if and only
if Ci(t) → Cj(t+ 1) and Ci(t) ← Cj(t+ 1).

We use the survival to describe one community evolving stable. Furthermore,
we also use community predecessor and successor to identify community dynamic
events: given a community C(t), if it has more than one predecessors, then C(t)
is a merged community; if it has more than one successors, then C(t) split in the
next time step; if it has no predecessor, then C(t) is a new community; If it has no
successor, then C(t) will vanish; otherwise, it evolves stable. A diagram (see Fig 1)
shows several cases involving community dynamic events. We observe nearly all
types of community changes: community C2 emerges at t = 2, community C3
disappears at t = 3, community C2 merges into C1 at t = 4 and community C4
is split from C3 at t = 3. For community C1, it evolves stable across the total
four time steps although it is related to a merge event. It is like the change of
C2 rather than C1.

12

2 Understanding community evolution in Complex systems science

t = 1 t = 2 t = 3 t = 4

C1 : !"#$%&'(C1(1)
!! !"#$%&'(C1(2)""

!! !"#$%&'(C1(3)""
!! !"#$%&'(C1(4)""

C2 : !"#$%&'(C2(2)
!! !"#$%&'(C2(3)""

##!!!!!!

C3 : !"#$%&'(C3(1)
!! !"#$%&'(C3(2)""

!! !"#$%&'(C3(3)""

C4 : !"#$%&'(C4(3)

$$""""""
!! !"#$%&'(C4(4)""

Fig. 1. Diagram of four communities over four time points, featuring continuation,
emerge, disappearance, merge and split community events.

After applying our method on Complex Systems Science’s snapshots:G(1985−
1995), G(1990−2000), G(1995−2005), G(2000−2010), we observe most of com-
munities evolve stable over time, especially communities representing theoretical
sciences like chaos theory(CHAOS), systems ecology(ECOLOGY), systems neu-
roscience(NEURAL NETs)12. These stable communities are also involving many
change events, especially merges between function applications and science do-
mains such as ISING-MODEL and PHOTOSYSTEM-II merged into chemistry
during 1990 − 2000. Results on community evolution suggest that theoretical
sciences are the foundations of Complex System Science.

References

1. S. Asur, S. Parthasarathy, and D. Ucar. An event-based framework for character-
izing the evolutionary behavior of interaction graphs. In Proceedings of the 13th

ACM SIGKDD on Knowledge discovery and data mining, page 921. ACM, 2007.
2. V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of

communities in large networks. JSTAT, 2008.
3. M. Spiliopoulou, I. Ntoutsi, Y. Theodoridis, and R. Schult. Monic: modeling and

monitoring cluster transitions. In Proceedings of the 12th ACM SIGKDD on Knowl-

edge discovery and data mining, pages 706–711. ACM New York, NY, USA, 2006.

1 CHAOS, ECOLOGY and NEURAL NETs are the most popular key words shared
by articles in the found communities while chaos theory, systems ecology, systems
neuroscience are disciplinarians by considering popular keywords shared by articles
in the found communities. For instance, the community nominated by CHAOS rep-
resenting chaos theory have popular keywords like DYNAMIC, CHAOS, SYSTEM,
NONLI-, COMPL-, MODEL, STABI- and so on.

2 Through our method, we found many matching communities sharing the same pop-
ular keywords and the same disciplinarians, like CHAOS and ECOLOGY, and many
matching communities sharing different popular keywords but representing the same
disciplinarians, like biology:nervous system(RAT, BRAIN) whose articles focus on
biology functions about humans’ brain in place of rats’ as time going.

13

Towards Temporal Mobility Markov Chains

Sébastien Gambs

Université de Rennes 1 - INRIA / IRISA ;

Campus Universitaire de Beaulieu

35042 Rennes, France

Marc-Olivier Killijian

Miguel Núñez del Prado Cortez

CNRS ; LAAS, 7 avenue du Colonel Roche

F-31077 Toulouse, France

Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS

marco.killijian@laas.fr

I. MOBILITY MARKOV CHAINS

In [1], we defined a type of mobility model that we coined

as mobility Markov chain (MMC), which can represent in

a compact yet precise way the mobility behaviour of an

individual. In short, a MMC is a probabilistic automaton in

which states represent points of interest (POIs) of an individual

and transitions between states corresponds to a movement from

one POI to another one. The automaton is probabilistic in the

sense that a transition between POIs is non deterministic but

rather that there is a probability distribution over the transitions

that corresponds to the probability of moving from one POI to

another (edges are directed). Note that Markov models are a

popular technique that have been used in the past for the study

of motion (for instance see [2] for a recent work using hidden

Markov networks to extract POIs from geolocated data).

More formally, a MMC is a transition system composed of:

• A set of states P = {p1, . . . , pn}, in which each state

pi corresponds to a POI (or a set of POIs). These

POIs may have been learned for instance by running a

clustering algorithm on the trail of mobility traces from

an individual or simply by collecting the locations that

he has posted on a geolocated social network such as

Foursquare or Gowalla. Each state (i.e. POI) is therefore

associated with a physical location.Moreover, it is often

possible to attach a semantic label to the states of the

mobility Markov chain, such as for instance “home”

instead of simply p1” or “work” instead of p2.

• A set of transitions, T = {t1,1, . . . , tn,n}, where each

transition ti,j represents a movement from the state pi to

the state pj . Each transition ti,j has a probability assigned

to it that corresponds to the probability of moving from

state pi to state pj . Sometimes an individual can move

from one POI, go somewhere else (but not to one of his

usual POIs) and come back later to the same POI. For

example, an individual might leave his house to go wash

his car in a facility near his home and come back 30

minutes later. This type of behaviour is materialized in

the mobility Markov chain by a transition from one state

to itself.

A MMC can be represented either as a transition matrix or

as a directed graph in which nodes correspond to states and

there is a directed weighted edge between two nodes if and

only if the transition probability between these two nodes is

non-null. The sum of all the edges’ weights leaving from a

state is equal to 1.

For instance, consider for illustration purpose, an individual,

that we refer thereafter as “Alice”, who has a set of 4 important

POIs that she visits often plus some other POIs that are less

important to her mobility. In order to represent her mobility

behaviour, we could define a MMC composed of 5 states, one

for each important POI plus a last one that will contain all

the infrequent POIs. Suppose now that we have been able to

collect her trail of mobility traces (e.g., by tracking her mobile

phone [3]), then possibly we could have learnt the following

MMC (Figure 1). For more details, about MMC we refer the

reader to [1].

0,86

0,47

0,12

0,19

0
,7
9

0,02
0
,0
9

0,32

0,04

1

0,7
1

0,05
0,14

0,
14

0,05

P1

P2

P3

P4
Pinf

Fig. 1. Alice’s Mobility Markov Chain.

II. INTRODUCING TIME INTO MOBILITY MARKOV CHAINS

In this section, we describe an algorithm for learning

Temporal Mobility Markov Chains (TMMC). This algorithm

is an extension of the one described in [1] to which we add

the temporal aspect. Basically, the gist of this algorithm is

to decompose time into n different discrete timeslices. For

example, with n = 4, we can observe mobility in one of the

following timeslices: morning, afternoon, evening and night.

Each POI from the original MMC will thus be represented by

n different states in the TMMC, one for each timeslice. If we

14

Algorithm 1 Temporal mobility Markov chain algorithm

Require: Trail of (mobility) traces M , merging distance d,

speed threshold ǫ, time interval threshold mintime, time

slices definition timeslices

1: Run a clustering algorithm on M to learn the most

significant clusters

2: Merge all the clusters that are within d distance of each

other

3: Let listPOIs be the list of all remaining clusters

4: for each cluster C in listPOIs do

5: Compute the time interval and the density of C

6: end for

7: for each cluster C in listPOIs do

8: if C.time interval > mintime then

9: Add C to freqPOIs (the list of frequent POIs)

10: else

11: Add C to infreqPOIs (the list of infrequent POIs)

12: end if

13: end for

14: Sort the clusters in freqPOIs by decreasing order ac-

cording to their densities

15: for each cluster Ci in freqPOIs (for 1 ≤ i ≤ n−1) do

16: for each time slice t in timeslices do

17: Create a state pi/t in the mobility Markov chain

18: end for

19: end for

20: Create a state pinfrequent representing all the clusters

within infreqPOIs

21: Let M ′ be the trail of traces obtained from M by removing

all the traces whose speed is above ǫ

22: for each mobility trace in M ′ do

23: if the distance between the trace and the state pi is less

than d and the state pi is the closest state then

24: determine t the appropriate time slice for the trace

25: label the trace with “pi/t”

26: else

27: label the state with the value “unknown”

28: end if

29: end for

30: Squash all the successive mobility traces sharing the same

(time and space) label into a single occurrence

31: Compute all the transition probabilities between each pair

of states of the Markov chain

32: return the mobility Markov chain computed

take Alice’s home for example, which is state p1 on Figure

1., it will be represented by the states P1morning , P1afternoon,

P1evening and P1night. Remark that the scale of the timeslicing

can be tuned to match the required level of detail. For example,

the timeslices can also be winter, spring, summer, autumn

or even months or years, . . .

In a nutshell, Algorithm 1 starts (line 1) by applying a

clustering algorithm on a trail of traces of an individual in

order to identify clusters of locations that are significant.

Then, in order to reduce the number of resulting clusters,

the algorithm merges clusters whose medoids are within a

predefined distance d of each other (line 2). Each resulting

cluster is considered as a POI, and the medoid of the cluster

is considered to be the physical location of the POI. For each

cluster (lines 4 to 6), we compute the number of mobility

traces inside the cluster (which we call the density of the

cluster) and the time interval (measured in days) between the

earliest and the latest mobility traces of the cluster (line 5).

The POIs (i.e. clusters) are then split (lines 7 to 13) into two

categories; the frequent POIs that correspond to POIs whose

time interval is above or equal to a certain threshold mintime

and the infrequent POIs whose time interval is below this

threshold mintime. In the set of frequent POIs (line 14), we

sort the POIs by decreasing order according to their densities.

Therefore, the first POI will be the denser and the last POI

the less dense.

Now, we can start to build the temporal mobility Markov

chain by creating a state for each tuple < POI, timeslice >

within the set of frequent POIs (lines 15 to 19) and also a

last state representing the set of infrequent POIs (line 20).

Each state is then assigned a weight that is set to its density.

Afterwards (line 21), we come back to the trail of traces

that have been used to learn the POIs and we remove all

the moving points (whose speed is above ǫ, for ǫ a small

predefined value). Then, we traverse the trail of traces in

a chronological order (lines 22 to 29) labeling each of the

mobility traces either with the tag of closest POI and the

appropriate timeslice (line 25) or with the tag “unknown” if the

mobility trace is not within d-distance of one of the frequent or

infrequent POIs (line 27). From this labeling, we can extract

sequences spatio-temporal chunks that have been visited by

the individual in which all the successive mobility traces

sharing the same label are merged into a single occurrence

(line 30). For example, a typical day could be summarized by

the following sequence “phome/morning ⇒ pwork/morning ⇒
pwork/afternoon ⇒ psport/afternoon ⇒ psport/evening ⇒
“unknown′′ ⇒ phome/evening”. From the set of sequences

extracted, we compute the transition probabilities between

the different states of the MMC by counting the number of

transitions between each pair of states and then normalizing

these probabilities (line 31). If we observe a subsequence in

the form of “pi/t ⇒ “unknown” ⇒ pi/t” then we increment

the count from the state pi/t to itself (which translates in the

graph representation by a self-arrow).

REFERENCES

[1] S. Gambs, M.-O. Killijian, and M. N. del Prado Cortez, “Show me how
you move and i will tell you who you are,” Transactions on Data Privacy,
vol. 4, no. 2, pp. 103–126, 2011.

[2] Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and K. Aberer,
“SeMiTri: A Framework for Semantic Annotation of Heterogeneous
Trajectories,” in 14th International Conference on Extending Database

Technology (EDBT), 2011.
[3] M.-O. Killijian, M. Roy, and G. Trédan, “Beyond san francisco cabs :

Building a *-lity mining dataset,” in Workshop on the Analysis of Mobile

Phone Networks (NetMob 2010), 2010.

15

1

A distributed algorithm for path maintaining in dynamic networks

F. El Ali 1 2 , B. Ducourthial 1 2

(1) Université de Technologie de Compiègne

(2) CNRS Heudiasyc UMR6599, BP 20529, 60205 Compigne Cedex, France

(corresponding author: Bertrand.Ducourthial@utc.fr)

Abstract— Routing becomes obsolete in ad hoc dynamic
networks. Path maintaining becomes necessary in order to
maintain a communication that already started between two
entities. In this paper we present a path maintaining algorithm.

Index Terms— Ad hoc, dynamic, path maintaining

I. INTRODUCTION AND RELATED WORKS

Ad hoc dynamic networks represent a challenging domain

of application due to their specifications. Still we find many

applications on these networks nowadays, like the vehicular

networks, drone networks or even pedestrian networks. The

general method to study these networks starts by studying

their dynamics. The dynamic changes are closely related to

the frequency of neighborhood changes, and the functioning

and requirements of the protocols.

Unicast communications in these networks require a con-

tinuous communication between the source of the messages

and the destination even if they are separated by multiple

hops. Many routing protocols exist for mobile networks,

like AODV, OLSR and geographic routing among others.

But these protocols are not efficient if the dynamic of the

network increases to exceed the admitted dynamicity. Not

to forget that these protocols require broadcast in general,

location services [5] [4] or infrastructure bases, which make

them inadequate to highly mobile networks. We should also

mention that the need for global knowledge in these protocols

increases the control over the network, in order to build or

to update the structures needed to maintain routes.

II. CONTRIBUTION

Due to their specificities, dynamic networks do not require

routing as those used in networks with fixed topologies or

low dynamics. In fact, in mobile networks, the search for

a distant destination might be obsolete since the nodes are

frequently moving, meaning that the destination might have

changed its location by the time the source receives its

response. The search for the destination implies the broadcast

of messages in order to identify its position. And in case

some geographic protocols admit the knowledge of the posi-

tion of the destination, this means that a location service has

already identified this position using broadcasted messages.

As explained in [2], the need for unicast communication is

in order to maintain a communication that started when the

source and the destination were neighbors, and that is needed

to pursued for a certain duration. This problem is called

u0 u1 u2 u3 u4

X

u0>u1u2u3u4 u0u1u2>u3?u4

Fig. 1: Local periodic messages

path maintaining. This said, the aim of the path maintaing

application is to maintain a communication initiated with a

path of length 1 and to avoid the flooding of the network

with unnecessary messages.

In this paper, we describe the path maintaining algorithm,

that we denote PTH. PTH is a path maintaining algorithm

that relies on local adjustments of the path. Local adjustment

is used in order to avoid having a global knowledge of

the network, which implies to flood the network with too

much control messages in order to build a global knowledge

that might become unusable because of the dynamic. PTH

adjusts the path between the source and the destination using

neighbor nodes of the broken links in the path. Starting

from a direct communication between the source and the

destination, PTH interferes when these two entities move

apart, and the direct communication between them becomes

impossible. At this point, the neighbor nodes of the broken

link are used to relay the messages. The same mechanism is

used for all the broken links of the path between the source

and the destination. PTH relies on three mechanisms: local

periodic update for the nodes of the path only, path reduction

and path extension. These mechanisms are detailed in the

next section.

III. THE PTH ALGORITHM

In this section, we describe our algorithm named PTH

for solving the path maintaining problem. It is mainly based

on three mechanisms, that we describe in this section: local

periodic update, path extension and path reduction.

The first mechanism – local periodic update – allows

to deal with neighborhood changes and failures. It relies

on periodic diffusion of messages in the neighborhood of

the sender. These messages contain some local information

regarding the path. Such information is composed by the list

of members of the path (eg. u0u1u2u3 . . .) (see Figure 1),

some flags allowing to determine the sender and the willing

receiver of the current message (u0u1>u2u3 if u1 is the

sender and u2 the receiver) and an uncertainty flag regarding

a member of the path (u0u1>u2?u3 (see Figure 1) if u1 has

a doubt on its successor u2). Such a message informs both

the predecessor and the successor of the local state of the

16

2

u0 u1 u2 u3 u4

X

u5

u6 u7

Fig. 2: Extension of the path through u6 and reduction

through u7

path, which in turns can then update their own information.

Other nodes not belonging to the path may propose to belong

to, in order to repair or shorten it.

The second mechanism – path extension – allows to deal

with link breaking. This can appear when two neighbors go

far each other (Consider Figure 2, with u0 ui, u1 uj

and u6 v for instance). Consider that the link ui, uj

in the path breaks. As the node ui sends periodically some

messages containing ui>uj , it expects implicit acknowledg-

ment of uj , that is messages without uncertainty, containing

uiuj>. This means that uj receives the message of ui and

forwards it with the path uiuj>. If it does not receive such

messages from uj , it sets the uncertainty flag on its successor

uj in its next messages: ui>uj?. Either uj receives mes-

sages of ui with an uncertainty flag on itself (communication

ui uj broken) or it does not receive at all messages from

ui (communication ui uj broken). In both cases, it will

set the uncertainty flag on its predecessor ui in its messages;

they will contain: ui?uj>. Such uncertainty flags allows to

neighbors of both ui and uj to propose repairing the path.

If a neighbor node v notices such exchanges, it counts the

received messages from ui and uj . When a given threshold

is reached, v proposes to be relay of the communication by

sending ui?v>uj?. As several neighbors of both ui and

uj may propose to be a relay, ui (closer from the source)

chooses the first (say v) and sends ui>vuj?. Then v sends

uiv>uj?. Then uj sends uivuj> and the path is repaired (to

the condition that a node v was present in the neighborhood

of the breaking edge extremities).

The third mechanism – path reduction – consists in

reducing the path when possible. This can be done by a node

in the path, or neighbor of the path. Consider the case when

the reduction between two given nodes ui and uj (where ui

precedes uj in the path) can be done by a node v, neighbor

of the path (Consider Figure 2, with u2 ui, u5 uj

and u7 v for instance) . This node v, by receiving the

messages sent by ui and uj simultaneously, observes that it

can reduce the path by being a relay between ui and uj .

The proposition of the reduction is done by placing in the

path the shortcut denoted by ui-?v-?uj (with the uncertainty

flag on the links ui, v and v, uj). The message sent by v is

of the form: . . .ui-?v-?uj . . .v>uj When uj receives

this message, it confirms to v the possibility of reduction,

removing the uncertainty on the reduction link v, uj . The

node v then asks the permission of ui to be a relay. At this

point, ui sends a validation message . . .ui-v-uj> . . .uj . . .

to its successor in the path; this message will be relayed until

reaching uj .

Indeed, as several overlapping reductions may occur si-

multaneously, the reduction ui v uj has to be validated

by all nodes from ui to uj in the path. This allows to avoid

any split of the path into several smaller disconnected paths.

If a node is already engaged with another reduction, it will

not forward the validation message containing the reduction.

In the converse case, the node forwards the message and

becomes engaged. By this way, in case of two reductions in

conflict for a common sub-path, the validated reduction is the

one that first sent a validation message into the common sub-

path. When uj receives the validation message, it confirms

the reduction by relaying from now messages of v instead of

messages of its old predecessor uj 1. An engaged node will

either leave the path or receive a message without reduction

from its predecessor; it stops then being engaged. The same

process is used when the reduction is proposed by nodes ui

belonging to the path instead of a neighbor node.

IV. PTH VALIDATION AND PERFORMANCES

Whatever are the performance of a given algorithm, the

dynamic of the network can lead to failure because it

could compromise any communication. Our protocol is able

to run even in highly dynamic network but the following

requirement is necessary: a neighbor of the path is present

during the path extension. This operation is very short (few

local messages). By the way, we have a contract between the

dynamic and the specifications of our protocol. This has been

formalized in [3] under the term of best effort algorithm.

A best effort algorithm does its best regarding the dynamic

while still ensuring some useful properties for those (users

or other protocols) relying on it. More precisely, whenever

a topological property is fulfilled, a continuity property is

ensured. Here, the topological property is the presence of a

neighbor node when two nodes belonging to the path move

far each other. The continuity property is the existence of

the path from source to destination, the two initiators which

were in the same neighborhoods at the beginning. Proof is

omitted by lack of place.

PTH has been compared to a basic geographic routing with

a location service, and to a traditional broadcast in the same

scenario under the Airplug emulator [1] (with 31 cars moving

from the UTC laboratory to the train station in Compiègne),

and starting from the same initial state. Consider now N the

number of messages sent by the source node in the network.

While the broadcast flooded the network with 8.4 N mes-

sages, the geographic routing with its location service sent to

the network 5 N messages, and PTH sent 2.4 N messages.

Not to mention that when 31 cars were involved in sending

messages for the broadcast or geographic routing, only 6

were involved when running the PTH algorithm.

REFERENCES

[1] A. Buisset, B. Ducourthial, F. El Ali, and S. Khalfallah. Vehicular
networks emulation. Proceedings of ICCCN 2010, 2010.

[2] B. Ducourthial and Y. Khaled. Vehicular Networks: Techniques,

Standards and Applications, chapter Routing in Vehicular Networks:
User Perspective. CRC Press (Taylor & Francis Group), 2009.

[3] Bertrand Ducourthial, Sofiane Khalfallah, and Franck Petit. Best-effort
group service in dynamic networks. In SPAA 2010, June 13-15, 2010,

Thira, Santorini, Greece, 2010.
[4] Michael Kasemann, Holger Fuler, Hannes Hartenstein, and Martin

Mauve. A reactive location service for mobile ad hoc networks. 2002.
[5] Hanan Saleet, Otman Basir Rami Langar and, , and Raouf Boutaba.

Proposal and analysis of region-based location service management
protocol for vanets. IEEE ”GLOBECOM” 2008 proceedings, 2008.

17

Member Classification and Party Characteristics

in Twitter during UK Election

Antoine Boutet

INRIA Rennes, France

antoine.boutet@inria.fr

Eiko Yoneki

University of Cambridge, UK

eiko.yoneki@cl.cam.ac.uk

Abstract

In modern politics, parties and individual candidates

must have an online presence and usually have dedi-

cated social media coordinators. In this context, real

time members classification and party characterization

taking into account the dynamic nature of social media

are essential to highlight the main differences between

parties and to monitor their activities, influences, struc-

tures, contents and mood. This paper summarizes a case

study of member classification and party characteristics

in Twitter during the UK election.

Keywords — Social Media, User Classification

1 Introduction

Using social media for political discourse is becom-

ing common practice, especially around election time

[4]. Different off-line approaches have been proposed

for classifying the political leaning of users [3, 2]. How-

ever, inferring the political orientation of members in

real time needs (1) to avoid collecting and using a pro-

hibitive quantity of data for classification and (2) to con-

sider the highly dynamic nature of social media includ-

ing changes in term of active users, content or social

structure.

On the other hand, while several studies have ad-

dressed the characterization of user in social net-

works [1], few works have tried to characterize politic

parties. This characterization permits to highlight the

main differences between parties, their impact in term

of activity and influence, their preferred content, their

mood and sentiment, their structure and how they ex-

change between each other over time. For instance, this

information can be useful for political parties or candi-

dates to monitor their impact and to assess and adapt

their strategy.

This paper summarizes a case study of member clas-

sification and party characterization in Twitter during

the 2010 UK general election. By looking at temporal

changes in activity, Twitter is shown to react instantly to

UK election events. To highlight the main differences

between parties, we first characterize the self-identified

users as member of a specific party according to sev-

eral categories. Then, we present a real-time method for

deducing user’s party affiliation using only basic textual

and semantic analysis of the public stream of Twitter. Fi-

nally, we discuss key parameters to address the dynamic

nature of social media in online classification.

2 Party Characteristics

To highlight the main differences between parties, we

first characterize the self-identified populations (users

self-identified as members of specific parties in their

Twitter user description) according to several categories:

(1) the activity reflects the commitment of the parties

to send tweets and to take place in political debates ;

(2) the influence gives an indication on the potential im-

pact of each party ; (3) the social structure reflects both

the cohesiveness of the party and the level of exchange

and debate between them ; (4) the content shows how

the party used hashtags and urls, and the volume of ref-

erences did to a specific party or political figure ; (5)

the sentiment analysis evaluates the sentiment of words

in tweets through different directions (self-focus, cogni-

tive, social, positive and negative).

We saw that only few characteristics differ one party

to another and made the following observations:

• Activity. Except for a small fraction of users with

particular behavior in term of generated tweets,

retweets or mentions, the majority of members

from all parties exhibited a similar activity.

• Influence. Labour members had a better influence,

however, Conservative members were better orga-

nized to promote their party.

• Structure. The retweet graph presents a highly

segregated partisan structure where very few links

connected different parties. In contrast, the men-

tion graph formed a more heterogeneous structure

where no particular clusters were observed.

• Content. The usage of hashtags depended on the

underlying neutrality of the tag. In addition, each

party was more likely to cite certains websites than

others especially for blogs which were more polit-

ical orientated. The similarity in terms of hashtags

used showed a high heterogeneity between users in

all parties. Moreover, we demonstrated that party

members were more likely to make reference to

18

their own party than another.

• Sentiment. No particular sentiment direction per-

mitted the differentiation of parties. However we

clearly saw that members were more likely to ex-

press more positive opinion when they referenced

its own party.

3 User Classification

The goal of this classification is to identify the party

to which each person belongs and their evolution from

the pattern of tweets. We consider the observed tweet

process by events E ∈ {En} representing the current

state of beliefs of the political affiliation of members.

Each affiliation probability is represented by an event,

Am ∈ {labour, libdem, conservative} for each user

where labour + libdem + conservative = 1, contain-

ing elementary events Am ∩ En. The conditional prob-

abilities or evidences P (En|Am) are specified to define

the affiliation probability. P (Am) is the uncertainty of

model Am. Before the first inference step, the initial

prior probability is set uniformly: {P (A)} = { 1
3 ,

1
3 ,

1
3}.

For each affiliation probability Am, P (Am) is updated

to P (Am|En). From Bayes’ theorem:

P (Am|En) =
P (En|Am)P (Am)

P (En)
(1)

where P (Am|En) is the posterior, the uncertainty of

Am after En is observed ; P (Am) is the prior, the uncer-

tainty of Am before En is observed ; and
P (En|Am)

P (En)
is a

factor representing the impact of En on the uncertainty

of Am.

We define two evidences based on the main characters

identified in the party charateristics analysis. The first

is based on the pattern of retweets and highlights the

fact that people of similar political persuasion retweet

roughly the same thing (highly segregated partisan struc-

ture of the retweet graph). Retweets can be easily identi-

fied in the tweets stream thanks to the keyword RT. This

evidence is defined as the average affiliation probability

of both people retweeted by the user or people retweet-

ing the user during the period [En−1, En]:

P (En|Am = a) =

∑
R∈Retweets

P (A = a)R

Number of retweets
(2)

The second exploits the fact that party members are

more likely to make reference to their own party than

another. This second evidence is defined as the ratio of

tweets referencing one party over the total number of

references during the period [En−1, En]:

P (En|Am = a) =
V olume(Am = a)
∑

V olume(Am)
(3)

Approach Accuracy

Bayesian
Retweet 0.70

Volume 0.80

Table 1: Performance of our user classification

Finally we define the political affiliation of user ac-

cording to the best probability in Am (i.e. [0.7, 0.2, 0.1]
refers a person who is probably Labour). Ties are broken

randomly in case of equiprobabilities.

To evaluate our classification algorithm, initial seeds

are chosen from the 10% most active users in term of

generated tweets from those which are self-identified as

member of specific party. We then measure the accuracy

by calculating the number of correct predictions of the

remaining 90% over the total number of predictions. Ta-

ble 1 shows the high accuracy produced by our member

classification.

4 Discussions and Conclusions

We summarize here a case study of member classifi-

cation and party characteristics from Twitter during the

2010 UK general election. The three main differences

identified between political parties are (1) the retweet

graph presented a highly segregated partisan structure

where very few links connect different parties, (2) party

members were more likely to make reference to their

own party than another, and (3) members were more

likely to express more positive opinion when they ref-

erenced their own party.

To be able to act in real time, a classification system

must not require a prohibitive amount of data. Further-

more, due to the dynamic nature of social media, ac-

tive users and content can change quickly. In this con-

text, collecting the social structure of every new user or

performing linguistic analysis for each new hashtag is

inconceivable. The proposed member classification ex-

hibits good performance, can be easily used in real time

and fits perfectly to the dynamic nature of social media.

References
[1] Fabrı́cio Benevenuto, Tiago Rodrigues, Meeyoung Cha, and

Virgı́lio Almeida. Characterizing user behavior in online social

networks. In Proceedings of the 9th ACM SIGCOMM conference

on Internet measurement conference, IMC ’09, pages 49–62, New

York, NY, USA, 2009. ACM.

[2] Qiaozhu Mei Daniel Xiaodan Zhou, Paul Resnick. Classifying

the political leaning of news articles and users from user votes. In

Proc. 5th International AAAI Conference on Weblogs and Social

Media (ICWSM), 2011.

[3] Ana-Maria Popescu Marco Pennacchiotti. Democrats, republi-

cans and starbucks afficionados: User classification in twitter. In

KDD, 2011.

[4] Andranik Tumasjan, Timm O Sprenger, Philipp G Sandner, and

Isabell M Welpe. Predicting elections with twitter : What 140

characters reveal about political sentiment. Word Journal Of The

International Linguistic Association, pages 178–185, 2010.

19

Towards dynamic graph analysis: a position note

Erwan Le Merrer

Technicolor, Rennes

Gilles Trédan

CNRS, Toulouse

In this note, we elaborate on directions for efficient graph analysis, taking into account the dynamic
nature of complex networks.

1 Introduction and problematic

Tailored network analysis is at the core of some of the most successful Internet stories, as Google search
engine for instance [2]. Understanding complex networks is a challenge that receives a growing interest.
Interestingly, this challenge is tackled not only by computer scientists, but also by biologists and physi-
cists. Together, these efforts led to the definition of several important methodological tools to extract
information from a complex network, such as centralities, sampling, or scale-free property analysis.

However, most of these tools have been defined in a static way, by only providing insights on crawled
networks, at some fixed point in time [3]. This is notably counter intuitive, as the complex networks
observed are by nature evolving constantly [4]; predictions are doomed to be inaccurate.

At the same time, researchers started to develop models that capture graphs over time. For instance
the concept time varying graphs (TVGs) [1] which has been recently recognized as a suitable model to
describe the evolution of a network in time, pushed by the development of delay-tolerant and opportunis-
tic networks. The TVG model may then constitutes the next step of understanding complex networks,
observing them on a dynamic time dimension.

Adapting the aforementioned static tools to TVGs may seem easy. A trivial solution is to simply
take snapshots of the network at fixed intervals in time, and to run the analytical computation on
each of these snapshots. This is of course cumbersome if the time interval is small, and even simply not
computationally feasible if the observed network is large; this prohibits online use by number of resources
limited devices or applications for instance.

Since the scale of each snapshot already forbids the use of expensive algorithms, it is clear to us that
analyzing TVGs calls for developing methods to reduce the size of the input dataset1. The question
we ask in this note is then the following one: “How to reduce the computational/memory costs
when analyzing TVGs?”.

2 Possible directions

We foresee 4 directions to reduce the global cost in computing characteristics of TVGs: i) observe a
subset of relevant nodes over time, ii) concentrate on a subset of relevant snapshots, iii) observe the
evolution over time of a set of graph measures and iv) develop/adapt graph measures to TVGs. We will
hereafter briefly detail each approach.

Sample nodes Sampling has been extensively studied and provides accurate results in static contexts.
This is probably a very efficient approach to gather the evolution of aggregate values, such as the
evolution of the average age of social network users. However unbiased sampling is difficult, and
adding the time dimension complexifies the problem.

The question of newcomers is pending: should we only sample nodes originally selected at random?
Moreover, such an approach can not answer questions regarding the evolution of the graph structure
itself.

1Google+ graph has now more than 40e6 users. At the time of this writing, its most famous user receives more than

3000 followers each day.

120

Sample snapshots Here, the objective is to reduce the analysis complexity by discarding snapshots
that bring little information to concentrate on those conveying more meaning. However, selecting
which snapshot is relevant to keep is a non trivial task.

The difficulty is precisely tied to the arbitrarily set interval at with a snapshot should be kept for
analysis. If a snapshot is created at each topological change, i.e. appearance/disappearance of
a node or edge (called graph centric evolution in [1]), then the sampling rate of those snapshots
should be related to their creation. It might as well be of a real interest to sample more snapshots
when topological changes occur in the core of the network (or on nodes or edges that have been
previously marked as important), than when events occur at the fringe.

Evolution of graph measures The approach here is to run standard static graph analysis tools on
each snapshot independently, and to interpret the obtained time serie. Reusing the static graph
analysis toolbox is probably a very good starting strategy. Similarly to node sampling, this strategy
has the drawback of only studying the evolution of static graph properties.

Keeping only an history of past analysis concerning a network may drastically reduce memory
needed to track evolution in time, when compared to the snapshot-based approach. Starting from
an initial network analysis, algorithms are providing outputs that are compared to previously
observed results (one can for instance keep track of network diameter [4]). Only one network
snapshot is then required in memory, for each evolution analysis, as compared to an array of
snapshots as in the previous solution. The negative side being of course the loss of information
when only conserving past measures instead of full network snapshots.

Adapted analytical tools The approach here is to develop new algorithms suited to TVGs and their
natural information redundancy. For instance, in many social networks, such as the co-authorship
graph in DBLP, links are never removed. Each snapshot is thus a subset of the following one.
Recycling the results of previous snapshots to empower the current snapshot analysis could then
lead to significant optimizations.

There is probably no generic solution for transforming static algorithms into their dynamicity-
aware counterparts. For most of known tools for graph analysis, even the slightest update of the
initial graph might have unpredictable consequence on the algorithm.

Most of all, we believe that some very important TVG metrics are only definable in a dynamic
context. Even very simple but interesting questions such as “how long does a link takes to be
reciprocal, for a triangle to be closed?” can not be addressed by simply adapting our static toolbox
to a dynamic setup.

When collecting data from evolving structures, researchers are often bound to the limitations of the
API or available datasets. Thus, it is also important to think about the robustness of these complexity
reduction techniques against incomplete datasets. For instance, time sampling is sometimes not under
control because of crawling time and delays. It is sometimes hard to ensure the full graph is collected.
Moreover, crawling times might lead us to question the association of one snapshot to one point in time.

We however believe that each of these directions could be valuable to be explored. It is still unclear
which methods are above the others while considering costs, but probably all of them lead to the ob-
servation of different interesting phenomena. We yet have to understand their respective relevance to
specific contexts.

References

[1] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying graphs and dynamic
networks. In ADHOC-NOW, pages 346–359, 2011.

[2] M. Franceschet. Pagerank: standing on the shoulders of giants. Commun. ACM, 54:92–101, 2011.

[3] A.-M. Kermarrec, E. Le Merrer, B. Sericola, and G. Trédan. Second order centrality: Distributed
assessment of nodes criticity in complex networks. Comput. Commun., 34:619–628, 2011.

[4] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densification laws, shrinking diameters
and possible explanations. In Proceedings of ACM SIGKDD, KDD ’05, pages 177–187. ACM, 2005.

221

	I Foreword
	Scope
	Chairs and committee
	Author Index

	II Papers

