
HAL Id: hal-00725092
https://hal.science/hal-00725092v1

Submitted on 23 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Dynamic mechanism for solving Interfering
Adaptations in Ubiquitous Computing Environment

Sana Fathallah Ben Abdenneji, Stéphane Lavirotte, Jean-Yves Tigli, Gaëtan
Rey, Michel Riveill

To cite this version:
Sana Fathallah Ben Abdenneji, Stéphane Lavirotte, Jean-Yves Tigli, Gaëtan Rey, Michel Riveill. A
Dynamic mechanism for solving Interfering Adaptations in Ubiquitous Computing Environment. DY-
NAM: 1st International Workshop on Dynamicity, Dec 2011, Toulouse, France. pp.8. �hal-00725092�

https://hal.science/hal-00725092v1
https://hal.archives-ouvertes.fr

A Dynamic mechanism for solving Interfering

Adaptations in Ubiquitous Computing Environment

Sana Fathallah Ben Abdenneji
1
, Stéphane Lavirotte

1
, Jean-Yves Tigli

1
,

Gaëtan Rey1, Michel Riveill1

1I3S Laboratory, 930 Route des Colles, 06903 Sophia-Antipolis France

{fathalla, stephane.lavirotte, jean-yves.tigli, gaetan.rey, michel.riveill}@unice.fr

Abstract. Dynamic adaptation is a central need in Ubiquitous computing. In

this kind of system, it is frequent to see the appearance of interference, when

there are several adaptations to be applied on the application. In this paper, we

present an automatic mechanism for dynamic interference resolving. Applica-

tions and adaptations will be represented by graphs; then we apply graph trans-

formation rules to compute at runtime the solution.

Keywords: self-adaptation, software composition, interference resolution,

graph transformation.

1 Introduction

Ubiquitous computing relies on objects of our daily life. These devices are able to

communicate together and they constitute the software infrastructure, on which the

ubiquitous system is based. In such kind of systems, applications are designed based

on components assembly or orchestration of services. They can be represented using

graphs where nodes are the entities (components or services) and edges model the

interaction between these entities. Because of devices mobility, the graph modeling

the application must be continually adapted to consider the changes of the environ-

ment (appearance/disappearance of devices). So, the system should react automatical-

ly and transparently by applying adaptations. An adaptation, which can also be mod-

eled as a graph, specifies behaviors to be integrated into the initial graph (application).

As a consequence, an adaptation changes the graph structure of the application by

adding or modifying links and/or nodes. In addition, adaptations have to be written

without a priori knowledge of the other adaptations of the system. So, during the step

of adaptation, it is possible to have some modifications which can be attached in

common points of the graph: we call these interferences.

Researchers in self adaptation applications have used different techniques to deal

with interferences. Zhang et al. [2] specify adaptations precedence at modeling level.

However, interferences occur at runtime; so the resolution must be applied at runtime.

Dinkelaker et al. [1] propose to dynamically change the adaptation composition strat-

egies according to the runtime state of application. In this approach, if we add a new

adaptation to the system, the developer should study its relationship with the other

adaptations, which is a complex task. From these works, we can conclude that the

proposed techniques cannot remove all interferences. To alleviate this problem, we

propose to merge automatically interfering adaptations without preventing interfe-

rences explicitly. Our mechanism guarantee the independence between adaptations

that can be composed whatever their order, and that can be added or removed easily to

the system.

2 Merging interfering adaptations using Graph Transformation

Since adaptations are designed independently, they can interfere. Our solution is
to merge them. This is possible due to the knowledge of the semantic of some nodes
of the graph. Our graphs have two classes of nodes. Whitebox nodes (are operators
that explain their semantics) and Blackbox node (are devices; they encapsulate the
functionalities that can be only accessed by their ports, without knowing their seman-
tics). The interference resolution process can be divided into two steps. The first step
is the interference detection. The input of this step is the graph G which is obtained
from the superposition of all graphs of adaptations on the graph of the initial applica-
tion. On the graph G, we add a specific component (Fus) to mark all interference
problems. The second step is interference resolution. Since we work at graph level,
the resolution will be a transformation of the graph G to the graph G'. Therefore, we
need to define graph transformation rules that specify how to merge all known seman-
tic nodes. We have defined a set of merging rules which derived from previous works
[3]. A graph transformation rule has the form of r:LR. It can be performed if there
is an occurrence of L in the host graph G. The rule execution implies to: (1) remove L
and (2) add the R graph. The figure 1 represents an example of the graph transforma-
tion rule. It shows the merging of the semantic known operator IF (the conditional
behavior) and a message send. The conditional behavior “IF” is specified by three
parts. “X” node represents the condition to be evaluated. When “X” is True, we ex-
ecute the node “A”, otherwise “B” will be executed.

Our composition mechanism is independent from application’s implementation

because it occurs on the graph G, which abstracts all details. The main property of our
composition is the symmetric. This property consists of three sub-properties: associa-
tivity, commutativity and idempotency. It means that there is no order in which com-
position process should be applied. As a consequence, adaptations are independent of
each other and it can be composed in an unanticipated manner. These properties allow
the adaptation process to be deterministic. To enable the merging of these interfering
rules with the previous properties, we constrain the adaptation language. Whatever the
language used to write the adaptation, it must be based on a limited set of operators
with a well-known semantic that can be merged. In our implementation, 6 operators
were defined; which implies the definition of 16 graph transformation rules.

References

1. Dinkelaker T., Mezini M., and Bockisch C.: The art of the meta-aspect protocol. In Proceedings
of the 8th ACM international conference on Aspect-oriented software development, pp. 51–62.
ACM, (2009).

2. Zhang J., Cottenier T., Van Den Berg A., and Gray J. : Aspect composition in the motorola
aspect-oriented modeling weaver . In Journal of Object Technology , (2007).

3. Tigli J. Y., Lavirotte S., Rey G., Hourdin V., Cheung-Foo-Wo D., Callegari E., and Riveill M.
WComp Middleware for Ubiquitous Computing: Aspects and Composite Event-based Web
Services. In Annals of Telecom, pp. 197-214, (2009).

