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Abstract

The current software systems and their corresponding deployment environments are highly com-
plex and demanding. Multiple and unstable network technologies, resource-restricted devices, and
mobility, are few examples of these complexities. In this paper we propose a new component model,
called Cloud Component (CC), that copes with the challenges posed by mobile and pervasive en-
vironments. Traditional distributed applications are based on distribution transparency, where a
middleware layer is expected to handle and hide all remote communication. Cloud component
model is the result of a paradigm shift from distribution transparency to localization acknowledg-
ment, where all details of the deployment environment including networks and communication,
mobile devices, constrained devices, and sensors, are considered a first class concern. The cloud
component model is presented informally and formally with a mathematical notation. The infor-
mal notation allows for faster comprehension of the general concepts. While the formal notation
opens the door for a wide range of theoretical topics and provides a precise language to describe
details. We also propose an assembly model to build large systems using CCs as building blocks.
This assembly model is presented formally and fully implemented for the designer to be able to
automatically check if his/her design conforms to the CC assembly model.
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BEUGNARD AND HASSAN

1 Introduction

During the last years new distributed platforms have emerged, often qualified
as highly distributed environments (HDE). HDEs still include powerful and
robust machines but they are rather composed of resource-constrained and
mobile devices such as laptops, personal digital assistants (or PDAs), smart-
phones, GPS devices, sensors, etc [7]. Moreover, these devices communicate
using a variety of dependable and undependable fixed and wireless networks.

This fundamental change in the deployment environment was not accom-
panied by a theoretical software model that provides deep understanding and
systematic solutions to build compatible software systems [1].

As Malek et al. [10] have noticed “transparency (i.e. hiding distribution,
location, and interaction of distributed objects) is considered a fundamen-
tal concept of engineering distributed software systems, as it allows for the
management of complexity associated with the development of such systems”.
This is usually achieved through the utilization of a middleware layer that has
as a main function (among others) to make remote calls appear as local calls.
That is correct for stable distributed systems, however, this same concept,
distribution transparency, has been shown to suffer from major shortcomings
when applied extensively in HDEs [10].

That leaves us in the following situation: there is excessive and increasing
need to build complex mobile and pervasive systems for entertainment and
professional uses. And at the same time, the fundamental engineering tech-
niques available are inherited from stable distributed environments, and suffer
from several drawbacks and weaknesses when utilized in these new environ-
ments. The only available answer currently is applying ad-hoc techniques to
overcome these drawbacks and weaknesses.

This work is a direct response to the above mentioned challenge. First
we propose a paradigm shift from remote communication transparency to lo-
calization being the first class concern. In other words, we no more hide or
abstract location, on the contrary, we acknowledge all aspects related to lo-
cation including the specification of devices, the networking paradigms they
use, the different network specifications available, security features, and all
related characteristics of the deployment environment. We discuss the limita-
tions of current component models, the paradigm shift needed, and selected
set of related work in section 2.

To achieve the above mentioned objective, we propose in section 3 a novel
component model called cloud component (CC). This model includes the ex-
pected deployment environment in its definition, i.e. we raise the importance
of deployment environment to be equal to the functionality required from the
component. The other important feature of this novel model is that it is
fundamentally distributed. A single CC is usually distributed over many dis-
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tant hosts, the specification of these hosts are considered and fundamentally
acknowledged during the development process of this CC, and all aspects re-
lated to communication, coordination, and quality of service are migrated to
be internal to the border of the CC.

A software component can be thought of as unit of assembly ®. This is true
for all component models including cloud component model. In this paper we
propose a new approach to assemble CCs using systematic methodology that
maintains the properties of CC model. CC assembly is a tool to build large
systems using CCs as building blocks. Moreover, we present a technique to
automatically check the validity of this assembly. Cloud component assembly
and checking are presented in section 4.

The cloud component model and CC assembly are presented informally
and formally with a mathematical notation. The informal notation allows
for faster comprehension of the general concepts. While the formal notation
opens the door for a wide range of theoretical topics including component type
inference, subtypes, etc, and provides a precise language to describe details.
In addition, formal methods allow the designer to produce machine readable
designs where automated tools can verify specific properties at design time,
which in turn, increases the level of confidence in the correctness of design.
We conclude with a brief summary of our proposals and some future work.

2 Highly Distributed Environments - HDE

The emergence of mobile devices such as portable notebook computers, tablet
computers, PDAs, and mobile phones, and the advent of various wireless net-
working solutions make computation possible anywhere [14,13,12]. In this
paper, we define highly distributed environments as a target platform of our
work. These networks include distributed systems with laptops and wireless
networks, mobile systems, and pervasive systems. These networks violate
many familiar assumptions about the behavior of distributed environments,
and demand new techniques to build compatible and optimized software [1],
especially at the architectural level of the software development process.

The characteristics that the HDE infrastructure imposes include [12,1,4,5]:
1- Mobility of hardware, data, and code. 2- Heterogeneity of software and
devices. 3- Volatility of hardware and software components. 4- Small devices,
highly constrained resources, dynamic resources. 5- Connectivity failure
are not rare; disconnected operations. 6- High bandwidth and low latency
are no more available in continuous and dependable manner. 7- Software
components communicate using a variety of interaction paradigms (e.g.,

3 In this article we prefer to use the word assembly rather than composition since the
output of this operation (assembly) is not a software component.
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Fig. 1. Left: Distributed component model (CCM, EJB, .Net, etc) - remote access; no control over
the underneath infrastructure. Right: Cloud component model - local access; the component is
responsible for remote communication.

SOAP messaging, media streaming).

In spite of the above challenges that permeate the entire traditional soft-
ware development life cycle, software in these systems are expected to obey
the following constraints [4,14,5,10]: 1- Customized implementation: the im-
plemented software need to be efficient, customized, and can be deployed on
resource constrained devices. 2- Correctly respond to runtime changes in the
environment. 3- Preserve dependability and quality of service in this highly
dynamic environment.

2.1 Clrrent component models limitations

The concept of software components has been widely adopted because of its
attractive and powerful encapsulation attributes [3,9]. Lau et al. noted: “En-
capsulation has the potential to counter complezity” [9].

After analyzing several component technologies such as CCM and EJB
for industry and Fractal and SOFA for academia, we found that they follow
a common paradigm. These component models rely on strong assumptions,
and they emulate local call on top of distributed networks, and finally they
consider any deviation from their implicit or explicit assumption as exceptions.
All of these points are considered limitations with regards to HDEs. For more
detailed discussion on these limitations, please refer to appendix A.

2.2 Paradigm shift with cloud components

To overcome these limitations, we propose a new component model called
Cloud Component (CC) which is a novel extension to the '"Medium’ concept
proposed by Beugnard et al [2,11]. CC encompasses all features provided by
currently existing component models and, moreover, is especially designed to
be used in the above mentioned complex environments. CC model provides the
capability of the instantiation of its interface(s) on each host that potentially
needs to access the service provided by this CC [2]. This will make the service
access explicitly local. In other words, if we want our component to be accessed
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at some host, we need to deploy an interface instance at that host. It is
evident that this instance will have some sort of remote communication with
other entities inside the component, but this is internal with respect to the
component border as explained in figure 1.

Migrating the communication to be internal inside the CC border has
significant contribution to the overall architecture of distributed applications.
In figure 1 (left) the server provides a service S which is accessible in sites A,
B, and C. If the resources at site A are not enough, or the connectivity at site
C is not adequate, or simply the configuration of site B is not compatible, the
service S of component Com is not accessible, i.e. useless.

With CC, figure 1 (right), this is not the case. Cloud component comCC
has its interface S instantiated on sites A, B, and C. Using it is simply a local
access of a locally available service. S at the three sites provides the same
(or similar) functionality, however, it is possible (and highly probable in this
case) to be implemented using completely different approaches. For example,
in site A special arrangements should be carried out to handle the extremely
limited resources and the mobile networking. In site C, constraints of site A
are relaxed, as result, different implementation technologies are utilized. The
same argument holds for site B, where there are stable fixed networking and
power supply, and rather advanced resources. At this site, there is no need for
the implementation to be prepared to handle complexities that arise in sites
such as A or C.

In other words, we allow several implementations of the same functionality
to exist side by side. The variation of implementation is driven by the vari-
ation of deployment environment, i.e. the characteristics of the hosts where
interfaces will be instantiated, and the characteristics of connectivity available
for each host. For the interface S to be instantiated on site A, there need to be
implementation variant that is compatible with the characteristics of site A.
This compatibility is checked statically before the instantiation of the system
and each of its roles but is out of the scope of this article.

2.8 Related Work

Didier Hoarau et al. deal with the challenges of HDEs [5,6,7]. However,
their solution has different scope from ours. First, they expand the already
existing component model Fractal. Second, they only model and handle the
disconnection of network connection among all characteristics of HDE.
Marija Mikic-Rakic provides a sophisticated response to one challenge pro-
posed by HDEs, which is the discontinuity of services where the system needs
to continue functioning in the near absence of the network [12]. This work
proposes a redeployment solution as part of a middleware called Prism-MW.
Finally, and the most related work, Sam Malek et. al. propose a frame-
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R

Fig. 2. Left: CC style with a single interface S. Middle: CC with two roles, cardinality, and
location. Right: CC com with two roles and three hosts.

work and tools to support the complete software engineering life-cycle for the
development of HDE applications [10]. While their tools help overcome the
challenges posed by HDESs, these challenges become natural details in our
novel component model, where they can be handled systematically.

3 Cloud Component Model

We chose the name Cloud Component since our component model encom-
passes physical borders and hence hides the technologies, implementation
variants, and architecture choices used to conform to the physical topology
of the underneath infrastructure. Our approach in presenting cloud compo-
nent model is based on two different notations: the informal notation and
the mathematical /formal notation. The informal notation is easier to under-
stand and is highly dependent on figures, while the formal notation is more
compact, more precise, and less ambiguous. The formal notation allows us to
communicate precise details easier, and allows us to easily present statements
and proofs.

3.1 The definition of cloud component

Definitions 1 to 5 collectively form the definition of cloud component.

3.1.1 Definition 1: Roles

Let C} be a cloud component with single interface S as illustrated in figure 2
(left). Sis defined through an Interface Definition Language - IDL. We assume
S defines the signature of provided and required functions of C';. The contract
of this interface could be more sophisticated, but we restrict its definition for
the sake of simplicity.

A cloud component can have several interfaces : P, Q, R, etc. We call these
interfaces ‘roles’ because their identification (set of functions they gather) is
guided by the way the component can be used through this interface. The
cloud component in figure 2 (middle) has two roles: S and R.
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3.1.2  Definition 2: Cardinality

Each cloud component can have several roles. In addition, the role is allowed
to have several instances, i.e., several carbon copies of the same IDL. The total
number of instances of a role in a running version of the component is called:
the cardinality of the role. In figure 2 (middle) the role S has cardinality
one and the role R has cardinality two. Combined with location property
(explained later), this approach will encapsulate the communication and all
its details and semantics inside the component.

3.1.8 Definition 3: Connection

Once the component border is defined, the connection rules can be defined.
In order to suppress ambiguity of 1-to-many or many-to-many connections
identified in [11] we allow a role to connect to only one role of another cloud
component in a one-to-one connection.

This rule applies at the instance level, when cloud components are actually
implemented. In order to allow a 1-to-many or many-to-many connectivity,
we use ‘role cardinality’.

3.1.4  Definition 4: Multiplicity

Cardinality is a number k£ € N. We can allow more complex structure by not
specifying k (at some point of the design). Instead, we put constraints on k
called multiplicity. For example a role R can have multiplicity [1..5], [1..%], or
simply .

At this level of definition, we are not bounded by decidability features but
only consider constraints definition.

3.1.5 Definition 5: Location

Each role is assigned a location to run on. The location in the most basic form
is a computing host/device. In figure 2 (middle) a cloud component has two
different roles, S and R. Role S has one instance that is located at the host
Server. The role R has two instances that are located at the host Client.
Figure 2 (right) presents a cloud component that has two different roles, S
and R. Role S has one instance that is located at the host Server. The role
R has two instances one of them is located at the host Client_1 and the other
is located at host Client_ 2.

One should not mix our definition of location with the geographic loca-
tion. Our model does not define or recognize geographic location, rather, we
acknowledge location as a computing/electronic device that might be mobile
or not. It is fundamental to assert that location is integral part to the CC
definition, in other words, without location specification the cloud component
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definition will not be complete. Finally, and at design and implementation
stages, the collection of all locations are called ‘the expected deployment envi-
ronment.’

3.2 Formal definition of cloud component

A single cloud component is defined using the following four-tuple:

(i) A finite set of roles A.
(ii) A finite set of multiplicities for these roles 7.
(iii) A set of possible deployment environments L. Each L is either a finite
set of hosts H, or a finite set of host types 7.
(iv) A function Z that maps roles to location types or hosts.

Q=A@ L, 2)

The following formally defines the cloud component com in figure 2

(right):
Qcom = (A, 11, L, Z) where:
A = {AS, AR}
= {(AS, 1), (AR, 2)}
L = {{T'Server, TClient_1, TClient 2}}
Z: NS | TServer, AR ] TClient.1, AR | TClient 2

The formal definition is read as follows: the CC com is defined using its
four-tuple. The set of roles contains two roles: role type S and role type R.
Role type S has multiplicity 1, and role type R has multiplicity 2. The set of
expected deployment environments has only one set, which contains three host
types: host type Server, host type Client,, and host type Client,. Finally Z
can be read as: The role S is localized at host of type Server. Role R has two
instances, one is localized at host of type Client; and the other is localized
at a host of type Clients. Symbols used to construct the formal notation are
summarized in table B.1 in appendix B.

3.8  Formal definition of cloud component based system

Generally, a software component can be thought of as 'unit of composition’.
This is true for all component models including cloud component model. In
CC model, roles are the only access points of the component. A role can serve
as a connection port where component C'; connects to other component C as
in figure 3 (left). We choose to assembly components in specific architecture
to achieve our desired system specifications. As result we have o the set of
assembly rules that includes the dependency rules between CCs, and all role
connections. Cloud component assembly will be discussed in detail in section

4.
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leagal

connection

desktopOne desktopTwo

Fig. 3. Left: Two CCs are composed using roles S and Q. Right: Two CCs AlphaCC' has two
role instances A and B, and BetaCC has two role instances C' and D. A, C, and D are hosted
by desktopOne, while B is hosted by desktopTwo. Therefore, the connection between A and C' is
legal, whereas the connection between B and D is not permitted.

A system built using cloud components consists of:

(i) A finite set of cloud components 2.

(ii) A finite set of multiplicities for these cloud components M.
(iii) A set of assembly rules o.
(iv) A set of possible deployment environments L.

As result, the system type is fully defined using the “four-tuple” notation:
S=(Q, M, o, L)

Finally we define the system instance S. Let S be a CC based system that
is defined as above. S is an instance of that system and is defined using the
following five-tuple:

(i) The system type S that we want to instantiate.
(ii) The function 7 that takes a cloud component as a parameter and returns
the number of instances of it.
(iii) The function K that takes a role as a parameter and returns its cardi-
nality, i.e. number of instances.
(iv) The deployment environment L which is a finite set of hosts H.
(v) The function Z that maps I'* to L.

~

S=(S,7K,L,2)

4 Cloud Component Assembly

4.1 Assembly Constraints

In CC model, roles are the only access points of the component. A role
can serve as a connection port where component ComA connects to other
component ComB as in figure 3 (left).

4 T is defined in appendix B.
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Fig. 4. The importance of the ‘connection multiplicity’. Left: No information. Right: The
multiplicity of the connection is defined: [2..4].

4.1.1  First constraint - one-to-one

An instance of role S can connect to one instance only of any other role at
any time instance. We raised the importance of this constraint from being a
recommended design choice to be a fundamental model constraint for several
reasons. One of these reasons is to remove ambiguities in the connections.
Another and important reason is to control the design precisely, and to be
able using this control to ensure the delivery of the expected non-functional
properties. As an example, let us take the role S in figure C.1 from the banking
example in appendix C. And suppose S is hosted by some regular desktop. If
S is expected to have 10 connections, i.e. 10 clients that want to use the video
service, is completely different from S is expected to have 10° connections at
the same time. The difference exists in the design, implementation, and the
deployment host (probably a normal desktop will not be able to serve 10°
connections). This difference should be recognized from the very early stages
in the design, and this is done in CC model by setting the multiplicity (or
cardinality) constraints over roles.

4.1.2  Second constraint - local connections only

Two instances of two roles can connect to each other only if both of them are
instantiated at the same host as in figure 3 (right). If they are instantiated
at different hosts they simply can not connect to each other. This is a direct
result of the paradigm shift discussed in section 2.2. It is fundamental in our
model to migrate all remote communications to be internal to the border of
the CC itself. This migration means that these remote communications are
designed and implemented using the special software development process®
of the CC model, and more important, passed all checks necessary to ensure
the quality of service expected.

4.1.3  Third constraint - Connection multiplicity

When there is a connection between two roles, that does not mean that all
instances of these two roles should connect to each other. Figure 4 (left) is

5 We propose a novel software development process to build CCs and CC based systems.

The description of this process is out of the scope of this article and we will propose it in
future publication.

10



BEUGNARD AND HASSAN

an update of figure 3 (left) by adding multiplicities to roles S and Q. To
understand the connection in this figure we need to see the uncertainty that
exist at this phase of design. During runtime, there might be one instance of
S and five instance of @), or nine instances of S and two instance of (). So
how many connections we have at runtime between S and Q7 To answer this
question we need to remember that the final responsibility of the design is held
by the designer himself, we only provide an advanced model and accompanied
tools and checkers. To facilitate the assembly design we add the connection
multiplicity, which is a range [min..maz|, where min is the minimum number
of connections that must exist at runtime, and max is the maximum number
of connections that might exist at runtime, as in figure 4 (right). Usually
these numbers reflect the need of either of the roles, or both. For example
if I have a role W that connects an ATM machine (CC AT M) to the bank
system (role S of CC Agent), I can expect W to need only one connection
at runtime, i.e. [1..1]. On the other hand I expect S to allow zero or more
connections at runtime, i.e. [0..x]. Please see figure C.1 in appendix C.

4.2 Formal definition of cloud component assembly

CC assembly is based on the connection operator ®, which is a binary operator
that takes two CC roles and returns true if the designer explicitly listed those
two roles to be connected (this is done in o as described later), otherwise it
returns false. The set of assembly rules is called ¢ and is defined using the
following context free grammar:

E—{Il}

I—=1J, | IJ | ¢

J — (Qar.Avar @ Quar.Avar, int, int)

Where var and int are terminals such that: var represents any string of char-
acters and int represents a positive integer. This grammar will recognize the
following syntax:

o = {(Qname.Aname @ Qname.Aname, min, maz),  (Qname.Aname ®
Qname.Aname, min, mazx), ..., (Qname.Aname®Qname.Aname, min, max)}.
The following shows the assembly in figure 4 (right) using formal notation:

o ={(QComA.AS ® QComB.AQ, 2, 4)}

In general we can write:

o ={(QComA.AS @ QComB.AQ, m, n)}

This connection has the following semantics: at least m instance of S connect
to m instance of (), and at most n instance of S connect to n instance of Q.
This is correct for one and only one instance of each cloud component.
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e.f g..h

S .

Fig. 5. CC assembly normal form A. Ranges are always consistent (i.e. min < max).

Level one 1] i<=e | o[ e<i<=f ‘ 3 f<i ‘

Level two 1‘ m<=e ‘ z‘ e<m<=f ‘ 3‘ f<m ‘
1.1 % ;g 33

Decision level | Okay | [ Warning | ‘ Error |

Fig. 6. The relation between the two ranges [e..f] and [i..m] in figure 5. We start with level one,
and depending on the value of ¢ we move to level two where we inspect the value of m. The label(s)
on the arrows leading to the decision level indicate the decisions made on the upper two levels.

4.3  Remark

The connection operator ® is symmetric:

QComA.AS @ QComB.AQ <= QComB.AQ ® QComA.AS

The above statement is read as follows: role S is connected to role @ if and
only if role @) is connected to role S.

4.4 Assembly checking algorithm

Figure 5 presents the general case of assembly, which is defined as normal
form A assuming there is a single instance of the CC. The connection here has
the following semantics (as mentioned in the definition): at least ¢ instance of
S(Q) connect to i instance of Q(S), and at most m instance of S(Q) connect
to m instance of @(.S). This is correct for one and only one instance of each
cloud component ComA and ComB.

The two ranges [e..f] and [g..h] are not related in any way since cloud com-
ponents may have been designed independently. On the other hand, the two
ranges |e..f] and [i..m] are related as in figure 6. Cases presented in figure 6
can be reduced to the following four cases:

(i) i<e & m <e= Valid
(i) i <e & e <m = Warning
(iii) e < i < f = Warning
(iv) f <i= Error

The same argument holds for the two ranges [g..h] and [i..m] in figure 5.
Depending on the numbers, we have three cases:

(i) Valid: in this case we do not have a chance of connection problems at
runtime if the instantiation of roles respected the design.

12
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- at+c+e .. b+d+f
S

Fig. 7. Left: CC assembly normal form B. Multiple connections - role S is connected to three roles
Q1, @2, and Q3. Right: Role S after assembly reduction - phase one.

e.f g..h

Fig. 8. CC assembly normal form C. Other CCs can connect to Q, S, etc. Omitted for space.

(ii) Warning: in this case the designer need to be careful because even if
the instantiation respected the minimum requirements, we might face
invalid situations. For example, if e < ¢ < f, and at runtime we have
only e instances of S (legal situation), and we need i connections to S.
This situation will produce runtime error. As result, before asking for ¢
connections to S, the application must instantiate at least ¢ instances of
S (possible because i < f).

(iii) Error: here we do not have enough instances of the role to satisfy the
minimum connections need.

A role (specifically, role type) is not limited to be connected to only one
other role, rather, this number is unlimited. At runtime, this role is expected
to have several instances, where each instance is connected to one other role.
This is assembly normal form B and presented in figure 7 (left). To check this
assembly we need to get it back to normal form A in figure 5. We call this
conversion from the form normal form B to normal form A: assembly reduction
- phase one. For role S in figure 7 this is accomplished as in figure 7 (right).
Formally: Let 0 = {(S ® Q1,a1,01),(S ® Q2,a2,b2),-- , (S @ Qp,an,b2)}.
After assembly reduction - phase one, we get: o = {(S5,Q,a,b)} such that:
a=> 1 a;,b=>" b, and Q is virtual role for checking only. This is for
role S only and must be done for all other roles that have connections to more
than one role.

Figure 8 presents CC assembly normal form C. The connection here has
the following semantics: at least 7 instance of S(resp.Q)) connect to i instance
of Q(resp.S), and at most m instance of S(resp.Q)) connect to m instance
of Q(resp.S). This is correct for one and only one instance of each cloud
component. More over, CCs ComA and ComB have multiplicities [a..b] and
[c..d] respectively.

Because of the multiplicities of the CCs, we are unable to use the checking
procedure used for normal form A directly on normal form C. To be able
to check this assembly, we will follow several assembly reductions starting

13
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ae..bf cg..hd

b S Q c.d

Fig. 9. The result after reduction phase two and three on figure 8- CC multiplicities are completely
removed.

CC based system,

normal form C + Assembly Reductions Normal Form A Checking
Checking the Integrity of the input assembly_reduction_phase_two() check()
check 1(), .., check 5() assembly_reduction_phase_three() l Print Results
= = assembly_reduction_phase_one() Report Problems.

Fig. 10. Inclusive checking algorithm. The integrity checks, namely, checkl() through check5(),
insure that the input is not corrupted with respect to normal form C.

from this general model. Assembly reduction phase two reduces the multi-
plicity of the CC to be incorporated (inserted) into the multiplicities of its
roles.  Formally, let: QComA = ({AP,AS},{(AP,1),(AS,e, f)},L,2)

and  QComB - ({AQ. AR}, {(AQ. 0. 1), (AR, 1)}. L. 2).
o = {(QComAAS ®@ QComB.AQ,i,m)}. Now let S =
({QComA, QComB}, {(QComA, a,b), (QComB, c,d)}, o, L). Assem-

bly reduction phase two produces the new multiplicities for all roles:
Ticoma = {(AP,a,b),(AS,ae,bf)} and licoms = {(AQ, cg, hd), (AR, ¢,d)}.

Assembly reduction phase three is trickier. The multiplicity of the con-
nection [i..m] is affected by both CC’s multiplicities, namely [a..b] and [c..d].
The objective of this phase is to end up with the connection multiplicity [z..y]
using the rule: ‘for x we choose the max of the mins, and for y we choose the
max of the maxs’. Formally: # = max{ia, ic}, and y = max{mb, md}. By
the end of this phase we will get back to normal form A that can be checked
directly as in figure 9.

The algorithm in figure 10 is fully implemented using C programming
language, and used to check the banking system example in appendix C.

5 Conclusion and Future Work

Highly distributed environments pose a number of challenges for software de-
velopment process. In this paper we propose a novel component model, the
cloud component, that converts the above mentioned challenges into regu-
lar and systematic software development details and tasks. Moreover, we
proposed a formal notation to describes our component model. This formal
notation is more compact, more precise, and less ambiguous. The formal no-
tation allows us to communicate precise details easier, and allows us to easily
present statements and proofs. Finally, we developed a formal model to build
large systems using CCs as building blocks, and developed an algorithm to
check the validity of the assembly, and implemented an automatic assembly
checker based on that algorithm.
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Several remaining challenges form the scope of our future work. The most
important challenge is related to the deployment environment modeling, and
designing an effective algorithm to be the basis of an automatic deployment
checker that checks the compatibility between cloud components and the ac-
tual environment where we are trying to deploy. We have investigated tech-
niques to accomplish this task, these techniques include Ontology and F-Logic
(Object Logic) for modeling. Moreover, we investigated several algorithms
that depend on reasoning based queries for automatic deployment checker.
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A Current component models limitations

After analyzing several component technologies, we found that they follow a
common paradigm. These component models rely on strong assumptions, and
they emulate local call on top of distributed networks, and finally they consider
any deviation from their implicit or explicit assumption as exceptions. All of
these points are considered limitations with regards to HDEs as we explain in
the following:

Rely on strong assumption A common way to distribute a component-
based application consists of installing each component instance on a host;
the distribution then refers to the fact that a component can make distant
invocations to the services implemented by another component [6,11]. This
type of architecture usually relies on rather strong assumptions [6]:

(i) The stability of the execution platforms (the component server is highly
available - usually with backup recovery system)
(ii) All hosts have sufficient resources which include processing power, mem-
ory, and power supply.
(iii) The connectivity is reliable and has good characteristics (low latency,
enough bandwidth, stable, no disconnections, etc.).

In general, an application designed using this architecture can not be
installed and executed on deployment environments with hosts that are
potentially volatile and limited in resources, especially when disconnected
network operation and weak consistency of the characteristics of the con-
nectivity are possible or frequent, which is the case in HDEs [6,7].

Emulation The distributed component models mentioned above share a com-
mon goal: making aspects related to the distribution transparent to both
the application programmer and the users. They hide distribution by mak-
ing remote call appears to the caller as local call, but to some ad-hoc and
limited exceptions (see next point). However, by hiding distribution, these
mechanisms do not incorporate aspects related to disconnections, mobility,
and all other complexities mentioned in the previous section [8]. In gen-
eral, distributed applications are designed using the same techniques as a
centralized application [5,15].

Exceptions Most common component technologies were not originally de-
signed for HDE. Therefore, they consider any deviation from the strong
assumptions mentioned above such as inaccessibility of a machine or the
unavailability of certain resources as exceptions. The treatment of the var-
ious changes that may occur within the network is usually done by adding
code to adapt to these new events. This code will increase the complexity
of applications [5,15] with specific and ad-hoc extensions and poor method-
ological guidelines.
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Typical HDE applications are highly distributed, decentralized, and
mobile. Therefore, they are highly dependent on the underlying network
[14,13,12]. We believe that the successful paradigm in stable distributed net-
works ‘remote communication’ or ‘distribution transparency’ is no more de-
pendable in highly distributed environments HDE. There is fundamental need
to move from hiding the underlying network into acknowledging all its aspects
and details. It is possible to achieve that by introducing the concept ’‘location’.
We call this a paradigm shift from ‘distribution transparency’ to ‘localization’.

By location we mean the physical actual computing device where software
runs, and that ranges from simple mobile phone to large super computing
machine. Modeling location at early design stages will better reflect commu-
nication, mobility, and heterogeneity of devices.

Instead of delaying the distribution of software components over the com-
puting devices until the deployment phase, we propose integrating this concept
to the very early stages of software development process, especially architec-
ture. Mapping software components to the deployment environment is called
localization’. Several models and techniques are proposed in this work to fa-
cilitate this approach. The localization of components is revised and refined
during the development process until we reach the final deployment plan of
the whole application.

It is clear that when we attach location property to a software component,
we — either explicitly or implicitly — attach information related to the resources
available in this location, the communication paradigms available, the power
supply type, and the security features, etc. This information will help (guide)
the design and implementation of the system itself.

Acknowledging the properties of the target infrastructure at the very early
stages of software development process will help us develop customized soft-
ware for that infrastructure. This software will utilize the resources to the
maximum or near maximum, and at the same time will tolerate the weak-
nesses and treat the previously considered exceptions as survivable expected
events.

B Symbols

Cloud Components and CC based systems can be described using for-
mal/mathematical notation. In this appendix we present the elements and
symbols of this notation/language in table B.1.

C Example - Banking System

In this appendix we presnt a simple banking system to explain the algoritm
proposed in section 4. The banking example is presented in figure C.1. The %
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Concept Symbol | Comments
Start Symbol S Usually the complete system we want to model
Cloud Component | €2 QA is read cloud component A’
Roles A Type ; AR is read 'role R”
r Instance ; I'R is read ’instantiated role R’
Cardinality K
Role Multiplicity |
CC Multiplicity M
Location - Type T
Location - Host H
Localized at 4
CC Assembly o The set of assembly rules
Connect Operator | ® A binding between two roles
Set of symbol | Set of CCs Q, set of roles A, etc.
Define =

Table B.1
Symbols used to construct the formal notation.

symbol can be reduced to [0..M AXINT)| for computations. In this example
the system is built using three CCs. The Bank CC is responsible for all
database systems, security, transactions, and accounts. It is basically the
backbone of the system. The Agent CC is the filter that any access to Bank
will pass through. In other words, nobody can directly access Bank CC. AT M
CC is installed over all ATM machines to allow customers to access their
accounts, and perform bank transactions. Similarly, Internet CC is installed
on the customers devices to allow them to access their accounts using internet
banking.

We encoded this example using the formal language presented in this pa-
per, and used the automatic assembly checker to check the design. The as-
sembly checker generated the output presented in figure C.2.

The checker reports expected warnings and errors. For instance the error
reported (figure C.2 - right) on the system described figure C.1 (bottom) is
due to the too many instantiations of the ATM and Internet CCs.
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Fig. C.1. The banking system in normal form C. Up: Enterprise Edition. Down: Limited Edition

Warning!!!!

Problem type 1.2

Conncetion to P.

This connection is not safe because it is dependent on the max kardinality.
Warning!!!!

Problem type 1.2

Conncetion to Q.

This connection is not safe because it is dependent on the max kardinality.

The design has potential problems. Please read messages.

Warning!!!!

Problem type 1.2

Conncetion to P.

This connection is not safe because it is dependent on the max kardinality.
Warning!!!!

Problem type 1.2

Conncetion to Q.

This connection is not safe because it is dependent on the max kardinality.
Error!!!! Conncetion to S.

This connection is illegal because it is exceeds the max kardinality.

The design has major errors. Please read messages.

Fig. C.2. The output generated by the assembly checker. Up: For Enterprise Edition. Down: For
Limited Edition
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