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Abstract—During the last years the problem of network
selection in wireless heterogeneous systems has attracted a lot
of attention. Expecting that next generation mobile devices will
allow connections to different types of networks, it is interesting
to investigate the outcome of selfish behavior in that context. It
may then be necessary to introduce some mechanisms to drive
users choices to some desirable directions - quality of service
(QoS) optimization, energy consumption minimization, network
revenue maximization -. In this paper, we define and investigate
a system where users decide which network to connect to based
on some ratings of networks, possibly computed from feedback
sent by other users.

We then apply that model to investigate the pricing decisions
made by network owners, in two different settings: a compe-
tition among several revenue-oriented operators, or a revenue-
maximizing monopoly. The outcomes of those settings are com-
pared, in terms of network usage and energy consumption.

Index Terms—Network selection; game theory; rating game;
congestion control; quality of service;

I. INTRODUCTION

The term “Always Best Connected” was first coined by
Gustafsson and Jonsson [4], who describe a system where
users have several devices with different types of supported
networks, and the system tries to keep the user connected to
the internet at every moment of time. The authors provide
a detailed business model and consider technical solutions
required for the implementation of such a system. One of the
questions raised in [4] was how to determine the most suitable
network for a user in its current situation.

A network selection mechanism taking into account multi-
ple factors, including the available throughput, security, cost,
timeliness (which consists of delay, response time, and jitter)
and reliability (which consists of burst error, average number
of retransmissions per packet, and packet loss ratio) is pro-
posed in [9]. That approach is mainly user-centric, and does
not take into account provider utilities or negative externalities
(congestion effects) among user choices.

Another approach is to consider both providers’ and users’
gain. [5] considers the network selection problem with respect
to the preferences of both users and providers. The objective
function considered is the weighted sum of two components
- one represents the user satisfaction level, as the difference
between their received rate with comparison to their required
one, and the other shows the benefit of the access point,

measured by users willingness to pay for their received rate.
Then a greedy algorithm is proposed to optimize the global
performance of the network. The decision is then centralized,
whereas we consider a decentralized approach in this work,
the decision of the network to join being left to the user.

In [2], users choose their network based on the expected
delay, with the help of network probing. In that work, several
strategies of delay information updating and algorithms for
selecting a suitable network are considered, including decen-
tralized approaches for collecting information about network
congestions. In the model we develop, users also base their
choice on some performance measure (in addition to the price)
sensitive to congestion, that we interpret as a rating. The
process of collecting and distributing those ratings is above
the scope of this paper, but we could imagine that ratings are
obtained from an aggregation of the feedbacks given by the
users of the different networks.

In addition to proposing some Quality of Service (QoS)
measure to base one’s decision on, it is also interesting to
investigate the performance of the system depending on user
behavior. A classical framework to perform that task when
users are selfish is that of noncooperative game theory [7].
In [3], a network selection game is played among users, while
a resource allocation game is played, at a larger time scale,
by providers. In those games, users select a provider and a
frequency so as to minimize their perceived interference level,
that depends on the number of users connected on the same
frequency within some interfering distance, while at the higher
game level providers select frequencies to operate in order
to maximize the number of connected users. In [6], users
select their network selfishly to minimize the price paid per
successfully sent packet (that depends on congestion since all
submitted packets are charged to their sender), while providers
maximize revenue by playing on prices. That pricing game
is shown to have a unique Nash equilibrium, where social
welfare (the total value that is extracted by the system given
the provider capacities) is maximized. In this paper, we also
consider some leader-follower situations, where the leader(s)
fix the prices on each network, anticipating the reaction of
users (the followers). However, we do not only focus on
provider revenues and economic efficiency, but also on the
energy efficiency of the resulting prices. In addition, we



consider two situations of the price setters: competition among
revenue-oriented operators, and global revenue maximization
by a single entity owning all access points.

The remainder of this paper is organized as follows. Sec-
tion II presents the setting of our model, namely the network
topology considered, the stakeholders and their strategic deci-
sions, and specifies the hierarchy in the decisions taken. We
establish some analytical results for the game played among
users for fixed network prices in Section III. Then two possible
settings for the pricing decisions are described (competition
among providers, or collusion/monopoly) in Section IV, and
the consequences in terms of global performance are analyzed
in Section V. Some conclusions and directions for future work
are given in Section VI.

II. MODEL

A. Network topology

In this paper we consider a system consisting of two
networks. For the sake of simplicity, we assume that both
networks have the same coverage area, as illustrated in Fig-
ure 1. Moreover, we consider that all mobile users own the
technology allowing them to connect to both networks.
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Fig. 1. Network topology considered in this paper.

B. User behavior

Users are sensitive to the QoS they experience, and to the
price they are charged for the service. While the latter is
clearly advertised by the networks, the former is less obvious
to determine, since QoS estimations based on probing often
involve some nonnegligible amount of uncertainty, due to
the rapid changes in radio conditions. To cope with that
problem, we consider a controller that computes in real time
an averaged (over all users) value of the QoS level of each
network, and propagates those levels to all users in the system.
That average value will be called the rating of the considered
network: it can be computed based on some feedback of the
experienced QoS from all users (hence the averaging), or
directly calculated by the access point based on the number
of connected users. The details of that aspect are beyond the
scope of this paper: we focus here on the dynamics implied by
the rating scheme, and will consider that this rating depends
on the level of congestion of each network (i.e., the number
of connected users).

We consider that time is slotted; at each time slot users that
are present in the system make a choice. Recall that the final
decision is left to the user herself (instead of an algorithm
implemented within the mobile terminal). To describe user

behavior, we use the well-known logit model [8], where each
user chooses a network based on its quality and price, but
also on other individual criteria that we model as random
variables (see [8] for details). In the case of two networks,
the probability that a user j chooses network i ∈ {1, 2} then
equals, at each time slot:

pji =
e(V j

i −s
jPi)

e(V j
1 −sjP1) + e(V j

2 −sjP2)
, (1)

where V ji is the current quality of network i for user j, Pi
is the price per time slot of network j, and sj is the price
sensitivity of user j (that will be assumed to follow a given
distribution over the user population).

1) Perceived quality and loyalty effect: At each time slot,
the middle controller gathers information about the QoS
experienced by users, and updates the network ratings. We
chose the following update mechanism for the rating Qti at
time t:

Qti = β ·Qt−1
i + (1− β)Q̄i

t−1
, (2)

where Qt−1
i is the rating of network i on period t− 1, Q̄i

t−1

is the (estimated) QoS computed by the central controller at
period t − 1, and β ∈ (0, 1) is a memory coefficient, that
prevents ratings from changing too fast after a temporary
QoS variation. It is easy to see that a bigger β reduces the
oscillations in Qi, but in the other hand the information about
the network congestion state then becomes less representative
of the current situation.

The quality value V ji in (1) can be considered as a simple
rating (this quality value being then the same for all users), or
alternatively we could consider this value to vary from user
to user. More precisely, we will consider in this paper that
V ji contains a QoS-related term Qi, that is modulated by the
network (if any) that the user was attached to in the previous
time slot. This way, we are modeling some loyalty effect,
meaning that a user is reluctant to switch networks once he is
connected to one. More precisely, we consider that the quality
of network i considered in (1) by user j is V ji = Qi(1 +α) if
user j was with network i during the previous time slot, and
V ji = Qi otherwise. The parameter α > 0 can be interpreted
as the loyalty value (or some cost corresponding to switching
networks) of users. It introduces a bias in (1), that favors the
decision to stay with the same network. Note that in this paper,
we assume that all users have the same loyalty value α.

The intuition about this system is that it should be self-
regulating, i.e., independently of the QoS function used (delay,
interference level, available bandwidth, ...), users should end
up being distributed over the networks, in accordance with the
quality and price levels. In other words, a situation where most
users constantly choose the cheapest network is not possible in
our system, because the rating of the congested network will
degrade significantly, and consequently less users will choose
that network in the next round.

2) User arrival and departure processes: We consider that
at each time slot, the number of new users entering the
game (i.e., willing to benefit from the service) is randomly



distributed, following a Poisson distribution with mean value
λ.

Users leave the system after some (randomly distributed)
time. We assume that this service duration follows a memo-
ryless distribution, i.e. at each time slot there is a probability
1−q that the user ends its service (call) at the end of the slot,
independently for each user participating in the system. It is
easy to see that the expected number of users in the system
then converges to λ

1−q .

C. Provider utilities

For some settings considered in this paper, the providers1

will be considered as players, who decide the price to charge
each network. Since Pi is a price per time slot, the average
revenue of network i per time slot is simply

Ri = Pini, (3)

where ni is the expected (average) number of users connected
to network i. In this paper, when prices are set by providers,
we will assume that the objective is to maximize that revenue,
i.e., we ignore any other management or energy costs borne by
providers. Notice that because of the choice among networks
described in (1), the revenue of each network depends on
the price profile (P1, P2). In addition, the average number
λ of new entrants introduced in the previous subsection can
reasonably be considered to depend on the prices set by
networks.

As a result, in the competitive situation, we are faced
with a noncooperative game played by providers to maximize
revenue.

D. Decision hierarchy: a two-stage game

We consider that prices are fixed for a long time period
(with respect to the average user service duration), so that
they can be considered as fixed when studying the process
of users selecting networks. Also, we assume that the price-
setters (the providers) are able to anticipate the behavior of
the users. In that sense, we have a multiple-leader multiple-
follower game, that we analyze using backward induction:
the pricing decisions are made, using the knowledge of the
corresponding outcome for the user interactions.

III. ANALYTICAL RESULTS FOR FIXED NETWORK PRICES

In this section, we analyze the lower level of the game, that
is the one played among users, selecting their network based
on prices and quality. We therefore assume in this section that
the prices P1 and P2 are fixed and constant. In that context,
we derive some analytical results regarding the steady-state
situation of the stochastic process defined in Section II.

Note that for this analytical part, we make the simplifying
assumption that user price sensitivities are re-drawn from
the same distribution at each time slot. This is of course
incorrect in reality, since we interpret price sensitivities as
user-specific parameters: in our simulations we actually keep

1We will indifferently use the terms “provider” and “operator”, to refer to
the entities controlling the networks.

that sensitivity constant for the whole duration of a user’s
connection. Note however that in the case without any loyalty
effect, that assumption does not lead to a bias in the expected
number of users in each network, but only in the number of
handovers (which is why the latter metric is only evaluated
through simulations).

A. Existence of a stationary distribution

We first remark that the discrete-time process (nt1, n
t
2),

giving the evolution of the number of users connected to
each network, is a Markov chain. Indeed, at each time slot
the quality of service Qji considered by users for their next
decision, and the number of new arrivals, only depend on the
current state (and not on the previous ones). Since those values
are the only ones determining the distribution of (nt+1

1 , nt+1
2 ),

the process satisfies the Markov property. It is easy to check
that this Markov chain is irreducible and aperiodic: just
consider that any transition (n1, n2) → (0, 0) has a non-zero
probability, as well as any transition (0, 0)→ (n1, n2).

To establish that the Markov chain is ergodic (and thus,
admits a stationary distribution), it remains to show that
at least one state is positive recurrent. This can be done
easily by considering the state (0, 0), which allows us to
reason only on the total number of users regardless of their
network choice. The total number of users in the system is
itself a (discrete-time) Markov process, that is irreducible and
aperiodic, and obviously positive recurrent since the number
of users converges to the finite value λ/(1 − q), as pointed
out in Subsection II-B2. Therefore all its states are recurrent,
including the state with no users that coincides with the state
(0, 0) of the process (nt1, n

t
2).

Consequently, the process (nt1, n
t
2) is an ergodic Markov

chain, that therefore admits a stationary distribution: after
some time, the probabilities of visiting each state (n1, n2) do
not change. In particular, we can then claim that the number of
users in each network has a mathematical expectation, around
which it will oscillate during a process trajectory.

B. Expected number of users in each network

For simplicity reasons, we first consider the case without
loyalty effect (i.e., α = 0), so that the perceived network
ratings are the same for all users, i.e., V ji = Qi. We assume
the price sensitivities of users to be uniformly distributed on
the interval [a, b], for 0 ≤ a < b. Thus, when the quality scores
(Q1, Q2) of the previous time slot and the number of users
nt in the network are given, the mathematical expectation of
the number of users choosing network i at time slot t is, with
ī := {1, 2} \ {i}:

E[nti]=

nt∑
j=1

Es[E[1l{user j selects network i}|sj = s]]

=nt
∫ b

a

e(Qi−xPi)

eQ1−xP1 + eQ2−xP2

1

(b− a)
dx

=nt
[
1+

1

(Pī−Pi)(b−a)
ln

1+eQī−Qie−b(Pī−Pi)

1+eQī−Qie−a(Pī−Pi)

]
(4)



when P1 6= P2. If P1 = P2, then

E[nti] =
nt

1 + eQī−Qi
. (5)

When there is some loyalty effect (i.e., α > 0), the
computation is a bit more complicated since the perceived
rating is user-specific: we have V ji = Qi(1 + α1l{j∈Nt−1

i }),
where N t

i represents the set of users connected to network i
during time slot t, and N t := N t

1 ∪ N t
2. We then have for a

user present at time slot t,

j ∈ N t−1
i ⇒ pji (t) =

e(Qi(1+α)−sjPi)

e(Qi(1+α)−sjPi) + e(Qī−sjPī)

j ∈ N t−1
ī

⇒ pji (t) =
e(Qi−sjPi)

e(Qi−sjPi) + e(Qī(1+α)−sjPī)

j /∈ N t−1 ⇒ pji (t) =
e(Qi−sjPi)

e(Qi−sjPi) + e(Qī−sjPī)
.

Consequently, we have, if we define mi := |N t−1
i ∩N t

i |,

E[nti] = miE

[
e(Qi(1+α)−sjPi)

e(Qi(1+α)−sjPi) + e(Qī−sjPī)

]
+

mīE

[
e(Qi−sjPi)

e(Qi−sjPi) + e(Qī(1+α)−sjPī)

]
+

(nt −m1 −m2)E

[
e(Qi−sjPi)

e(Qi−sjPi) + e(Qī−sjPī)

]
,

where the three summands respectively represent the expected
number of users which were in network i and did not change
their choice, the expected number of users which migrated
from network ī to network i, and the expected number of
newly arrived users that chose network i.

After some algebra, we obtain, conditionally on nt−1, m1

and m2, and on the values of Q1 and Q2 at the previous time
slot,

E[nti]=mi

[
1 +Ki ln

1 + eQī−Qi(1+α)e−b(Pī−Pi)

1 + eQī−Qi(1+α)e−a(Pī−Pi)

]
+mī

[
1 +Ki ln

1 + eQī−Qie−b(Pī−Pi)

1 + eQī(1+α)−Qie−a(Pī−Pi)

]
+(nt −m1 −m2)

[
1 +Ki ln

1 + eQī−Qie−b(Pī−Pi)

1 + eQī−Qie−a(Pī−Pi)

]
,

for the case when P1 6= P2, with Ki := 1
(Pī−Pi)(b−a) . When

prices are equal, we have

E[nti] =
mi

1+eQī−Qi(1+α)
+

mī

1+eQī(1+α)−Qi
+
nt −mi −mī

1+eQī−Qi
.

Finally, to have results conditionally on the user repartition
at time slot t−1 only, we can plug in the previous expression
the relations E[mi] = nt−1

i q and E[nt] = qnt−1 + λ, where
we recall that q is the probability that a user continues his
service at the next time slot and λ is the expected number of
new entrants at each time slot.

C. Average churn rate

In this subsection, we focus on the phenomenon of churn,
that is, the fact that users switch networks during their commu-
nication. This can be due to the mobility of users (that is not
considered here), to some temporary changes in the network
conditions (reflected by a change in the quality values (Qi)),
or to some user-specific criteria.

Quantifying the occurrence of that phenomenon is of cru-
cial importance to the network management, since switching
networks incurs energy-costly procedures to perform the han-
dover. The frequency of churns is therefore directly linked to
the overall energy consumption of the global network.

Using the same method as before, the expectation of the
number of network changes ht at time slot t (conditionally on
the situation at time slot t) can be computed:

E[ht] = nt−1
1 q

[
1−K1 ln

1 + eQ1(1+α)−Q2e−b(P1−P2)

1 + eQ1(1+α)−Q2e−a(P1−P2)

]
+nt−1

2 q

[
1 +K1 ln

1 + eQ2(1+α)−Q1e−b(P2−P1)

1 + eQ2(1+α)−Q1e−a(P2−P1)

]
still with K1 = 1

(P2−P1)(b−a) .

D. Illustrations

In this subsection, we present some simulations that illus-
trate the selection game we have defined, and the analytical
results of this section. Two cases are considered: one without
loyalty effect (α = 0), and one with a loyalty value α = 3.
Unless specified otherwise, the parameters used in the simu-
lations are the following:
• range of the price sensitivity values sj : [a, b] = [0, 0.4],
• average number of new entrants per time unit: λ = 200,
• probability of leaving the system at the end of the current

time slot: 1− q = 0.2,
• quality score of network i of the form2 Q̄i = 1 −

(nti/Ci)
2, with Ci the capacity of network i,

• networks of respective capacities C1 = 1000, C2 = 600,
• respective prices of each network P1 = 9, P2 = 8,
• memory effect in the computation of Qi in (2): β = 0.9.
Figure 2 shows the evolution of the number of users in

each network, without any loyalty effect. We remark that
due to the inner probabilistic nature of user choices, those
numbers do not converge to a given value. However, after
a few iterations the system is close to its steady state, and
the number of users in each network oscillates around their
expected value. Note here that the expectation on each iteration
is computed from (4)-(5), but using previous iteration’s expec-
tations E[nt−1

i ] instead of the real values nt−1
i . Therefore, the

curves for E[nt1] and E[nt2] are completely deterministic. We
observe that those expected values are very good estimators
of the average values of nt1 and nt2, respectively.

2Note that we could also consider totally different forms for Q1(n1) and
Q2(n2), that could reflect the different technologies used in the heterogeneous
network. With the form taken here, the only heterogeneity lies in the capacity
differences among networks.
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Fig. 2. Number of users in each network, without loyalty effect.

We plot in Figure 3 the corresponding values of the ratings
(Q1, Q2), computed over time following (2). Similarly to the
number of users in each network, after the starting phase where
ratings are high due to the small number of users, ratings
stabilize around a constant value, still with oscillations. Note
however that the amplitude of the oscillations are smaller than
for the number of users, due to the memory effect introduced
in (2) that smoothes the variations.
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Fig. 3. Rating dynamics, without loyalty effect.

Figures 4 and 5 are the counterparts of Figures 2 and 3,
but with a loyalty value α = 3. We remark as expected
that oscillations still take place, but to a smaller extent with
respect to the no-loyalty case. Notice also that the loyalty
phenomenon affects not only the number of handovers (the
churn effect), but also the average balance between networks:
users tend to go more to network 1 when the loyalty effect is
introduced. The explanation of this is as follows: without the
loyalty effect the majority of users already used to prefer the
first network, and the loyalty effect then retains them from
changing networks. Users spend less time “exploring” the
other network, and prefer to stick to their current one (in most
cases, their preferred one). Another direct consequence is that

the loyalty effect tends to reduce the difference in the steady-
state ratings Q1 and Q2: users mostly preferring network 1 and
churning less, that network becomes more congested, hence a
reduction in its rating.
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Fig. 4. Number of users in each network, with loyalty effect.
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Fig. 5. Rating dynamics, with loyalty effect.

Finally, Figure 6 illustrates the dependence of the loyalty
coefficient on the churn phenomenon: as expected, a larger
reluctance to switch networks reduces churn significantly, even
if the other network is temporarily more attractive.

E. Computing the steady-state user distribution

The simulation results of Subsection III-D suggest that the
mathematical expectations of the number of users (computed
by recursively estimating the number of users at each time
slot) are very close to the steady-state average values. This is
partially due to the memory effect β: when β tends to 1 then
the quality values Qi converge to a fixed value. Considering
that limit case when β → 1, we expect that without loyalty
effect, the average number n∗i of users in network i is close
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to the solution of the following fixed-point equation:

n∗i =
λ

1− q

[
1 +Ki ln

1 + eQī(n
∗
ī )−Qi(n

∗
i )e−b(Pī−Pi)

1 + eQī(n
∗
ī
)−Qi(n∗

i )e−a(Pī−Pi)

]
,

(6)
with Ki = 1

(Pī−Pi)(b−a) .
With some loyalty effect, that fixed-point equation becomes:

n∗i =n∗i q

[
1 +Ki ln

1 + eQī(n
∗
ī )−Qi(n

∗
i )(1+α)e−b(Pī−Pi)

1 + eQī(n
∗
ī
)−Qi(n∗

i )(1+α)e−a(Pī−Pi)

]
+

(
λ

1−q
−n∗i
)
q

[
1+Ki ln

1 + eQī(n
∗
ī )(1+α)−Qi(n

∗
i )e−b(Pī−Pi)

1 + eQī(n
∗
ī
)(1+α)−Qi(n∗

i )e−a(Pī−Pi)

]
+λ

[
1 +Ki ln

1 + eQī(n
∗
ī )−Qi(n

∗
i )e−b(Pī−Pi)

1 + eQī(n
∗
ī
)−Qi(n∗

i )e−a(Pī−Pi)

]
. (7)

Remark that Equations (6) and (7) can be solved numerically.

IV. FIXING NETWORK PRICES: NUMERICAL ANALYSIS IN
DIFFERENT SETTINGS

We now consider the higher-level of our game, that consists
in provider(s) setting the prices P1 and P2. Since Equations (6)
and (7) give a relation between the price profile (P1, P2) and
the average number of users on each network, it is possible
to investigate how providers act in order to maximize their
revenue.

First of all, we introduce an elastic (i.e., price-sensitive)
demand, that prevents providers from charging the maximum
possible price to maximize revenue. We assume here that the
average number of user arrivals per time period depends on
providers’ prices as follows:

λ(P1, P2) = λmax

(
1− P1 + P2

P

)
, (8)

where P represents a price above which no one wants to use
the network services, and λmax is the number of users that
would use the system if services were free. Note that the
demand in (8) can be derived from classical linear demand
functions, often used in the literature [1]: there could be two
potential sources of demand, of the form λ1 = A−ηP1 +γP2

and λ2 = B − ηP2 + γP1, where η (resp. γ) represent the

direct (resp. indirect) effect of the price of an operator (resp.,
its competitor). Aggregating those demands, to consider that
users enter the game based on those and then select a network,
we obtain the form given in (8).

We now investigate how the prices P1 and P2 are fixed,
depending on the relation between the network owners.

A. The noncooperative case: price competition

We first consider the situation where both networks are con-
trolled by different entities (operators), that do not collaborate.
The operators then play a pricing game to attract customers,
but still making revenue. Their strategic choice is then driven
by the maximization of their payoff, that is their revenue as
expressed in (3).

The analysis of the two-player noncooperative game is then
performed numerically: we look for a Nash equilibrium [7]
(P ∗1 , P

∗
2 ) as a price profile such that P ∗i is the best that

operator i can play when its competitor sets P ∗
ī

so as to
maximize its revenue. The Nash equilibrium is indeed a
situation from which no player can improve its own payoff
through a unilateral strategic change, i.e., an intersection point
(if any), of the best-response curves of the two operators.

Figure 7 plots the best-response prices of both operators, for
the parameter values given in Subsection III-D with loyalty
effect, except that we consider the elastic demand case with
λmax = 200 and P = 20, and we take price sensitivity values
distributed over the interval [a, b] = [0, 0.5]. We observe that
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Fig. 7. Best-response prices.

the game has a unique Nash equilibrium, an observation we
also made for the other parameter values tried. Interestingly,
remark in Figure 7 that best-response prices are not necessarily
monotonous in the price of the competitor.

B. The cooperative case: a monopoly situation

We will also consider the situation where both networks
are owned by the same entity (that then acts as a monopolist)
fixing prices to maximize the global revenue P1n

∗
1 + P2n

∗
2.

Equivalently, the same outcome is reached when two op-
erators control one network each, but decide to collude and
set prices to maximize the sum of their revenues, possibly



through some agreements regarding the sharing of the benefits
of collusion.

V. GLOBAL PERFORMANCE OF THE DIFFERENT SETTINGS

In this section, we compare the competitive and cooperative
(monopoly) situations, in terms of different performance crite-
ria. The parameters taken for the numerical results shown here
are those of Subsection III-D.When the ratio C2/C1 varies, we
actually fix C1 to 1000, and have C2 vary from 100 to 1000.

A. Network prices

With a loyalty coefficient α varying from 0 to 6, we
did not find any significant changes in equilibrium prices
for both the monopoly and competition case. Figure 8 plots
the equilibrium prices depending on the heterogeneity of the
network (expressed by the ratio C2/C1). Here we observe that
when heterogeneity decreases (i.e., C2/C1 gets closer to 1),
prices for both settings converge to different values, and price
in the competition case is lower than with a monopoly. In the
competition situation, both providers tend to monotonically
decrease their prices when C2 increases. The price decrease
for network 1 is obvious, because if the competitor increases
the quality of its product, it then has to decrease price. For the
second provider it is different: with the rise of the capacity of
its network, operator is interested in attracting more users in
the system, which it does by decreasing its price.

On the other hand, a monopolist is interested in charging a
small price for the services in the network with bad capacity,
and a high price for the network with better capacity, because
in this case, a larger number of clients is attracted to the system
(because of the total demand (8), that depends on the average
of both prices, hence the low P2), and because of congestion
many of them will choose the largest (least congestion-
sensitive) network, thus increasing the total revenue with a
quite high P1.
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Fig. 8. Equilibrium prices in each network, versus capacity heterogeneity
C2/C1.

B. Number of users in each network

Very small changes of in the number of users in each
network were noticed when the loyalty coefficient varies,
which is consistent with the results of the previous section.
In the same vein, the total number of users in the competition
case appears to be bigger than in the monopoly case.

Figure 9 highlights the influence of the network heterogene-
ity on the user repartition among networks. As expected, in all
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Fig. 9. Equilibrium number of users in each network, versus capacity
heterogeneity C2/C1.

cases the largest network attracts more users. In accordance
with Figure 8, when C2/C1 is close to 1, the total number of
users in the competitive case is higher than in the monopoly
case for each network.

C. Distribution of user sensitivities to prices among networks

It is interesting to see how a user’s sensitivity to prices
influences her network choices. This is illustrated in Figure 10,
where the average sensitivity to price of users selecting each
network is plotted.
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We observe that the monopoly leads to a strong discrimi-
nation of users according to their price sensitivity: when the
system is very heterogeneous (C2/C1 small), only users with
a very low price sensitivity choose network 1 (that is the most
expensive one but also the one with the best QoS). Note that
the tendency is inverted for the competition case (network 1
tends to be chosen by less price-sensitive users than network
2), but the difference is much smaller. This can also be an
argument in favor of the competition situation: the monopoly
may lead to strong inequalities among users, where only “rich”
users will benefit from a very good QoS.

D. Energy consumption

Finally, we focus on the energetic performance of the
competitive versus monopolistic situations. Figure 11 displays
the average user’s energy consumption (AEC) dynamics de-
pending on the loyalty effect parameter α. We compute the
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Fig. 11. Energy consumption for different cases

AEC as the average value of ei(j) + v1l{j∈Nt−1

ī(j)
}, where ei is

the energy that a user consumes per time slot when connected
to network i, i(j) is the network chosen by j at the current time
slot, and v is the energy cost of a handover, that takes place
if the user was attached to the other network at the previous
time slot. The following values have been considered here:
e1 = 1, e2 = 1.3, λmax = 200, P = 20, q = 0.2, v = 0.3.As
expected, for both cases the AEC value decreases when the
loyalty effect becomes more significant, mainly because of the
decrease in the number of handovers. We also notice a slightly
smaller energy consumption in the competitive case with
respect to the monopolistic one, but with small differences
(less than 1%).

VI. CONCLUSION

In this paper, we have introduced a model of network
selection by wireless users in an heterogeneous network. In
that systems, users make their choice based on networks’
ratings, that are computed and distributed by a third-part entity,
possibly using feedbacks from users’ experienced QoS. We
have investigated the model dynamics, and we proved that the
numbers of users in networks oscillate around their expectation

values, for which we have provided a good estimate through
an analytical expression.

Those results can be used to forecast providers’ revenues,
the handover frequency, and the energy consumption. We have
considered two cases of system management -by a single
entity, or by competitive providers-, with revenue as the payoff
and prices as the strategies in both cases. Those cases have
been compared in terms of prices, network usage, and energy
consumption, highlighting some interesting results like the fact
that monopolistic situations are likely to lead to very unfair
outcomes.

The model can be extended in several directions. It would
first be interesting to consider different coverage areas for both
networks, so that only some fraction of users would have a
choice to make. Second, the mobility of users, moving from
one area to another, would be worth considering. Finally, we
intend to model not only two cells, but two cellular networks
covering a wide area, with possibly different cell dimensions
for each (representative of the different technologies consid-
ered).
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