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ABSTRACT

This paper addresses the underdetermined source separa-
tion problem of finite alphabet signals. We present a new
framework for recovering finite alphabet signals. We for-
mulate this problem as a recovery of sparse signals from
highly incomplete measurements. It is known that sparse
solutions can be obtained by `1 minimization, through
convex optimization. This relaxation procedure in our
problem fails in recovering sparse solutions. However,
this does not impact the reconstruction of the finite alpha-
bet signals. Simulation results are presented to show that
this approach provides good recovery properties and good
images separation performance.

1. INTRODUCTION

Source separation problem has been intensively investi-
gated in the literature in the recent three decades. The pur-
pose of source separation systems is to estimate the origi-
nal source signals from their mixtures. Source separation
is an important research topic in a variety of fields, in-
cluding speech and audio processing [1], radar processing
[2], medical imaging [3], and communication [4]. Source
separation problems can be classified according to the na-
ture of the mixing process (instantaneous, convolutive)
and the ratio between the number of sources and the num-
ber of sensors of the problem (determined, underdeter-
mined, overdetermined). This paper is restricted to the
noiseless instantaneous case, where each observation con-
sists of a sum of sources with different signal intensity.

Most algorithms solving source separation problem sep-
arates the sources in two stages. In the first stage, the un-
known mixing matrix is estimated and in the second stage,
the sources are estimated. Our contribution focuses on the
later stage. We refer readers to [5] for mixing matrix esti-
mation.

Underdetermined source separation (USS) problem,
when the number of sources is more than the number of
the observed signals, is obviously an ill-posed problem,
and its solution cannot be derived without additional as-
sumptions. As an example, in [6], the sources are sepa-
rated using sparsity of the sources in the time-frequency
domain. A source is said to be sparse in a given signal
representation domain if most of its samples are zero. An-
other approach is based on the geometric properties of the
signals [7].

This paper deals with separation of finite alphabet sig-
nals. Linear combinations of such signals are encountered
e.g. in data communications and image processing. In
this paper, we show that this problem can be expressed
as a sparse recovering problem. Inspired by literature on
sparse reconstruction [8], [9], we relax the sparse prob-
lem to `1 minimization.This convex relaxation provides
good recovery performance for random sensing matrices
when a condition on the number of missing measurements
holds.

The layout of this paper is as follows. The next section
recalls the data model associated to the source separation
problem and describes a basic assumption for identifiabil-
ity of the original sources. We then propose a new pro-
cedure for recovering finite alphabet signals in section 3.
Simulations results are given in section 4. There is some
discussion of the proposed method in section 5. Finally,
conclusions are given in section 6.

2. PROBLEM STATEMENT

2.1. Data model

Consider the following noise free mixing model:

y = Φf , (1)

where f = [f1, f2, · · · , fN ]T is the N × 1 source vector,
y = [y1, y2, · · · , yn]T is the n × 1 mixture vector and Φ
is the n ×N mixing matrix. Given y and Φ, the purpose
of USS is to estimate f in the underdetermined case, i-e
when N > n. In this case, the system (1) has either no
solution or infinitely many solutions. In order to avoid the
case of having no solution, we shall suppose that Φ is a
full rank matrix.
The solution of (1) cannot be derived without additional
assumptions. In this paper, we consider source signals
(fi)1≤i≤N that only take values from the finite alphabet
A = {a1, · · · , ap}.

2.2. Solvability assumption

In order to recover the finite alphabet signal from the un-
derdetermined linear model, it is necessary to assume that:

(H1): Model (1) is A-well-posed.



in that Φf = Φf ′ implies f = f ′ [7], where the co-
efficients of f and f ′ are drawn from the finite alphabet
signal A.

It is clear that, without this assumption, it is impos-
sible to identify the original sources with any algorithm.
Practically, we note that, for random sensing matrices with
reasonable determination, this assumption is easily met.

3. SEPARATION VIA `1 MINIMIZATION

Assuming (H1), let f be the unique solution of (1) with
coefficients fi ∈ A. Let εi = [I(fi = a1), I(fi =
a2), · · · , I(fi = ap)] denote the indicator vector associ-
ated with index i, where I(fi = aj) is the indicator func-
tion equal to one when fi = aj and zero otherwise. Put
ŝ = [ε1, ε2, · · · , εN ]T . ŝ is of length Np.

DenoteBa andB1 the matrices in RN×Np such that:

Ba =


a 0p . . . 0p

0p a . . . 0p

...
...

...
...

0p . . . 0p a



B1 =


1p 0p . . . 0p

0p 1p . . . 0p

...
...

...
...

0p . . . 0p 1p


where a = (a1, · · · , ap) and 0p,1p are the row vectors of
Rp with respectively zero and one entries only.

Then, it is clear that ŝ ∈ S(y), where S(y) denotes
the set {s ∈ RNp : ΦBas = y and B1s = 1T

N}. The
first equality results from f = Baŝ, the second one is by
construction of vector ŝ.

The following proposition formulates the recovering
of finite alphabet signal as a problem of sparse signals re-
covering from highly incomplete measurements.

Proposition 3.1 Assuming (H1), the optimization prob-
lem:

(P0) : argmin ‖s‖0 s.t s ∈ S(y).

where ‖s‖0 counts the number of nonzero elements in s,
has a unique solution and is equal to ŝ.

Proof :
With assumption (H1), let f be the unique solution inAN

of y = Φx.
On the one hand, we know that ŝ ∈ S(y) and that ‖ŝ‖0 =
N .

On the other hand, partition the set {1, 2, · · · , Np}
intoN consecutive sets (Ti)1≤i≤N of length p each. Equal-
ityB1s = 1T

N implies that the restriction of s to each sets
(Ti)1≤i≤N cannot vanish entirely, i-e, each set contains at
least one nonzero element of s. Thus, for all s ∈ S(y),
‖s‖0 ≥ N .

The unicity of the solution in x ∈ AN to y = Φx
implies that there is no s ∈ S(y) different from ŝ with

cardinality N .
Thus, ŝ is the unique sparse solution in S(y)

In order to recover f , it is sufficient to find ŝ and put
f = Baŝ. However, finding sparse solutions to under-
determined systems of linear equations is in general NP -
hard [10]. Solving this problem essentially requires ex-
haustive search strategy. This method is intractable be-
cause the search space is exponentially large. Therefore,
inspired by literature on sparse reconstruction [11], we
propose to replace the `0 cost with the `1 norm to obtain
the new recovery procedure of f from y. The procedure
is described as follows:

• Minimize

(P1) : argmin ‖s‖1 s.t s ∈ S(y)

where ‖s‖1 =

Np∑
i=1

|si|

• Put f̃ = Bas̃ where s̃ is a solution of (P1).

On the practical side, unlike the `0 cost, the `1-norm is
convex. Furthermore, (P1) problem (for real valued data)
can be recast as a linear program. Thus, the new recovery
procedure can be solved in a polynomial time. However,
problem (P1) does not always yield the same solution as
the (P0)-problem.
The restricted isometry property (RIP) is the most priv-
ileged tool to analyze the equivalence between (P0) and
(P1). The k-restricted isometry constant δk [12] of a ma-
trix F is the smallest quantity such that:

(1− δk)‖c‖22 ≤ ‖Fc‖22 ≤ (1 + δk)‖c‖22 (2)

holds for all k-sparse vectors c.
In [13], the author establishes that `1-problem recov-

ers the solution of `0-problem provided that δ2k of the un-
derdetermined linear system is smaller than 0.4652. Gaus-
sian random matrices have good restricted isometry con-
stants, in the sense that the RIP holds for large values of k.
In our case, the RIP condition may not hold. Indeed, even
if the mixing matrix Φ has independent Gaussian entries,
the underdetermined system that appears in (P0) and (P1)(

ΦBa

B1

)
may no longer satisfy the requirements for equivalence be-
tween the two problems. Furthermore, we cannot even
guarantee that a solution of (P1) is unique. However,
since we are not interested in recovering the coefficient
vector ŝ, but rather the signal f = Baŝ, the equivalence
between (P0) and (P0) and, thus, the RIP condition, are
sufficient but not necessary to estimate the signal. Indeed,
the next section shows the performance of our approach
for random sensing matrices that do not necessarily verify
the RIP condition.



4. SIMULATIONS RESULTS

4.1. Exact recovery of finite alphabet vector

In the first set of experiments, pertinence of the approach
is experimentally assessed as follows. Let us consider ran-
domly generated signal with N = 256 samples randomly
drawn from a finite alphabet of cardinality p. The alpha-
bet can be chosen arbitrarily. Given the number n of mea-
surements, we sample the mixing matrix, for each itera-
tion, with independent Gaussian entries and we compare
the recovered f̂ and the original f signals.

The recovery is regarded as successful if the relative
error ‖f̂ − f‖2/‖f‖2 is less than 10−5. For each n, we
repeat 100 iterations of the experiment and average the re-
sults. The results are presented in Fig.1 for p = 2 and
p = 4. Our experiments show that finite alphabet signals
can exactly be recovered provided that :

n > α
N(p− 1)

p
, (3)

where α controls the probability of success; (e.g. 90%
of success for α = 1.06, 100% of success for α = 1.12).
We expect that this result is asymptotic because it involves
random matrices and that numerical evaluations show bet-
ter recovery performance in the limit of large samples.
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Fig. 1. Success rate of exact reconstruction

When p = 4, the solution s̃ provided by the standard
cvx routine to problem (P1) may differ from the solution
to problem (P0). Nevertheless, the estimate f̃ = Bas̃ of
f has a relative error less than 10−5. Therefore, there is
no equivalence between (P0) and (P1) and, thus, the RIP
condition is not satisfied. All the same, this does not im-
pact the good recovery performance of the finite alphabet
signals.

4.2. Binary image separation

In this experiment, we used four binary images of size
256 × 256 (see Fig.2). In order to meet condition (3) of
the method, we consider three linear combination of the
original images (see Fig.3). The mixing matrix is gener-
ated with independent Gaussian entries.

We execute our vectorial procedure by stacking the
pixels of the four sources in a one-dimensional signal.

Fig. 2. The Original binary images

Fig. 3. The observation images

The reconstructed images are shown in Fig.4. We used
SNR = 20 log(‖X‖/‖X−X̂‖), whereX is the input im-
age, ‖·‖ stands for the Frobenius norm of a matrix, as per-
formance measure. The following table shows the ability
of our method to source separation in images.

Images Cat Text Zebra Fingerprint
SNR (dB) 17.15 34.73 22.49 20.23

5. REMARKS

• Numerical simulations show that the minimum `1
norm solution enables recovery of finite alphabet
signals for Gaussian matrices when n > N(p−1)

p .
The proof of this result remains an open issue, which
is one of our current research topic.

• The minimization problem in our approach can be
related to the `1-synthesis described briefly in [14].
The authors present novel results concerning the re-
covery of sparse signals in overcomplete dictionar-



Fig. 4. Separated images using `1 minimization

ies. The difference with our linear underdetermined
source recovery process is that we add observations
to our encoding measurements (B1s = 1T

N ). With-
out this step, the recovery algorithm of finite alpha-
bet signals fails.

• The condition n > N(p−1)
p can be rewritten in the

form Kp < N where K is the number of missing
measurements. Since similar recovery conditions
can be found in [15], it can be wondered whether
some uncertainty principle would not underly the
approach proposed above.

6. CONCLUSION

In order to exploit the recent advances in applied harmonic
analysis and more precisely the problem of finding the
sparsest decomposition of a signal y in a highly over-
complete dictionary Φ, we have presented a new frame-
work for the underdetermined source separation problem
of finite alphabet signals. This framework is based on a
convex relaxation, which attempts to recover the ideal fi-
nite alphabet signal by solving a `1 optimization. Simu-
lation results illustrate the effectiveness of the proposed
approach even when the RIP condition is not satisfied.
Therefore, our future investigations would be to establish
the theoretical conditions — possibly in connection with
heuristic criterion (3) — under which exact reconstruction
of finite alphabet signals is possible and to study in details
the behavior of our approach in a noisy model.
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