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A. CHARPENTIER AND E. GALLIC

ABSTRACT. In this paper, we investigate (and extend) Ripley’s circumference method
to correct bias of density estimation of edges (or frontiers). We provide a simple
technique - based on optimal bandwidth using Gaussian kernels - to compute ef-
ficiently weights to correct border bias on frontiers of the region of interest. An
illustration on location of bodily-injury car accident in the western part of France

is discussed.
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1. INTRODUCTION AND MOTIVATION

In order to improve road safety and to reduce traffic accidents, public authorities
have to understand when and where traffic accident occurred. Analysis of spatial
patterns is then a crucial issue, since it is difficult to assume that occurrences of
traffic accidents are purely random observations, in space and time. In most cases,
traffic accidents form clusters, called ‘hot spots’, in geographic spa ce (see Taylor
(1977)). Spatial (and temporal) patterns along a certain roadway segment is largely
determined by its traffic volume, but also physical environment (slopes and angles)
or weather (see Black (1991), Noland and Quddus (2004) and references therein).
Krisp and Durot (2007) mention the case of optimization of warning sign placement
in southern Finland, while Pulugurtha et al. (2007) study sign placement in high
pedestrian crash zones in the Las Vegas metropolitan area. Note that analysis of
spatial patterns is popular in the study of traffic accident (see also Joly et al. (1992),
Nguyen (1991), Steenberghen et al. (2004), Treno et al. (2007), Warden et al. (2011),
Levine and Kim (1998), Yamada and Thill (2004), Saffet et al. (2008), Xie and Jun
(2008) or Loo (2006)), similar studies can be conducted in criminology (see Block
et al. (1995), Eck (1997), Ceccato and Haining (2004) or Nakaya and Yano (2010))

among others.

Detection of ‘hot spots’ is based on spatial analysis of point events, or point pattern
analysis (see Ripley (1981), Bailey and Gatrell (1995), Anselin and Flora (1995) or
Batt (2005) and references therein). Quadrat analysis (see Getis (1964), Rogers (1965)
or Thomas (1977)) is one popular technique to analyse the pattern of a distribution
of events within a given region §. The idea is to divide region § into sub-regions §;’s
having equal (and homogeneous) areas, called quadrats an to study histograms on this
partition of §. GIS packages allow then visualizing the phenomenon via color-based
representations of quadrats. Nevertheless, the analysis is then extremely sensitive to

the partition considered.

A natural extension is to consider kernel based estimators of densities (see OSullivan
and Unwin (2002), Miller (1999), Gatrell (1994), Basawa (1996a), Basawa (1996b),
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Batt (2005) or Borruso (2008)). The goal here is still to obtain a a field represen-
tation of the phenomenon (here traffic accidents) by means of a smooth continuous
surface, where peaks represent the presence of clusters (‘hot spots’ ) in the distribu-
tion of events. A bandwidth related to the length of the neighborhood (also called
‘sphere of influence’ in Gatrell (1994) ) is considered, as well as a weighting func-
tion (the kernel). Since Epanechnikov (1969) proved that statistical results were not
(significantly) affected by the choice of the kernel function, most of the authors have
emphasized the fact that bandwidths choice is a crucial issue. The most popular
kernel is the Gaussian one since a dual representation (accident locations observed
with a random noise) can be used. Nevertheless, if such kernel estimators are easy
to compute, and satisfy good statistical properties, Yamada and Rogerson (2003)
recall that this methodology suffers a so called ‘edge effect’ also known in statisti-
cal literature as ‘border bias’: on the frontier of the region of interest S. Yamada
and Rogerson (2003) mention Ripley’s circumference method (from Ripley (1981)),
but claims that “Ripley’s method could be too complicated without proper software or

skilled programmers”.

In this paper, we recall basics on space and time kernel density estimation, in
Section 2. Nevertheless, the time component will not be discussed in this paper.
Them in Section 3, we will discuss frontiers and space border bias correction. In this
section, we will present several (standard) techniques when S is either an half-space, or
a rectangular area. Then, we provide a simple method to compute efficiently weights
in Ripley’s circumference method that can be used for any region S (characterized
as a polynomial). We will discuss the link between radius computation, and optimal
bandwidth. And finally, in Section 4, we illustrate that technique on bodily injury car
accidents, in western part of France (Morbihan and Finistére). R codes are provides

in the Section 5.
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2. SPACE AND TIME KERNEL DENSITY ESTIMATION

2.1. Definitions and notations. Kernel density estimation (see Silverman (2004),
Scott (1992)) is a standard statistical technique to estimate a smooth probability den-
sity function. It has been extended from univariate distributions (on the real line) to
multivariate distributions, including spatial temporal models. Spatio-temporal obser-
vations are pairs of observations (Z,T), with a local Z = (X,Y") (usually character-
ized by a latitude and a longitude coordinate) and a time 7". A natural assumption is
to consider a product kernel, between location and time, as in Brunsdon et al. (2007).

Hence,

N I, (r-X, y-Y t—T;
He —— Sk K 2.1
@ y,t) nhxhyhT; Z( hx | hy ) T< Iy ) (2.1)

is the density estimator at location z = (z,y) at time ¢, where n denotes the total
number of events observed, and hx, hy and hp are spatial and temporal bandwidth

respectively.

Following Epanechnikov (1969), let Kz and Kr be Epanechnikov kernels (used e.g.
in ArcGIS)

Krlw) = S(1 - )1 € 0,1) (2.2)
and
Kp(u,v) = %(1 C e+ )1+ 0 € [0,1)). (2.3)

An alternative is to consider Gaussian kernels, i.e. Kz is the density of a Gaussian

random vector,

Kz (u,v) B S, <—; [u® +0* — 2puv]) : (2.4)

= P
2my/1 — p? 2(1 - p?)

From Silvermnan’s rule (see Silverman (2004) or Scott (1992)) for d-dimensional
product kernel, and Gaussian observations, optimal bandwidth are h* = n~ G+ s
where o is the standard deviation in the appropriate dimension. E.g. h% = n~ Y/t

where 0% = Var(X). Estimated optimal kernels are then h* = n~V/G+d5 . Further,
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as mentioned in Hérdle et al. (2004) bandwidth are rather close, from the two ker-
nels. Recall that if the observations are not Gaussian, bandwidth are usually to large,

which might cause an excessive smoothing, as discussed in Hérdle et al. (2004).

3. FRONTIER AND SPACE BORDER BIAS CORRECTION

Kernel density estimation is a popular technique to visualize smoothed densities.
But in some specific cases, observations have to belong to some specific area §. For
instance, for traffic accidents, events have to occur in-land. In that case, kernel

estimates suffer two important drawbacks,

e the total weight is not equal to 1, so we do not have a proper probability
distribution function, i.e. [ f(z)dz < 1,

e close to the frontier AS, f has a multiplicative bias, i.e. ]E[J/”\(z)] =k, f(2),
where £, € [0, 1].

Hence, in that case, for regions closed to the sea, estimators of density can suffer

major drawbacks.

Remark 1. In standard statistical package, the estimations are usually normalized so
that the overall mass (on the area where the density is computed) is equal to 1. A mul-
tiplicative coefficient is applied uniformly on the whole area, while a local adjustment

18 necessary.

~

The idea here is to propose a methodology which gives an estimator f which could
be associated to a proper probability distribution function, and which does not suffer

border bias.

3.1. Standard techniques for squared areas. Consider points Z; = (X;,Y;) in
the unit square [0, 1] x [0, 1]. The standard kernel estimator for the spatial density at

point z = (x,y) is

~ 1 — -X; y-Y;
i=1
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Example 1. A generation of 200 and 2,000 points, respectively, uniformly distributed

on the unit square can be visualized on Figure 1.

2.0

1.0

0.8
|

0.6
|

04

0.2

0.0
|

0.0

Ficure 1. 200 and 2,000 uniformly distributed on the unit square,

and kernel based estimators of respective densities.

A first idea, introduced by Devroye and Gyorfi (1981), is to consider a transfor-
mation of the variates. Let ¢ : [0,1] — R a (known) continuous increasing function

(in order to preserve clusters and neighbors), and consider the transformed sample
Z; = (W(X;),9(Y;)). If f denotes the density of Z, then

FW (@), ¥(y))
WV ((x)) V(W (x))

fx,y) =
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A natural idea is to consider v as a quantile function taking values on the real line, e.g.
the Gaussian distribution 1) = ®~!, and the standard kernel estimator on transformed
observations Z;’s,

_— i () = e i) — oY)
D G A

where ¢ is the density of the standard normal distribution.

A second idea, that was introduced in Chen (1999) in the univariate case and
Charpentier et al. (2006) for the extension in higher dimension, is to consider products

of beta kernels,
1— 1— 11—y
K 1,—+4+1)-K (Y 1, 1
Z ( TR e ) ( g b+ —+ )

where K (-, a, ) denotes the density of the Beta distribution with parameters o and
[. Note that this idea of finding a kernel family having a support which fits exactly
with the support of the observations has been intensively used, for positive valued ob-
servations, see Scaillet (2004) for the univariate case and Bouezmarni and Rombouts

(2010) for the multivariate case.

Those two techniques are extremely popular, but unfortunately, not appropriate
to the study of geographic patterns, where the support is a region & identified as
a polygon, but not necessarily a rectangle. An alternative is to recall that kernel
estimators of densities can be seen as the expected value of then density for sample
{2 i = Z;+e;} where €;’s are i.i.d. random noises, independent of the observations, as
in Davis (1975), Tapia and Thompson (1978) or Stefanski and Carrol (1990). Recall
that the empirical cumulative distribution function is the step function defined as

n

Flz) = %Z 1(Z; < ), (3.2)

i=1
and the associated empirical measure is

N0 (3.3)
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where 0 denotes the Dirac measure. The idea of Kernel based estimator is to substitute

a continuous distribution to Dirac measures,

flz) = =3z (2) (3.4

where pz, can be the density of a Gaussian vector, centred in Z;, with variance-
covariance matrix H. The problem is that if the distribution of Z has a bounded
support, then measure p1z, will spead some weight in areas where no observations can
be found. Thus, it might be natural to consider a truncated distribution, restricted

to the support S.

HZ;(z)
Hz,s(z) = 3.5
zis(%) 1iz,(S) (35)
Thus, it is natural to consider
~ 1 1«
f(z) = - ;Mzis(z) = izlwz- +fiz,(x) Where w; = iz, (S)7" (3.6)

If we consider a noise with circularly contoured distribution (e.g. a Gaussian noise,
as mentioned earlier), it is possible to approximate pz,(S) by
A(Dgz,,NS)
A(Dz,)

where A denotes the area function, and Dy, , denotes the disk centered in Z; with

(3.7)

radius 7 > 0 (see Figure 3 for an illustration on observations restricted to the unit
square). This method is usually called Ripley’s circumference method (from Rip-
ley (1981)). Note that r should be related to the covariance matrix H (this will
be discussed in section 3.3). Thus, here the idea is simply to use weighted kernel

estimators
n

f(z)=> w(Z) det(H)'K (H '(z - Z))) (3.8)

i=1

where weights w(X;) should reflect the proportion of area around Z; that belongs
to S. Those weighted kernel estimators have been intensively used, e.g. on censored
data, as in Marron and Padgett (1987) (to correct censoring bias) or Gisbert (2003).
As mentioned in Hall and Turlach (1999), having weights that depend only on the

data (Z;’s) and not on the location (z) is interesting from a computational point of
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view. From this assumption, and since computing intersection of polygon areas with
standard softwares is extremely simple, Ripley’s correction technique can easily be

implemented.

Example 2. The use of weights is illustrated on Figure 2 in the univariate case: on
border, the kernel is no longer the density of a Gaussian distribution centered on X;,
but the density of a truncated Gaussian distribution. Thus, those weights have an

impact on the border of the support.

2.0

15

1.0

0.5

0.0

0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 2. Weight correction of a density on [0,1]: the kernel is no

longer a Gaussian density, but a truncated Gaussian density.

Example 3. On the same samples as considered in Erxample 1, weighted-kernel es-
timators are considered. On Figure 3 are plotted observations on the unit square,
with the circular area around two specific observations. On Figure 4, densities can be

visualized. Note that densities now sum to one.

3.2. Correction for non-rectangular areas and Monte Carlo study of band-
width impact. In order to illustrate that technique, a non-rectangular area is con-

sidered here.
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F1Gure 3. 200 and 2,000 uniformly distributed on the unit square.

Example 4. Consider the polygon of left of Figure 5, and a sample of points uniformly
distributed within the area. In corners and on borders, standard kernel estimators can
be strongly biased. For instance, in point A, on average, the estimator of f(A) will
be 1/8-th of the true value, while it will be 1/4-th in B and C in C. Based on
sample presented on Figure 5, kernel based densities can be computed. On Figure 77
1s presented the output of a Monte Carlo study, when the average density is computed
over 1,000 random samples of size 200. The distribution off in A, B, C and D 1is
can be visualized on Figure 7. The choice of the radius will be discussed in the next

section.

3.3. Link between disk radius r and bandwidth h. With a Gaussian kernel, in
the univariate case, the bandwidth h is the standard deviation of the Gaussian noise
(see mentioned in Chiu (1991)), and in the bivariate case, H is the covariance matrix

of the noise, €. Then the true probability pz,(S) is
P(Z; 4+ € € S) where e ~ N (0, H). (3.9)

Assume for convenience that H is a diagonal matrix with identical terms on the

diagonal, denoted h (this assumption will be relaxed at the end of this section), so



12 A. CHARPENTIER AND E. GALLIC

2.0
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F1GURE 4. 200 and 2,000 uniformly distributed on the unit square,
and kernel based estimators of respective densities, with weight correc-

tion.

that level curves of the density of Z are circles. If S is a half-space, and if the distance

between Z; and the border is a, then

P(Z;+e€S8)=1—®(—ah™) = d(ah™) (3.10)

where ® denotes the cumulative distribution function of the A(0,1) distribution.
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FIGURE 5. 200 points uniformly distributed on S

The proxy we suggest for pz,(S) is to consider the following ratio

A(Dz,,NS)

A(Dy) (3.11)

where Dy, , is a disk centered in Z; with radius r. Again, if S is a half-space, it is
possible to derive an analytical expression, since it will just be related to the segment

of a circle (the region bounded by a chord and the arc subtended by the chord, see

Figure 8).
2r—0 0 a
A(Dgz,,NS) = mr —avr? —a? where cos | = | = —. (3.12)
v 2 N—— 2 T
m triangle area
Thus,
—acos(—ar ) r? +avr2 —a?ifa <r
A(Dz,,NS) = (m ( ) (3.13)
Oifa>r
If we want those two quantities to be close, we should have
— —1)),-2 2 _ 2
B(ah-) ~ (m —acos(ar™))r* +avr? —a 1<), (3.14)

T2
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Standard Gaussian kernel, h=.1 Weighted Gaussian kernel, h=.2

Weighted Gaussian kernel, h=.1 Weighted Gaussian kernel, h=.05

4 s

0.4

AN

00 02 04 06 08 1.0

FIGURE 6. Average level curves of f over 1,000 simulated samples
of size 200, on the left. Optimal (standard) bandwidth is A = 0.1.
Weighted kernels have been calculated with 3 different bandwidth h =
0.2, h =0.1 and h = 0.05, and using then r* = wh/5

i.e. it is possible to relate h and r, when a is fixed. As shown on Figure 9, on the

left, a good optimal value might be
= %h, (3.15)

which is the slope when & is large enough.
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FIGURE 7. Average level curves of f over 1,000 simulated samples
of size 200, on the left. Optimal (standard) bandwidth is A = 0.1.
Weighted kernels have been calculated with 3 different bandwidth h =
0.2, h =0.1 and h = 0.05, and using then r* = wh/5

This relationship has been derived in the context of half-space domains. In order
to visualize the goodness of that approximation, we can compare theoretical weights
(obtained by Monte Carlo simulation of Gaussian random vectors) and approximated
one on the previous sample with 200 points uniformly distributed (see Figure 9, on

the right).

Remark 2. Using Taylor’s expansion, when a tends to 0, since acos(ar™') ~ /2 —

a 1 a a 1 a
O — gl == )~ [+ — 3.16
h (2+7rr+a 7") (2+7r7“) (3.16)

Then we use the expansion ®~1(1/2 + u) = 5u/2 and we have that

ar~!, we have

5
h ~ —=r or alternatively r ~ gh. (3.17)
7r
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FIGURE 8. Link between P(Z; + € € S) and A(Dgz,, NS) where S is

a half-space.

Approximated weights

h 10 15 20 25 30 35 40

Theoretical weights

FIGURE 9. On the right, theoretical weights, ®(—a;h~')~!, where

a; denotes the distance to the border, and approximated wights

(mtacos(a;r ) — ay/1 — (a;/7)?)1(a; < 1)) where r* = wh* /5.

3.4. An elliptical correction. So far, a correction using a circular distribution was

considered, since we assumed that € ~ N(0, H) were H was a diagonal covariance
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matrix with identical terms on the diagonal. But It is possible to consider a non-
diagonal matrix H as bandwidth. In that case, level curves of the density of € are
ellipses. The link between covariance matrices, Cholesky decomposition and ellipses

is discussed in sections of conics in matrix forms in Banchoff and Wermer (1991)

FIGURE 10. A(Dgz, N S) for half-space area S, when Dy, is an ellipse

centered in Z;.

As for the circular-based correction, on average this technique provide proper ap-

proximation of weights.

4. APPLICATION TO BODILY INJURY CAR ACCIDENTS, IN FRANCE

Car accident concentration is usually identified as black spots, as in Nguyen (1991)
or Joly et al. (1992). Those zones suggest that there might exist some spatial depen-
dence between individual occurrences, as suggested by Steenberghen et al. (2004).
Detecting clustering (in time and space) might be an important issue, to improve
road safety and to reduce traffic accidents. We consider here the dataset of traffic
accident, occurred in 2008 in France that involved bodily injuries. The SAAC dataset
(bulletins danalyse daccidents corporels) is filed by police forces, and most accident

have a specific location. In 2008, we have 10854 accidents with a location.

In order to illustrate border issues, we focus here on two specific regions, Finistére

and Morbihan', where major cities (Brest in Finistere and Lorient, or Vannes in

INote that we have removed island, namely Belle-Ile, Ile de Groix, Ile de Hoédic and Ile d’Houat

since no traffic accident occurred on those islands in 2008
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Morbihan are next to the sea). We have 186 observations for the first region, and 180

for the other one.

FINISTERE

-

MORBIHAN

F1GURE 11. The two regions of interest, in Brittany: Finistere and Morbihan.

Results of the estimations for Finistere can be seen on Figure 12. When the stan-
dard kernel is used, we can think of at least two black spots, with one in the North
being more important than the other one in the South coastline. When the correction
is used, the two spots still how up, but another locale stands out on the lower tip of
Finistere. The area of this third place is surrounded by water, thus the estimation

with standard kernel fails to highlight it.

The same happens in Morbihan, as seen on Figure 13. The density estimation at the
North-West frontier is really different depending if we use, or not, weight corrections.

Once weights are applied to correct the border bias, one can easily detect a black spot.

5. APPENDIX AND R CODE

Computation in R is extremely simple, from functions area.poly and intersect
in package R, which allows to compute areas of intersections of polygons. If region
is a polygon (latitude and longitude of knots), if circle is a function that compute

the circle polygon centered in x, i.e.
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0.5 1.0 15 2.0 25 0.5 1.0 15 20 25

FI1GURE 12. Location of car accidents, in Finistere, standard kernel on

the left, and corrected one on the right.

Fi1GURE 13. Location of car accidents, in Morbihan, standard kernel

on the left, and corrected one on the right.

circle=function(n=200,centre=c(0,0) ,radius){
theta=seq(0,2*pi,length=100)
m=cbind(cos(theta),sin(theta))*radius
m[,1]=m[,1]+centre[1]

m[,2]=m[,2]+centre[2]

19
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names (m) =C("X" s uyu)

return(m) }
Then the weight function associated to observation x is then

weight=function(x,h,region){
POL=as(region, "gpc.poly")
POLcircle=as(circle(centre=x,radius=5/pi*h), "gpc.poly")

return(area.poly(intersect (POL,POLcircle))/area.poly(POLcircle))}
More generally, it is possible to consider an ellipse function

circle=function(n=200,centre=c(0,0) ,radius,correlation){
theta=seq(0,2*pi,length=100)

MAT=chol (matrix(c(1,correlation,correlation,1), nrow=2))
m=cbind(cos(theta) ,sin(theta)) %x*% MAT *radius
m[,1]=m[,1]+centre[1]

m[,2]=m[,2]+centre[2]

names (m)=c("x","y")

return(m) }

Then, the code to compute kernel estimate is based on the kde function: the first
step is to compute the optimal (standard) bandwidth, H= Hpi(X). In the case of

circular wieghts, let
H= matrix(c(sqrt(H[1,1]1*H[2,2]),0,0,sqrt(H[1,1]*H[2,2])),2,2)}
Then compute weights for all the observations, i.e.

W=function(i){weight (x=X[i,],h=sqrt(H[1,1]) ,region=polygon)}
omega=1/Vectorize (W) (1:n)

Then, we have to compute the weighted kernel estimator (and to renormalize it) on

a rectangular grid that contain all the observations

fat=kde (U,H,w=omega,xmin=c (min(X[,1]) ,min(X[,2])),xmax=c (max (X[, 1]) ,max(X[,21)))
fat$estimate=fhat$estimate*sum(1/0MEGAU) /n
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Since we compute the density outside the region, we shall put empty values outside

the region of interest

vx=unlist(fhat$eval.points[1])
vy=unlist(fhat$eval.points[2])
VX
VY = cbind(rep(vy,length(vx)))
VXY=cbind (VX,VY)

cbind(rep(vx,each=length(vy)))

Ind=matrix(point.in.polygon(VX,VY, polygon[,1],polygon[,2]),length(vy),length(vx))
fhat$estimate [t (Ind)==0]=NA
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