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2 A. CHARPENTIER AND E. GALLIC

ABSTRACT. In this paper, we investigate (and extend) Ripley’s circumference method
to correct bias of density estimation of edges (or frontiers) of regions. The idea of
the method was theoretical and non easily implemented. We provide a simple tech-
nique - based of properties of Gaussian kernels - to compute efficiently weights to
correct border bias on frontiers of the region of interest, with an automatic selection
of an optimal radius for the method. An illustration on location of bodily-injury
car accident (and hot spots) in the western part of France is discussed, where a lot

of accident occur close to large cities, next to the sea.

1. INTRODUCTION AND MOTIVATION

In order to improve road safety and to reduce traffic accidents, public authorities
have to understand when and where traffic accident occurred. Analysis of spatial pat-
terns is then a crucial issue, since it is difficult to assume that occurrences of traffic
accidents are purely random observations, in space and time. In most cases, traffic
accidents form clusters, called ‘hot spots’, in geographic space (see Taylor (1977)).
Spatial (and temporal) patterns along a certain roadway segment are largely deter-
mined by their traffic volume, but also physical environment (slopes and angles) or
weather (see Black (1991), Noland and Quddus (2004) and references therein). Krisp
and Durot (2007) mention the case of optimization of warning sign placement in
southern Finland, while Pulugurtha et al. (2007) study sign placement in high pedes-
trian crash zones in the Las Vegas metropolitan area. Note that analysis of spatial
patterns is popular in the study of traffic accident (see also Joly et al. (1992), Nguyen
(1991), Steenberghen et al. (2004), Treno et al. (2007), Warden et al. (2011), Levine
and Kim (1998), Yamada and Thill (2004), Saffet et al. (2008), Xie and Yan (2008) or
Loo (2006)), similar studies can be conducted in criminology (see Block et al. (1995),
Eck (1997), Ceccato and Haining (2004) or Nakaya and Yano (2010)) among others.

Detection of ‘hot spots’ is based on spatial analysis of point events, or point pat-
tern analysis (see Ripley (1981), Bailey and Gatrell (1995), Anselin and Flora (1995)
or Batty (2005) and references therein). Quadrat analysis (see Getis (1964), Rogers
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(1965) or Thomas (1977)) is one popular technique to analyse the pattern of a dis-
tribution of events within a given region §. The idea is to divide region S into
sub-regions §;’s having equal (and homogeneous) areas, called quadrats and to study
histograms on this partition of §. GIS packages allow then visualizing the phenom-
enon via color-based representations of quadrats. Nevertheless, the analysis is then

extremely sensitive to the partition considered.

A natural extension is to consider kernel based estimators of densities (see OSullivan
and Unwin (2002), Miller (1999), Gatrell (1994), Basawa (1996a), Basawa (1996b),
Batty (2005) or Borruso (2008)). The goal here is still to obtain a field representation
of the phenomenon (here traffic accidents) by means of a smooth continuous surface,
where peaks represent the presence of clusters (‘hot spots’ ) in the distribution of
events. A bandwidth related to the length of the neighborhood (also called ‘sphere of
influence’ in Gatrell (1994)) is considered, as well as a weighting function (the kernel).
Since Epanechnikov (1969) proved that statistical results were not (significantly) af-
fected by the choice of the kernel function, most of the authors have emphasized the
fact that bandwidths choice is a crucial issue. The most popular kernel is the Gauss-
ian one since a dual representation (accident locations observed with a random noise)
can be used. Nevertheless, if such kernel estimators are easy to compute, and satisfy
good statistical properties, Yamada and Rogerson (2003) recall that this methodology
suffers a so called ‘edge effect’ also known in statistical literature as ‘border bias’: on
the frontier of the region of interest S. Yamada and Rogerson (2003) mention Ripley’s
circumference method (from Ripley (1981)), but claims that “Ripley’s method could

be too complicated without proper software or skilled programmers”.

In this paper, we recall basics on space and time kernel density estimation, in Sec-
tion 2. But the time component will not be discussed in this paper. In Section 3, we
will discuss frontiers and space border bias correction. In that section, we will present
several (standard) techniques when § is either an half-space, or a rectangular area.
Then, we provide a simple method to compute efficiently weights in Ripley’s circum-

ference method that can be used for any region S (characterized as a polynomial).
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We will discuss in Section 4 the link between radius r used in the circumferential
method, and bandwidth A of the kernel smoother. As we will see using Monte Carlo
simulation, given a bandwidth h, there is an optimal radius r*(h) that which mini-
mizes the distance between weights used in Ripley’s circumference, and weights used
by truncating Gaussian densities. Using either a L; or Ly norms (minimizing either
sums of absolute values or sums of squares) we will see that r*(h) is linear in h.
This property (that we will derive analytically for half space regions) will allow us to
introduce an automatic technique. Finally, in Section 5, we illustrate that technique
on bodily injury car accidents, in western part of France (Morbihan and Finistere).
In section 5.2 we will use the boundary correction, and illustrate the estimation of
the spatial location of car accident. Since this density should be closely related to
road density (more than larger frequency occurrence of car accident), in section 5.2,
we will apply this technique on the estimation of road density. Therefore, in section
5.3, we will suggest a technique to produce a map that can be used to identify hot

spots. And finally, sketches of R codes are provided in the Appendices (Section 6).

2. SPACE AND TIME KERNEL DENSITY ESTIMATION

2.1. Definitions and notations. Kernel density estimation (see Silverman (2004),
Scott (1992)) is a standard statistical technique to estimate a smooth probability
density function. It has been extended from univariate distributions (on the real line)
to multivariate distributions, including spatial temporal models. Spatio-temporal ob-
servations are pairs of observations (Z,7'), with spatial location Z = (X,Y") (usually
characterized by a latitude and a longitude coordinate) and time 7. A natural as-
sumption is to consider a product kernel, between location and time, as in Brunsdon

et al. (2007). Hence,

> 1 . r—X; y-Y t—=1;
)= —— K K 2.1
f(l',y, ) nhxhyhT ; Z ( hX ’ hy ) r < hT ) ( )
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is the density estimator at location z = (x,y) at time ¢, where n denotes the total
number of events observed, and hx, hy and hp are spatial and temporal bandwidth

respectively.

Following Epanechnikov (1969), let K and Kt be Epanechnikov kernels (used e.g.

in ArcGIS)

Krlw) = S(1 - )1 € 0,1) (2.2)

and
Kp(u,v) = %(1 S 24 o)1 402 € [0,1)). (2.3)

An alternative is to consider Gaussian kernels, i.e. K is the density of a Gaussian

random vector,

Kp(u,v) = — 1 exp (—2(; [ 40 — 2puv]) | (2.4)

N 27r\/1—7p2 1 —p?)

From Silvermnan’s rule (see Silverman (2004) or Scott (1992)) for d-dimensional
product kernel, and Gaussian observations, the optimal bandwidth is h* = n~/B+d s
where o is the standard deviation in the appropriate dimension. E.g. h% = n~ Y/t
where 0% = Var(X). Estimated optimal kernel bandwidth are then h* = n~/3+d5.
Further, as mentioned in Hérdle et al. (2004) bandwidth are rather close, with those
the two kernels. Recall that if the observations are not Gaussian, bandwidth are
usually to large, which might cause an excessive smoothing, as discussed in Hardle et
al. (2004).

3. FRONTIER AND SPACE BORDER BIAS CORRECTION

Kernel density estimation is a popular technique to visualize smoothed densities.
But in some specific cases, observations have to be within to some specific area S. For
instance, for traffic accidents, events have to occur on-land, as discussed in section .
S would denote some on-land territory. On the contrary, when locating fishes or sea
animals using GPS trackers, we know that those animal have to be in the sea. Here,

S can denote some territorial sea.
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Remark 1. One might argue that car crashes cannot occur off the transportation
network, as mentioned in Yamada and Thill (2004) and Xie and Yan (2008), and
this technique might not be appropriate for constrained to network space. Statistical
results may reflect the density of the road network as well as the density of point
events on this network space. We will discuss further this point in Section 5.2, where
a density of the road network will be estimated. Thus density of car accident location

can be visualized with respect to the density of road network.

In the case where S is bounded, kernel estimates suffer two important drawbacks,

e the total weight is not equal to 1, so we do not have a proper probability
distribution function, i.e. [ flz)dz < 1,

e close to the frontier AS, f has a multiplicative bias, i.e. E[f(2)] = k. - f(2),
where x, € [0, 1].

As we will see in Section 5, for regions closed to the sea, estimators of density can

suffer major drawbacks.

Remark 2. In standard statistical packages, the estimations are usually normalized
so that the overall mass (on the area where the density is computed) is equal to 1. A
multiplicative coefficient is applied uniformly on the whole area, while a local adjust-

ment is, obviously, necessary.

The idea here is to propose a methodology which gives an estimator ]?Which could
be associated to a proper probability distribution function, and which does not suffer

border bias.

3.1. Standard techniques for squared areas. Consider points Z; = (X;,Y;) in
the unit square [0, 1] x [0, 1]. The standard kernel estimator for the spatial density at

point z = (x,y) is

~ 1 — -X; y-Y;
=1

Example 1. A generation of 200 and 2,000 points, respectively, uniformly distributed

on the unit square can be visualized on Figure 1.
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FiGure 1. 200 and 2,000 uniformly distributed on the unit square,

and kernel based estimators of respective densities.

A first idea, introduced by Devroye and Gyorfi (1981), is to consider a transfor-
mation of the variates. Let ¢ : [0,1] — R a (known) continuous increasing function

(in order to preserve clusters and neighbors), and consider the transformed sample
Z; = (W(X;),¥(Y;)). If f denotes the density of Z, then

f(@), ¢ ()
PV (@() - ((x))

A natural idea is to consider 1 as a quantile function taking values on the real line, e.g.

flx,y) =

the Gaussian distribution 1) = ®~!, and the standard kernel estimator on transformed
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observations Z;’s,

o | L (@) - X)) 27 - ()
I = @ i) o 1) 2= ( h | h ) |

where ¢ is the density of the standard normal distribution.

A second idea, that was introduced in Chen (1999) in the univariate case and
Charpentier et al. (2006) for the extension in higher dimension, is to consider products

of beta kernels,

~ 1 « T 11—z Y 1—
= - K Xiv_ 17— L) K }/iu_ 17— 1 )
flay) n; ( >+l — +) < ,tL— +>
where K (-, a, ) denotes the density of the Beta distribution with parameters o and
[. Note that this idea of finding a kernel family having a support which fits exactly
with the support of the observations has been intensively used, for positive valued ob-
servations, see Scaillet (2004) for the univariate case and Bouezmarni and Rombouts

(2010) for the multivariate case.

Those two techniques are extremely popular, but unfortunately, not appropriate
to the study of geographic patterns, where the support is a region & identified as
a polygon, but not necessarily a rectangle. An alternative is to recall that kernel
estimators of densities can be seen as the expected value of the density for sample
{2 i = Z;+¢€;} where €;’s are i.i.d. random noises, independent of the observations, as
in Davis (1975), Tapia and Thompson (1978) or Stefanski and Carrol (1990). Recall

that the empirical cumulative distribution function is the step function defined as

Fz) ==Y "1(Z; < 2), (3.2)

i=1

and the associated empirical measure is

fo) = > 0 (2) 33)
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where 0 denotes the Dirac measure. The idea of Kernel based estimator is to substitute

a continuous distribution to Dirac measures,

fo) = >z (2) 3.40)

where pz, can be the density of a Gaussian vector, centred in Z;, with variance-
covariance matrix H. The problem is that if the distribution of Z has a bounded
support, then measure p1z, will spread some weight in areas where no observations can
be found. Thus, it might be natural to consider a truncated distribution, restricted

to the support S.

1
Kz, S(z) = (35)
Thus, it is natural to consider
o) = 1S pas(e) = 53w e where w = s (8. (36)
n - Al n - ) Z;(z) i Z,; . .

If we consider a noise with circularly contoured distribution (e.g. a Gaussian noise,
as mentioned earlier), it is possible to approximate pz, (S) by
A(DZM’ n S)
A(DZN“)

where A denotes the area function, and Dy, , denotes the disk centered in Z; with

(3.7)

radius r > 0 (see Figure 3 for an illustration on observations restricted to the unit
square). This method is usually called Ripley’s circumference method (from Ripley
(1981)). Note that r should be related to the covariance matrix H (this will be

discussed in section 4). Thus, here the idea is simply to use weighted kernel estimators

n

f(z)=>"w(Z;) det(H)'K (H (2 - Z,)) (3.8)

i=1
where weights w(Z;) should reflect the proportion of area around Z; that belongs to
S. Those weighted kernel estimators have been intensively used, e.g. on censored
data, as in Marron and Padgett (1987) (to correct censoring bias) or Gisbert (2003).
As mentioned in Hall and Turlach (1999), having weights that depend only on the

data (Z;’s) and not on the location (z) is interesting from a computational point of
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view. From this assumption, and since computing intersection of polygon areas with
standard softwares is extremely simple, Ripley’s correction technique can easily be

implemented.

Example 2. The use of weights is illustrated on Figure 2 in the univariate case: on
border, the kernel is no longer the density of a Gaussian distribution centered on X;,
but the density of a truncated Gaussian distribution. Thus, those weights have an

impact on the border of the support.

2.0

15

1.0

0.5

0.0

0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 2. Weight correction of a density on [0,1]: the kernel is no

longer a Gaussian density, but a truncated Gaussian density.

Example 3. On the same samples as considered in Erxample 1, weighted-kernel es-
timators are considered. On Figure 3 are plotted observations on the unit square,
with the circular area around two specific observations. On Figure 4, densities can be

visualized. Note that densities now sum to one.

3.2. Correction for non-rectangular areas and Monte Carlo study of band-
width impact. In order to illustrate that technique, a non-rectangular area is con-

sidered here.



VISUALIZING DENSITIES OF SPATIAL PROCESSES 11

1.0

1.0

0.6
|
0.6
|

0.4
0.4

0.2
0.2

0.0
|
0.0
|

FiGure 3. 200 and 2,000 points uniformly distributed on the unit square.

Example 4. Consider the polygon of left of Figure 5, and a sample of points uniformly
distributed within the area. In corners and on borders, standard kernel estimators can
be strongly biased. For instance, in point A, on average, the estimator of f(A) will
be 1/8-th of the true value, while it will be 1/4-th in B and C in C. Based on
sample presented on Figure 5, kernel based densities can be computed. On Figure 6
1s presented the output of a Monte Carlo study, when the average density is computed
over 1,000 random samples of size 200. The distribution of f i A, B, C and D
can be visualized on Figure 7. The choice of the radius will be discussed in the next

section.

4. LINK BETWEEN DISK RADIUS r AND BANDWIDTH h

With a Gaussian kernel, in the univariate case, the bandwidth h is the standard
deviation of the Gaussian noise (see mentioned in Chiu (1991)), and in the bivariate

case, H is the covariance matrix of the noise, €. Then the true probability pz,(S) is

P(Z; 4+ e € S) where e ~ N (0, H). (4.1)
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0.6

0.0

FiGURE 4. 200 and 2,000 points uniformly distributed on the unit
square, and kernel based estimators of respective densities, with weight

correction.

4.1. Kernel product with identical bandwidth. A standard assumption in mul-
tivariate density estimation is to assume that K is the product of two (univariate)
kernels. This assumption can be interpreted as a non-correlated noise €, i.e. H is a
diagonal matrix. From the geography of our problem, it is possible to assume further
that the two components have the same ‘dimension’, thus, it might not be a too

strong assumption to assume that H is a diagonal matrix with identical terms on the
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FIGURE 5. 200 points uniformly distributed on S

diagonal. Let h denote this diagonal term (this assumption will be relaxed at the end

of this section), so that level curves of the density of Z are circles.

4.1.1. Analytical computation when S is a half-space. If S is a half-space, and if the

distance between Z; and the border is a, then
P(Z;+e€S8)=1—®(—ah™)=d(ah™) (4.2)

where ® denotes the cumulative distribution function of the A'(0, 1) distribution (see
Figure 8).

Assume for convenience that h = 1, and that a = 1, then the probability that
Z;+e¢ Sis &(—1) ~ 15%. The proxy we suggest for pz,(S) is to consider the

following ratio
A(Dz,.NS)
A(DZM”)

where Dy, , is a disk centered in Z; with radius r. Again, if S is a half-space, it is

g (1, 8) = (43)

possible to derive an analytical expression, since it will just be related to the circular
segment (the region bounded by a chord and the arc subtended by the chord, see

Figure 8). The area of the circular segment is equal to the area of the circular sector
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Standard Gaussian kernel, h=.1 Weighted Gaussian kernel, h=.2

Weighted Gaussian kernel, h=.1 Weighted Gaussian kernel, h=.05

4 s

0.4

AN

00 02 04 06 08 1.0

FIGURE 6. Average level curves of f over 1,000 simulated samples
of size 200, on the left. Optimal (standard) bandwidth is A = 0.1.
Weighted kernels have been calculated with 3 different bandwidth h =
0.2, h=0.1 and A = 0.05, and using then r* = *h

minus the area of the triangular portion.

2 .
A(Dz,.NS) = im’Q _ risin®) where cos (Q) =
v 2T 2 2
—_—

sector area triangle area

RS

(4.4)
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F1GURE 7. Average level curves of f over 1,000 simulated samples
of size 200, on the left. Optimal (standard) bandwidth is A = 0.1.
Weighted kernels have been calculated with 3 different bandwidth h =
0.2, h=0.1 and A = 0.05, and using then r* = *h
Thus,
r2
— |0 —sin(f)] ifa <7
A(Dy,n8) =] 2~ (45)
Oifa>r

From the previous computation, we would like to find 7* (or 6*) such that A(Dg, N
S) is 15% of A(Dg, ,), when a is equal to 1, i.e.
7 1

[0 — sin(6)] 2—[9 —sin(f)] = 15% (=

™

- (~1)) (4.6)

27r?
or equivalently,

0" — sin(0*) = 27 P(—1) ~ 1

thus, 6*
0.93. Since 6 = 2arccos(r™1), then 7* ~ 1/cos(1.93/2) which is numerically equal to

1 + u where u is the root of sin(1 + u) = w, which is numerically equal to
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FIGURE 8. Link between P(Z; + € € S) and A(Dg,, NS) where S is

a half-space.

1.76. Thus, with a disk with radius 1.76, the area of the circular segment located at
1 from the center of the disk is 15% of the area of the disk.

More generally (with any a and h), if r* = §*h, the ratio of the area of the circular

9%:1(“ _ % {Qacos (ﬁ) — sin (Qacos ( ﬂfh»} (4.7)

Let x = ah™! and b = 1/8* then the ratio is

segment is

T % [2acos (bx) — sin (2acos (bx))] . (4.8)

Taylor’s expansion (when z is closed to 0) is

Following Shah (1985) and Bryc (2002), Taylor’s expansion of ®(—z) is

1
() ~ 5 — 0368920z — 0.0377584° + O(a”).
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Thus, linear terms are equal when f* = 2/(0.36897) ~ 1.725. The use of a linear

relationship, with a proportionality factor around 1.76 seems to be legitimate.

The intuition is that 7* might be a (linear) function of h, r* = $*h where f* ~ 1.76,
with half-space domains. And this relationship might also be a good approximation

on more general spaces S.

4.1.2. Monte Carlo study for more complex areas S. In order to illustrate the general
case, two regions will be considered in this section: the polygon of Figure 5, and the
contour of Finistere (the French region). In those two regions, 10,000 points were

drawn uniformly Z; (1,000 are plotted on Figure 9)
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FiGUuRrRE 9. Random generation of 1,000 points uniformly located on

two different areas.

Given h > 0,

e we compute numerically theorerical weights w;(h) based on uz,(S) =P(Z; +
e € §), using Monte Carlo simulations, since € ~ N(0, hll),
e we compute w)(h) based on ) , (S) for different values of r,

e for some norm || - ||, the optimal radius 7* is solution of

r*(h) = argmin ZHW?(h)—wi(h)H )
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(two norms will be consider in this study ||z||; = |z| and ||z|» = 2?).

On Figure 10 is plotted A — r*(h) on top, where a linear relationship can easily
be identified, and below the slope, i.e. h +— r*(h)/h. The horizontal doted line is the
1.76 value obtained empirically in the computations of the previous section (using a

half-space region).
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FIGURE 10. Optimal r*(h) as a function of i on the polygon shape (on
the left) and the Finistere region (on the right), from Figure 9, on top,

and below, ratio of 7*(h) over h, as a function of h.
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Thus, from bandwidth A, it is possible to approximate weights using
A<Dziﬂ"*>

. 0 _ 7w
wilh) = 4Dy 0 &)

where r* = *h and g* ~ 1.76.

4.2. An elliptical correction. So far, a correction using a circular distribution was
considered, since we assumed that e ~ N (0, H) were H was a diagonal covariance
matrix with identical terms on the diagonal. But It is possible to consider a non-
diagonal matrix H as bandwidth. In that case, level curves of the density of € are
ellipses. The link between covariance matrices, Cholesky decomposition and ellipses

is discussed in sections of conics in matrix forms in Banchoff and Wermer (1991)

FIGURE 11. A(Dg, N S) for half-space area S, when Dg, is an ellipse

centered in Z;.

As for the circular-based correction, on average this technique provide proper ap-

proximation of weights.

5. APPLICATION TO BODILY INJURY CAR ACCIDENTS, IN FRANCE

Car accident concentration is usually identified as black spots, as in Nguyen (1991)
or Joly et al. (1992). Those zones suggest that there might exist some spatial depen-
dence between individual occurrences, as suggested by Steenberghen et al. (2004).
Detecting clustering (in time and space) might be an important issue, to improve
road safety and to reduce traffic accidents. We consider here the dataset of traffic
accident, occurred in 2008 in France that involved bodily injuries. The BAAC dataset
(bulletins danalyse daccident corporel) is filed by police forces, and most accident have

a specific location. In 2008, we have 10854 accidents with a location.
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5.1. Spatial location of bodily injury car accidents two regions. In order to
illustrate border issues, we focus here on two specific regions, Finistere and Morbihan,
where major cities (Brest in Finistére and Lorient, or Vannes in Morbihan are next

to the sea). We have 186 observations for the first region, and 180 for the other one.
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F1GURE 12. The two regions of interest, in Brittany: Finistere and Morbihan.

Results of the estimations for Finistere can be seen on Figure 13. When the stan-
dard kernel is used, we can think of at least two black spots, with one in the North
being more important than the other one in the South coastline. When the correction
is used, the two spots still show up, but another locale stands out on the lower tip
of Finistere. The area of this third place is surrounded by water, thus the estimation

with standard kernel fails to highlight it.

The same happens in Morbihan, as seen on Figure 14. The density estimation at the
North-West frontier is really different depending if we use, or not, weight corrections.

Once weights are applied to correct the border bias, one can easily detect a black spot.

INote that we have removed island, namely Belle-Ile, Ile de Groix, Ile de Hoédic and Ile d’Houat

since no traffic accident occurred on those islands in 2008.
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F1GURE 13. Location of car accidents, in Finistere, standard kernel on

the left, and corrected one on the right.

FI1GURE 14. Location of car accidents, in Morbihan, standard kernel

on the left, and corrected one on the right.

5.2. Density of the road network. In the previous section, we have spotted re-

gions or areas with a high concentration of car accident. But in order to detect hot
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spots it is necessary to have also an estimation of road density. As explained in the
technical Appendices (Section 6), we have coordinates of road segments, with a dis-
tinction between motorway, trunk, primary, secondary and territory roads, as well as
residential streets. Weights have been used to take into account traffic intensity in
all areas. In those two areas (Finistere and Morbihan) we had more than one million

points. The two estimators of road densities can be visualized on Figure 15.
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FIGURE 15. Roads in Finistere (on the left) and Morbihan (on the right)

5.3. Detecting hot spots. Based on the estimation of the density of car accident,
and the density of road density, we have been able to isolate hot spot regions, using the
ratio of those two densities. On Figure 16 we can visualize location of car accident,
on top, and a correction based on road density below. Some areas clearly appear are
risky areas, such as the North-East part of Finistere (between Morlaix and Lannion),
or the North-West part of Morbihan (near Gourin) which did not show up initially.
Those two areas are on the boundary of the two regions, and we can clearly see here

the impact of use a border correction to estimate properly densities.

Note that the estimation of that ratio was not very sensitive to weights chosen in

the estimation of road density. Using weights proportional to the intensity of the
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Fi1GURE 16. Estimated density car accident, on top, and hot spots

(accident w.r.t. to road density) blow, in Finistere (on the left) and
Morbihan (on the right).

traffic (at least a proxy of that quantity based on national statistics) gave similar

maps.
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6. APPENDIX AND R CODE

6.1. Density estimation. Computation in R is extremely simple, from functions
area.poly and intersect from rgeos and base packages, which allow to compute
areas of intersections of polygons. If pol is a polygon (latitude and longitude of

knots), if sCircle is a function that computes the circle polygon centered in x, i.e.

sCircle <- function(n = 100, center = c(0, 0), radius) {
theta <- seq(0, 2 * pi, length = n)
m <- cbind(cos(theta), sin(theta)) * radius
m[, 1] <- m[, 1] + center[1]
m[, 2] <- m[, 2] + center [2]
colnames (m) <- c("x", "y")

return(m)

Then the weight function associated to observation x is

sWeights <- function(x, h, pol) {
theCircle <- sCircle(center = x, radius = 5/pi * h)
circlePol <- as(theCircle[-nrow(theCircle), 1, "gpc.poly")
return(area.poly(intersect (pol, circlePol))/area.poly(

circlePol))

More generally, it is possible to consider an ellipse function

sCircle <- function(n = 200, center = c(0, 0), radius,
correlation) {
theta <- seq(0, 2 * pi, length = 100)
MAT <- chol(matrix(c(l,correlation,correlation, 1), nrow=2))
m <- cbind(cos(theta), sin(theta)) %*% MAT * radius
m[, 1] <- m[, 1] + center [1]

m[, 2] <- m[, 2] + center [2]
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names (m) <- c("x", "y")

return(m)

Then, the code to compute kernel estimate is based on the kde function from ks
package: the first step is to compute the optimal (standard) bandwidth, H=Hpi (X).

In the case of circular wieghts, let

H = matrix(c(sqrt(H[1,1]*H[2,2]),0,0,sqrt(H[1,1]1*H[2,2])),2,2)

Then, weights need to be computed for all the observations, i.e.

wHelp <- function (i) {
sWeights(x = as.numeric(X[i, ]), h = sqrt(H[1, 1]),
pol = as(pol, "gpc.poly"))
}
OMEGA <- Vectorize(wHelp) (1:nrow (X))

Then, the weighted kernel estimator has to be computed (and normalized) on a

rectangular grid which contains all the observations

fhat <- kde(X, H, w = 1/0MEGA, xmin = c(min(pol[, 1]1), min(pol
[, 21)), xmax = c(max(poll[, 1]1), max(pol[, 21)))
fhat$estimate <- fhat$estimate * sum(1/0MEGA)/nrow(X)

Since we compute the density outside the region, we shall put empty values outside

the region of interest,

vx <- unlist(fhat$eval.points[1])

vy <- unlist(fhat$eval.points[2])

VX <- cbind(rep(vx, each = length(vy)))

VY <- cbind(rep(vy, length(vx)))

VXY <- cbind (VX, VY)

Ind = matrix(point.in.polygon(VX, VY, poll[, 11, poll, 21),
length(vy), length(vx))
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fO0 <- fhat
fO$estimate [t (Ind) == 0] <- NA

Finally, let us put the result in a list

result = list(
X = fhat$eval.points[[1]],
Y = fhat$eval.points[[2]],
Z = fhat$estimate,
ZNA = fO$estimate,
H = fhat$H,
W = fhat$w

6.2. Maps. In order to display the results of the estimation of the density on a
map, we provide two ways. The first one is extremely simple, and produces a quick
visualization. The other one, based on the ggmap function from ggmap package, is a

bit more sophisticated and requires a few more steps but offers an aesthetic result.

First, one needs to define a color scale and associated breaks

breaks <- seq(min(result$ZNA, na.rm = TRUE) * 0.95, max(result
$ZNA, na.rm = TRUE) * 1.05, length = 21)

col <- rev(heat.colors (20))

to finally plot the estimation

image.plot (result$X, result$Y, result$ZNA, xlim = range(poll[,
11), ylim = range(pol[, 2]), breaks = breaks, col = col,

xlab = "", ylab = ""  xaxt = "n", ant = "p", bty = "p",

zlim range (breaks), horizontal = TRUE)

It is possible to add a contour, the observations, and the border of the polygon
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contour (result$X, result$Y, result$ZNA, add = TRUE, col ="
grey")

points (X[, 1], X[, 2], pch = 19, cex = 0.2, col = "dodger blue
")

polygon(pol, lwd = 2)

Now, if one wants to improve the aesthetics of the map, by adding a Google Maps

base map, the first thing to do — after loading ggmap package — is to get the base map

theMap <- get_map(location=c(left=min(pol[,1]), bottom=min(pol
[,2]), right=max(pol[,1]), top=max(pol[,2])), source="

google", messaging=F, color="bw")

Data need to be put in the right format

getMelt <- function(smoothed){
res <- melt(smoothed$ZNA)
res[,1] <- smoothed$X[res[,1]]
res[,2] <- smoothed$Y[res[,2]]
names (res) <- list("X","Y","ZNA")

return(res)

smCont <- getMelt (result)

Breaks and labels should be prepared

thelLabels <- round(breaks,b?2)

indLabels <- floor(seq(l,length(thelabels),length.out=5)) #
keep only 5 items

indLabels[length(indLabels)] <- length(thelabels) # make sure
to have the max value

thelLabels <- as.character (thelLabels[indLabels])

thelLabels [thelLabels=="0"] <- "0.00"



28 A. CHARPENTIER AND E. GALLIC

Now, the map can be built

P <- ggmap(theMap)
P <- P + geom_point (aes(x=X, y=Y, col=ZNA), alpha=.3, data=
smCont [!is.na(smCont$ZNA) ,], na.rm=TRUE)

It is possible to add a contour

P <- P + geom_contour (data=smCont[!is.na(smCont$ZNA),] ,aes(x=

X, y=Y, z=ZNA), alpha=0.5, <colour="white")

Colors need to be updated

P <- P + scale_colour_gradient (name="", low="yellow", high="
red", breaks=breaks[indLabels], limits=range(breaks),

labels= thelabels)

To remove the axis legends and labels, the theme should be updated

P <- P + theme(panel.grid.minor=element_line(colour=NA), panel
.grid.minor=element_line(colour=NA), panel.background=
element _rect (fill=NA, colour=NA), axis.text.x=element_blank
(), axis.text.y=element_blank (), axis.ticks.x=element_blank
(), axis.ticks.y=element_blank(), axis.title=element_blank

(), rect=element_blank())

The final step, in order to draw the border of the polygon

polDF <- data.frame(pol)

colnames (polDF) <- list("lon","lat")

(P <- P + geom_polygon(data=polDF, mapping=(aes(x=lon, y=lat))
, colour="black", fill=NA))
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6.3. Road data. Road data used in the application were obtained from Geofabrik
website (http://www.geofabrik.de/index.html), which provides files based on Open-
StreetMap data. Each observation is a section of a road, and contains a few points
identified by their geographical coordinates that allow to draw lines. It is obvious
that less points are needed for straight roads than winding path. Hence, if one were
to estimate the density only with these knots, smaller roads would weight more than
highways. Therefore, it is necessary to interpolate points between the extremities of
each road section. Since the type of road is provided in almost all cases®, we propose
to use it as a proxy for traffic. The distance between interpolated points is reduced

for busier roads. Weights chosen in the application are displayed in table 1.

Let listroad be a list of length n, whose (n — 1) first elements correspond to
road sections, the n'" element being the type of road, stored as a character. Let
types.weights be a data frame in which every line gives the type of road and the
associated weight needed for the interpolation. Then, a way to derive a set of points

according to the importance of the road is given by the splitroad function:

splitroad <- function(listroad, h = 0.0025) {
pts = NULL
weights <- types.weights[match(unique(listroad$type), types.
weights$type), "weight"]
for (i in 1:(length(listroad) - 1)) {
d = diag(as.matrix(dist(listroad[[i]]))[, 2:nrow(listroad
(LillH D
for (j in 1:(nrow(listroad[[i]]) - 1)) {
pts = rbind(pts, cbind(seq((listroad[[i]])[j, 11, (
listroad[[i]1)[j + 1, 1], length = weights * d[jl/h),
seq((listroad [[i]]1) [j, 2], (listroad([[i]])[j + 1, 2],
length = weights * d[j]l/h)))

2more details can be found one the OpenStreetMap : http://wiki.openstreetmap.org/wiki/Map_Features
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TABLE 1. Road types

Road type Weight FiIllsitére Mo.rbihan

No. Points % | Nb. Points %
motorway 10 0 0 0 0
motorway _link 10 0 0 0 0
trunk 9 20634 3.15 25973  5.82
trunk_link 9 3651  0.56 4439 0.99
primary 8 35595 H.44 13004 291
primary _link 8 669 0.10 473 0.11
secondary 7 63724 9.74 64569 14.46
secondary _link 7 182 0.03 231 0.05
tertiary 6 70037 10.71 70850 15.86
tertiary_link 6 202 0.03 224 0.05
living_street ) 1199  0.18 1359  0.30
residential 4 111099 16.98 67307 15.07
unclassified 3 318470 48.69 178030 39.86
service 2 25050  3.83 17865  4.00
road 1 3602  0.55 2313 0.52
Sum 654114 100 446637 100

Note : all duplicated points have been remowved.

}

return (pts)
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