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Abstract 

Stylolites are rough surfaces formed by localized dissolution, mostly in carbonates 

and sandstones. They often account for a large degree of dissolution, and their impact on 

porosity and permeability is well recognized. Understanding their formation mechanism 

can advance our ability to predict their occurrence and effect on flow, which has 

appreciable geological and economical implications. Still, many fundamental issues 

concerning their structure and evolution are still unresolved. This manuscript studies the 

roughening of long parallel stylolites, which are one of three types of stylolite 

populations identified by us in a separate paper. Here we report measurements of stylolite 

surface roughness at a scale larger than ever measured before (10-2-101m). Measurements 

were performed using ground-based-LIDAR on 6 naturally-exposed surfaces of >km long 

stylolites in Northern Israel. The outcome of these measurements is a topography model 

of the surfaces, on which different techniques for calculating their roughness 

characteristics were used. Our results show that up to scales of ~10cm, the average 

deviation of the surfaces from a planar surface is related to the scale by a power-law with 

an exponent H. The surfaces are thus defined as self-affine only up to ~10cm with H~0.7. 

Above this scale H decreases almost to zero. This observed upper-bound of self-affine 

roughness measured here for the first time has been predicted by theory [1, 2, 2bis]. Our 

measurements support these theoretical models and together with them present a scenario 

in which stylolites evolve from preferential dissolution along an existing surface that was 

initially smooth and progressively roughened with time. Such a mechanism of stylolites 

growth is different from previously suggested mechanisms for other classes of stylolite 

which might propagate sideways from an initial defect. Based on the theoretical 



roughening model that we adopted, the upper limit to fractality for this class of stylolites 

may be used as a measure of the amount of dissolution on stylolites. Indeed, the amount 

of dissolution of the stylolites in our field site which we calculated from the upper limit to 

fractality is comparable to our estimates of dissolution from two additional independent 

techniques. 
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1 Introduction 

Stylolites are rough dissolution surfaces abundantly found in carbonates and 

sandstones [3-7] . They are lined by insoluble material (mainly clay minerals, oxides, and 

organic matter) which accumulates as the more soluble rock constituents dissolved [5, 6].  

They are characterized by anomalous porosity and permeability with respect to the host 

rock, and thus play a crucial role in determining both the deformation and permeability of 

rocks. In spite of their importance and decades of research, their formation is still not 

well understood. Specifically, the propagation and development of stylolites, as well as 

the controls on their lateral extent and teeth-amplitude is of interest. 

 

In [8] we showed that sedimentary stylolites usually appear not as isolated features, 

but in three main types of “populations” or “stylolite networks”: isolated, self-similar 

stylolites, which have clear edges; networks of long bedding-parallel stylolites with 

uniform dissolution along the seam; and networks of interconnected stylolites with or 

without fractures. The evolution of the various populations was successfully modeled in 

[8] assuming that the initial distribution of heterogeneities (such as clay) in the rock 



determines which kind of network will form and the lateral extent of the stylolites in the 

network. 

 

In many examples stylolite teeth amplitude displays multiscale roughness 

characteristics that can be evaluated as statistically self-affine [1, 9-11]. A self-affine 1-D 

profile remains unchanged under the scaling transformation xx   , [12]. 

For 2-D surfaces, this self-affinity property can be described for sets of 1-D parallel 

profiles extracted from the surface. The roughness characteristics of a surface, such as 

whether it is self-affine or not, or the value of its Hurst exponent H which characterizes 

its self-affinity, and whether this parameter H varies with scale and the scale ranges, can 

give physical indications on the formation mechanisms when confronted with theory. 

This has been claimed with regard to stylolites by [2bis, 10, 11, 13, 14].  They found two 

self-affine regimes for scales smaller and larger than ~1.1mm and connected this to two 

competing mechanisms driving dissolution: surface energy for smaller scales and elastic 

strain energy for the larger scales. The largest surfaces analyzed by [2bis, 10, 11, 13, 14] 

were ~10cm long. Since stylolites are often larger than 10cm ([15, 16] reported 8.5-m-

long stylolites in chalk and in [8] we describe the >1km-long stylolites which are 

measured in this current paper), studying roughness of stylolites on larger scales could 

lead to further insight on their formation process. 

zz H 

 

The present paper focuses on field measurements, characterization, and modeling of 

the formation and evolution of one of the three stylolite populations mentioned above: the 

long bedding-parallel stylolites. Roughness measurements were performed on long 

stylolite surfaces in the “Blanche cliff”, Northern Israel. Our very unique long scale 

measurements (10-2-101m) show that stylolite roughness is scale-dependent up to ~10-1 m, 

where a clear cutoff to this dependence appears. To model and explain these unique 

observations of the statistical properties over many scales we use growth models of 

stylolites roughening from an initial flat surface  [1, 2, 2bis, 10, 11, 14]. The similarity 

between these models and the field measurements supports our claim that long parallel 

stylolites form on existing, very long (practically infinite) bedding-parallel surfaces 

undergoing preferential dissolution (e.g., surfaces of higher clay content). This is in 



contrast to isolated, single stylolites which have been suggested to propagate sideways 

from an initial defect (e.g. [17] ).  

 

We explain in this manuscript how these models can be used to calculate the amount 

of dissolution on stylolites. The amount of dissolution is calculated for stylolites in the 

Blanche site, and is compared to values obtained by two other methods. We discuss when 

roughness measurements can be used as a method for calculation of dissolution amount 

on stylolites. 

 

 

2 Field observations: Large scale roughness measurements of 

stylolites 

Out of several field sites we identified in [8] as belonging to the long-bedding 

parallel stylolite population class, we focus here on the “Blanche” cliff of the Ein El-

Assad Formation (Albian) exposed in Northern Israel (Figure 1), due to its unique 

exposure length (>1km), and its well developed stylolites (teeth amplitude on the scale of 

cm). It is a roughly 50m thick shallow inner-platform biomicritic limestone formation, 

with very low porosity, that dips gently to the west [18]. The bedding-parallel stylolites 

can be traced through the entire outcrop (>1km), and most likely continue beyond the 

exposure. Such a tracing length for stylolites is remarkable, and is observed for the first 

time. It has implications for understanding scales of permeability units and their 

structural continuity. Several large oil-reservoirs of the same geological age also contain 

stylolites which are claimed to highly affect porosity [19]. Detailed field-work conducted 

in this site [8] showed that the stylolites are similarly developed along their whole length 

and keep their spacing. The stylolites were suggested to form on pre-existing layers, 

possibly with higher clay content compared to the surrounding rock. 

 

This paper studies stylolitic roughness as a recorder of stylolitic development. Thus 

roughness of exposed stylolite surfaces in the Blanche (such as in Figure 1b) was 

measured, using Ground-based LIDAR. We used the Leica HDS3000 Laser scanner 



which provides resolution of ~ 3 mm when a target is scanned from a distance of 20-30 

m. A single scan can provide a cloud with millions of points that may be interpolated to 

generate a topographic map or hundreds of profiles (Figure 2). Thus, the technique allows 

a statistical approach when calculating roughness. The scan data are rotated so that the 

mean surface is parallel to the x-y plane. The cloud of points is then interpolated to an x-

y-z grid, in which the topography is the value of the z-coordinate. Four surfaces were 

scanned in-situ and two scans were performed on “rockfalls” – m-size blocks that 

detached from the cliff. Surfaces with minimum erosion were picked for scanning. The 

measured surfaces range in size from 2.1*0.2 m2 to 9.3*3.0 m2 (see Table 1). The 

obtained measurements of stylolite surface roughness range in scale between 10-2-101m, 

larger than ever measured before (so far the highest resolution measurements reported in 

the literature were done up to maximum scales around 10-1m, as e.g. in [1]). The scanned 

surfaces have cm-scale teeth amplitude, are symmetric with respect to the surface average 

plane (in the z-direction) and demonstrate no anisotropy (similar roughness 

characteristics in the x and y directions), as was found by performing the analyses 

explained below on length-parallel and width-parallel profiles. Results are presented for 

length-parallel profiles (Figure 3 and Table 1) so that larger scales can be studied. 

 

2.1 Characterization of roughness 

Characterization of rough surfaces depends on the scale of measurement. One 

common method is to measure the surface width (in the z-direction) as a function of the 

window at which the measurement is made (l). Maximum width (w∞(l) according to [20]) 

or average width w(l) are commonly used, with the latter calculated by the standard 

deviation (STD) of its height from the average surface height. STD is defined by the 

Root Mean Square method (after [21]):  

(1) w(l) 
1

l
(h(i)  h)2

i1

l

  

 

The smallest possible value for l (the smallest window for measuring width) is the 

distance between two data points. In our case, it is the distance between two points on the 

interpolated x-y grid (either 2 or 3 mm, for each surface). The largest value for l is the 



length of the surface. When a surface is self-affine, w and l are related by a power law 

with an exponent H, termed the Hurst exponent [21]. This exponent can be derived using 

other common methods for surface characterization, such as power spectral density 

(PSD) as performed on stylolites e.g. by Renard et al., [10] and on fault surfaces e.g. by 

Sagy and Brodsky [22]. Power spectral density measures the strength of the sinusoidal 

components of the topography over a range of wavelengths by performing a Fourier 

decomposition. We average the 1-D spectra of hundreds of profiles in the x and in the y 

direction for each surface in order to arrive at a spectral estimate with minimal variance.  

 

Figure 3a shows results of the average width of the six stylolite surfaces, w, as a function 

of measurement window, l, calculated following equation (1). The six surfaces show very 

similar behavior with two scaling regimes: above and below l= 10 ±3 cm. Up to this value 

of l the surfaces are self-affine with Hurst exponents of 0.67 ±0.10 (the error is the 

standard deviation of H of the six measured surfaces). For larger values of l the Hurst 

exponent is not constant and decreases to almost zero (H=0.10 ±0.06 for scales above 

~1m). Therefore we identify an upper cutoff to the self-affine behavior of these stylolite 

surfaces: they appear rough on small scales, but at large enough scales (i.e. viewed from 

far enough away) they are smooth. The PSD analyses presented in Figure 3b, as well as an 

additional analysis using the wavelet technique (Determination of the Hurst exponent by 

use of wavelet transforms, Simonsen, I; 

Hansen, A; Nes, OM, PHYSICAL REVIEW E, 58, 3, 2779-2787,   DOI: 10.1103/

PhysRevE.58.2779,   1998) both provided similar values of H as the ones calculated by 

RMS, as evident in Table 1.  

 

 

3 Existing models of stylolite roughening from an initially flat 

surface 

Our roughness measurements can be compared to predictions offered by existing 

roughening models which assume an initially flat surface and predict how stylolite 

roughness will develop with time [1, 2, 10, 11, 14]. Rolland et al. [2bis] or Schmittbuhl et 

http://apps.webofknowledge.com.scd-rproxy.u-strasbg.fr/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Y17D8CdoaIPGolJnm2E&field=AU&value=Hansen,%20A&ut=1547012&pos=%7B2%7D
http://apps.webofknowledge.com.scd-rproxy.u-strasbg.fr/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Y17D8CdoaIPGolJnm2E&field=AU&value=Nes,%20OM
http://apps.webofknowledge.com.scd-rproxy.u-strasbg.fr/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Y17D8CdoaIPGolJnm2E&field=AU&value=Nes,%20OM
http://apps.webofknowledge.com.scd-rproxy.u-strasbg.fr/OneClickSearch.do?product=UA&search_mode=OneClickSearch&colName=WOS&SID=Y17D8CdoaIPGolJnm2E&field=AU&value=Nes,%20OM


al. [11] offers an analytic formulation and solution to the temporal and spatial evolution 

of the surface height, h, with a governing equation: 

(2) ),(
)'(

)()( hx
xx

xh
xd

L
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xhx

t

h x
xx 







  

Three terms appear on the right side of equation (2) and these control the roughening 

processes (from left to right): a surface energy term, an elastic strain energy term, and a 

term representing the spatial solubility heterogeneity. Here, a and L represent 

respectively a characteristic grain scale and a scale derived from the far field stress 

components, the elastic moduli, and the surface tension. In this equation, x, t and h are 

reduced dimensionless quantities, with a unit length, and a unit time set by a/v, with v an 

average dissolution speed. 

  

Numerical solutions to the evolution of stylolite roughness from an initial flat surface 

are presented by [1, 2, 10, 14]. They simulate two granular rock bodies pressed together 

with a predefined fluid-filled flat interface on which dissolution occurs. The solubility of 

the rock is not homogeneous and this “quenched noise” is introduced by assigning a 

lower dissolution rate constant to a certain fraction of the particles. This is seen in Figure 

4 (from Ebner et al., [14]): darker, less soluble grains get pinned and stuck in the 

interface as dissolution evolves. The pressure solution process is discretized in steps of 

dissolution of entire particles, following a linear rate law (see equation (1) in [14]). 

According to this rate law, the dissolution velocity depends on the local elastic and 

surface energies and on the local deviation of normal stress from its average value on the 

surface.  

 

Both the analytical and numerical models described above [1, 2, 10, 11, 14] assume 

three controlling processes: The first is that the system has pinned noise, provided by 

the heterogeneous solubility of the rock, which is the main drive for roughening. The 

second is that the process has long-range interactions, here provided by elastic surface 

forces which are increased by the surface misalignment on the normal to the principal far 

field stress axis. The third process is diffusion and smoothing, here provided by surface 

energies, which cause smoothing of the interface. The models presented above quantify 



stylolite roughness evolution by evolving Fourier or wavelet transforms, or by the 

evolution of surface average width, w (equation 1) as a function of time, t, and of the 

sampling size, l. 

 

The evolution of stylolite surface width with time and sampling size according to 

these models is illustrated schematically in Figure 5 (here the maximum width, w∞(t,l), is 

shown since average width is harder to show visually; both quantities evolve in a similar 

manner). At any given time there is a critical sampling size, above which w∞ is constant. 

For example, in Figure 5 this critical size at time t3 is l2. This behavior of surface 

evolution belongs to a universality class of surface growth models of the Family Viscek 

type, i.e. where the surface dynamics shows a Family Vicsek scaling [23], on which 

much has been written (e.g.: [21]). Other phenomena such as flame fronts, viscous 

fingering, electrochemical crystals and the dynamics of bug colonies obey such scaling. 

All these surfaces develop in a similar manner, thus the parameters used to describe 

stylolite roughening are conventional parameters.  

 

Mathematically, all functions  can be collapsed on a Family Vicsek scaling 

form as: 

),( tlw

(3) 



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



l

fltlw H~),( ; 

where  is a universal scaling function, and  uf  , is a critical sampling size which is a 

simple function of t. The scaling function has the following asymptotic behaviors: 

1)(  uForconstuf   and: , which reflects the fact 

that: 

1)(   uForuuf H

(4)    lForltlw H~),(

which means that for measurement samples smaller than a size of the correlation length χ, 

the width, w, is a power law of the sampling size, l, only, and is independent of time. The 

scaling exponent, H is the Hurst exponent. The width in these small windows will never 

grow anymore, even though the surface keeps on evolving as a whole, since these small 

wavelengths have saturated.  



 

In contrast, for measurement windows larger than χ: 

(5) 






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


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the width, w, is independent of the measurement scale, l. It is constant no matter how 

large the sampling window is, but instead it grows as a power law of time. 

 

The conceptual evolution of w(t,l) for several times according to the models 

described above is plotted schematically on a log-log scale in Figure 6. For a given time, 

ti, w(l) increases as a power-law up to a value of l≈χ above which w(l) becomes constant. 

This critical sampling size, χ is termed the “correlation length”, and can be viewed as a 

characteristic distance between two points on the surface that are influenced by one 

another. χ increases as a power-law with time following  

(6) zt /  1~

where “z” is called the dynamic exponent (or growth exponent). The correlation length 

continues to grow according to (6) unless χ reaches the system size, at which time it stops 

growing. In the case of stylolite growth models, z can be evaluated from time-dependant 

models. In the model of [14] z≈1.2 and similar or slightly lower values are given by [11, 

24]. 

 

Equations (4) and (5) are scaling equations. In order to relate w concretely to other 

length scales, we normalize these equations by a - a characteristic size of the system, 

which might be related to an average or a characteristic grain diameter scale, at which the 

out of plane and in plane amplitudes are of the same order, i.e. . This scale 

characterizes the prefactor of scaling laws for self affine functions, and is also called the 

topothesy [25-27].  

llw )(

 

3.1 Amount of dissolution 

We next wish to infer the unknown amount of dissolution, A, that occurred on the 

stylolite (in meters), from the width measured in models or in the field. This may be done 



if we assume the dissolution rate (v, in m/s) was constant, so that A=vt, where t 

represents the time during which dissolution has been active (between the start of the 

roughening up to when dissolution stopped). 

Therefore, with: 

(6) 


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a

l

a
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H

; and by plugging t=A/v into equation (3) one 

can obtain: 
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The relationship between  and A is then:  

(8) 
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Thus in order to calculate how much dissolution A occurred on stylolites one basically 

needs to have roughness measurements on a scale larger than χ, so as to capture 

accurately χ and w(χ). 

 
 

4 Implementation of the roughening models to the Blanche 

stylolites 

The measured roughness characteristics (section 2) are similar to those of the models 

(section 3) in the fact that both demonstrate self-affine behavior up to a certain length and 

a crossover transition towards a very low roughness exponent above that length. The 

roughness exponent in the theoretical model equals zero for l>>χ. Our measurements 

show a value for H which is very low and close to zero (0.10 ±0.06, Table 1), as expected 

for surfaces following a complete Family Vicsek scaling. We can thus consider the 

measured cutoff as the correlation length of the Blanche stylolites with cm10 . Our 

system size L is >1km, which is the observable length of the stylolites, so L>>χ and we 

can use χ or w(χ) to calculate the average amount of dissolution that occurred on the 

Blanche stylolites 



By plugging into equation (6) the values of χ, w(χ) and H of the self-affine part of the 

plot for each surface we can calculate the characteristic size, a: 
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We find that a on average is ~20μm (see Table 1). We can then use either equation (7) or 

(8) to calculate the amount of dissolution, A: 
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With the range of literature values for the dynamic exponent z, we find: for z=1.2, 

A≈70cm (this is for the average value of z in Koehn et al., [2]); for a slightly lower value 

of z=1.0, A=10cm. The detailed results of these calculations (Table 1) demonstrate that 

the variability of A from one surface to another is much smaller than the sensitivity of A 

to the selected value of z. E.g. for z=1.2, A varies between 50 and 100 cm, whereas A is 

5-10 times higher for z=1.2 compared to z=1.0 for a given surface. With an average 

spacing, d , of ~30cm between stylolites in the Blanche cliff this translates to between 

10cm/(10+30)cm=25% and 70cm/(70+30)cm=70% strain. 

 

An alternative method to calculate A is by a simplified mass-balance. Here we 

assume that (1) stylolites are the only source for cement, and (2) we have a closed 

system, meaning that material dissolving on stylolites precipitates in the available 

porosity and that porosity at the end of the process is close to zero. Several thin-sections 

that we prepared and studied, taken from the stylolites and up to several cm away from 

them show no porosity at this scale and thus support our assumption of zero porosity 

around the stylolites. We estimate from these thin section that the initial porosity, φ, is in 

the range of 0.2-0.3. Thus, we basically assume that initial porosity was completely shut 

by cement originating from dissolution on the stylolites. Using d =30cm we can calculate 

A: 



)3.012(5.7
)2.01(

30*2.0
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This translates to between 20% and 30% strain, and is comparable to our lower 

roughness-based estimates (with z=1.0). 

 

A third independent method we used to evaluate the amount of dissolution is by 

maximum amplitude of stylolites (peak-to-peak) measured in 2D in the field, assuming 

it is a minimum estimate to the amount of dissolution. Amax was also used by Schmittbuhl 

et al., [20] who defined it as . Our field-measurements, which are described in detail 

by [8], show Amax≈4cm for one stylolite and Amax≈10cm for another. These values are 

also comparable to the lower estimates of dissolution of the roughness-based method. All 

three independent methods give similar estimates within an order of magnitude, which 

we interpret as a good sign of their validity. 

w

 

 

5 Discussion 

We have demonstrated in this paper how models of stylolite roughening from an 

initial flat surface can be used to explain measurements that were performed on long 

parallel stylolites in the Blanche cliff, Northern Israel. Our roughness analysis on surfaces 

of several different stylolites from this site showed that the stylolites are self-affine below 

~10cm with H≈0.7. This upper cutoff to fractality was consistent among several surfaces 

from different stylolites and we correlate it with the model-predicted cutoff to fractality, 

also termed the “correlation length”, χ. Above this length, measured roughness decreased 

significantly, as quantified by the decrease in H (to ~0.1 or even lower). 

 

5.1 The life and death of the Blanche stylolites 

The conformity between the roughening models and our measurements agrees with a 

picture of dissolution occurring preferentially along a surface. This surface was initially 



smooth and progressively roughened with time. Had stylolitization in the Blanche 

continued for a long enough time we would have expected to see a self-affine behavior 

on all scales. The Blanche stylolites are not self-affine in the large scale, which implies 

that the stylolitization process had stopped at some stage. The reason for termination of 

the stylolitization process could be related to porosity destruction resulting in no place 

available for precipitation, an option which is supported by the mass balance calculations 

for A and by the thin-section observations, as explained above. Already in 1975 Bathurst 

[28] suggested that the growth of a stylolite could stop when the permeability in the 

adjacent sediment has fallen so low that transport of ions away from the solution film is 

practically inhibited. The role of stylolites as a local source for cement is well accepted 

[7, 29-32], but how much of the dissolved material precipitates locally and how much is 

transported out of the system depends on local conditions and their temporal evolution. 

The frequency of open fractures and their connectivity as well as permeability of the bulk 

control how “open” or “closed” the system is. Thin-sections of the Blanche show that 

current porosity is close to zero both close to the stylolites and at mid-points between 

adjacent stylolites and that the initial porosity is filled by cement. Very few small 

fractures or veins were identified, which also supports the concept of a closed system in 

which pore fluid has no path out and precipitation occurs near-by. Thus we suggest that 

the life cycle of stylolites in our case-study was controlled by precipitation: once pore 

space was completely cemented – the process of stylolitization stopped.  

 

5.2 The correlation length – measured for the first time 

In the present work we measured for the first time the upper bound of self-affinity 

and the correlation length which were predicted by previous theoretical studies  [1, 2, 10, 

11, 14]. Karcz and Scholz [13] analyzed roughness of stylolites from several field sites on 

2D traces and found them to be self-similar from scales of 10 microns to 2.5m. They 

found one regime with H=0.55. Other previous studies [10, 11, 13, 14] showed fractal 

stylolite roughness over several orders of magnitude, up to ~10cm. These studies showed 

two self-affine regimes for scales smaller and larger than ~1.1mm, with roughness 

exponents of HS~1.1 (for small scales) and HL~0.5 (for large scales). The authors 



connected this to two competing mechanisms driving dissolution: surface energy and 

elastic strain energy. The larger scales they measure correlate to the smaller scales in our 

LIDAR measurements, and the part with H~1.1 is below our resolution. The two regimes 

discussed in these papers, are therefore not the two regimes we present, and the 

correlation length was not measured in these cases either.  

These previous stylolite roughness measurements have not measured the upper 

bound to fractality before, either because the largest scale of measurement was smaller 

than the correlation length, or because the correlation length had reached the system size. 

When stylolites are connected by a framework of fractures (such as in the case of Karcz 

and Scholz [13]), it may indicate that the system was open, at least to some degree, thus 

allowing dissolution to continue and roughness to develop to very large correlation 

lengths. In such a case, it would require very large sampling size to capture χ, or χ may 

even have reached the system size. 

An alternative explanation to why the upper cutoff to fractality has not been reported 

by others is that not all stylolites are formed from existing flat surfaces, as the Blanche 

stylolites. Other types of stylolite populations have been reported in the literature, as 

summarized in [8]. For different types of stylolites roughness develops differently, 

especially for those which propagate laterally. Their roughness is expected to be more 

developed in the center and decrease towards the “younger” stylolite edges, as observed 

by Stockdale [6]. 

 

5.3 Upper bound to fractality: is it a good measure for A? 

Estimates of amount of dissolution on stylolites have been performed by various 

authors (e.g.: [3, 5, 33, 34]). The common methods used are summarized in table 1 of 

Tada and Seiver [7]. These include maximum teeth amplitude, seam thickness, heavy 

mineral condensation, displacement of veins and reconstruction of fossils and oolites. We 

have presented here an additional method for estimating the amount of dissolution and 

found that its results are comparable (similar order of magnitude) to maximum teeth 

amplitude and to mass balance calculations. The common method used for evaluating 



amount of dissolution from cores is by measuring the maximum amplitude. Two issues 

should be discussed: 

1. When is maximum amplitude, Amax, a good measure of dissolution amount? 

The answer to this question is that Amax is a good measure of dissolution in case the 

sampling size is larger than the correlation length. If it is smaller it will probably give an 

underestimate. For example, if we measure Amax for l=χ/2 (assuming Amax(χ/2)/Amax(χ) = 

w(χ/2)/w(χ), [20]), the dissolution underestimation would be, from equation (7): 
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 . For z=1 the value of measured Amax will be 0.5 of the 

value measured when l=χ. In general, the underestimated value would be b-z for 

measurement size l=χ/b. 

Another requirement for Amax to be a good measure of the dissolution amount is that 

the measured stylolite evolved on a pre-existing surface. If it evolved from a seed and 

grew laterally, the position from where the sample is taken is expected to have major 

influence on roughness. It is unknown at this stage how such different stylolite groups 

can be differentiated when studied in a core, but this is one interesting question to 

investigate in the future. 

 

2.  Is dissolution amount based on roughness measurements a better estimate 

than other methods? 

The answer to this question is currently no. The main reason is that the major 

parameter which is unknown and evaluated only from models is the dynamic exponent, z. 

This parameter defines the time-dependence of the evolution of roughness. In our 

calculation we gave a lower and upper estimate of this parameter, which resulted in quite 

a large range for A (between 10 and 70cm). This parameter could be better constrained 

from field studies of stylolitization evolution with time, or from laboratory experiments 

but these are obviously not easy to conduct, as stylolites have never been produced in the 

lab (except on the sub-grain scale by [35]). 

 



 

6 Summary and conclusions 

In this paper we have presented 3D roughness measurements of stylolite surfaces 

at a scale larger than ever measured before. We have compared these measurements to 

predictions from a model of surface roughening from an initially flat interface. The six 

analyzed surfaces show self affine characteristics with H of 0.67 ±0.10 for scales of 

several mm and up to ~10cm. Above this scale, H decreases almost to zero, indicating 

that there is an upper cutoff to the self-affine behavior of these stylolite surfaces. The 

existence of this upper cutoff, termed the “correlation length” (χ), was interpreted as an 

indicator that the stylolitization process stopped before roughness has saturated. We 

proposed a scenario in which dissolution and hence roughening stopped when all 

available porosity around the stylolites was shut down by precipitation originating from 

the material dissolved on the stylolites. A method for estimating the amount of 

dissolution, on stylolites from their roughness characteristics in cases where χ is much 

smaller than the stylolites length was presented. Dissolution amount for the Blanche 

stylolites was calculated and compared to its estimates from two other methods. The 

agreement between the three independent methods indicates that the upper bound to 

fractality of stylolites’ roughness can indeed indicate on the amount of dissolution. One 

very important implication of the agreement between the models and measurements is 

that it provides support for formation of stylolites, at least in this field site, from existing 

surfaces. These surfaces could be perhaps of higher clay content [8]. This is in contrast to 

in-plane propagation of stylolites, as suggested for other cases (e.g. [8, 36, 37]). 
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Tables 

Table 1: Physical and statistical characteristics of six stylolite surfaces from the Blanche cliff, 
Northern Israel. Hurst exponents calculated using three independent methods are shaded in blue 
(RMS= root mean square; PSD=power spectral density). H is significantly different below and above 
χ, the correlation length. χ and w(χ) are yellow-shaded; a (characteristic size calculated by equation 
6) and A (amount of dissolution) are green-shaded. z is the dynamic exponent, as explained in section 
3.  The last row shows average values of each column and its standard deviation. 

# Sample 
Name 

Dimensions 
(m) 

H, l< χ H, l> χ χ (m) w(χ) 
(m) 

a 
(μm) 

A (m) 

    length width RMS PSD wavelet RMS PSD       z=1.2 z=1.0 

1 in situ 1 2.14 0.20 0.57 0.5 0.56 0.04 0.02 0.12 0.0050 74 0.53 0.12 
2 in situ 2 9.32 0.30 0.72 0.67 - 0.15 0.2 0.07 0.0040 5 0.47 0.07 
3 in situ 3 4.80 0.12 0.63 0.68 - 0.11 0.11 0.08 0.0047 1 0.84 0.08 
4 in situ 4 3.30 0.23 0.75 0.82 0.8 0.02 -0.24 0.11 0.0050 26 0.58 0.11 
5 rockfall 1 5.37 2.73 0.64 0.67 - 0.11 0.16 0.11 0.0050 2 1.00 0.11 
6 rockfall 2 2.50 2.14 0.7 0.79 0.62 0.15 0.18 0.11 0.0045 15 0.65 0.11 

  
Average 
(std) 

    
0.67 

(0.07) 
0.69 

(0.11)
0.66 

(0.12) 
0.10 

(0.06) 
0.07 

(0.16)
0.10 

(0.02)
0.0047 

(0.0004) 
20 

(28) 
0.68 

(0.20)
0.10 

(0.02)

 

Appendix 

Parameters used in this manuscript, their symbols and units. 

Symbol Name Units 

A Dissolution amount m 

L Sampling size m 

L System size m 

Χ Correlation length m 

tc
 Critical time for which χ=L s 

W Average “width” of stylolite interface m 

H Hurst exponent  

Z Dynamic exponent  

A Characteristic size of the system m 

V Dissolution rate m/s 

D Spacing between stylolites m 

  Porosity  

 



Figure Captions 

 

Figure 1: Photos of the study area: (a) Blanche cliff; (b) an exposed stylolite surface 

which was scanned using the LIDAR technique (“in-situ 1” in Table 1, long axis of 

surface is ~2 m); (c) cross-section view of 2 parallel stylolites (see camera cover for 

scale).  

 

Figure 2: Topography of one of the scanned surfaces (“rockfall 1”, in Table 1) after data 

interpolation to an xyz grid. 

 

Figure 3: (a) RMS and (b) PSD analysis of surface roughness of 6 stylolite surfaces in 

the Blanche cliff (see Table 1 for dimensions and detailed results for each surface). The 

x-axis of the PSD analysis is k [m-1], as costumed in the literature, and equals (2*l)-1. 

Two scaling regimes are seen: (1) self-affine behavior with H~0.7 for scales up to 

l~10cm; and (2) decrease of slope (H decreases) at larger scales up to almost flattening 

(H~0.1). The range of values for which H starts decreasing, this is very soft definition …. 

is marked by grey rectangles and is between 7 and 12 cm. This value is the correlation 

length, χ, as explained in section 3. 

 

Figure 4: Modified from Figure 2 of Ebner et al. [14]. Simplified sketch of the numerical 

model setup which simulates stylolite roughening from an initial flat interface (marked by 

a red line). Initial setup is seen in (a), while the configuration after a certain amount of 

compaction appears in (b). The darker spheres are “pinning particles” which have a lower 

solubility and drive roughening. 



 

Figure 5: Simulation results, from Figure 4 of Koehn et al. [2] on which we added 

schematic illustration of how maximum amplitude, Amax depends on time and on 

sampling size, l. For example: maximum amplitude of l2 at t2 is smaller than at t3. At a 

given time Amax depends on l up to a critical size, after which it remains constant (e.g.: 

for l> l2, Amax=const). This dependence on l is a characteristic of self affine surfaces. 

 

Figure 6: Schematic log-log plot of w(l) for several times according to roughening 

models of Ebner et al. [14] and Koehn et al. [2]. For each time there is a power-law 

dependence of w on l with an exponent H (dotted black line) up to l=χ. χ increases with 

time until it reaches the system size, L (assuming the process has not stopped before). At 

χ=L (t=tc) roughness stops evolving though dissolution may still continue. 
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